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A B S T R A C T

In this paper, we propose a new heuristic method that hybridizes GRASP with Path Relinking
to solve the conditional p-Dispersion problem. Given n elements, from which q < n have been
already selected, this problem seeks to select p < n additional unselected elements to maximize
the minimum dissimilarity among them. The conditional p-dispersion problem models a facility
location problem motivated by a real situation faced in many practical settings arising when some
facilities have been already located. The algorithm includes a novel proposal based on an e�cient
interplay between search intensification and diversification provided by the Path Relinking
component, and it also incorporates an intelligent way to measure the diversity among solutions.
An extensive computational experimentation is carried out to compare the performance of our
heuristic with the state of the art method. The comparison shows that our proposal is competitive
with the existing method, since it is able to identify 17 best-known values. Additionally, our
experimentation includes a real practical case solved for a Spanish company in its expansion
process. This case illustrates both the applicability of the conditional p-dispersion model, and
the suitability of our algorithm to e�ciently solve practical instances.

1. Introduction

Maximum diversity problems consist in selecting a subset of elements from a given set in such a way that
the diversity among them is maximized. These problems have been widely studied in the literature, and many
methodologies have been applied to solve them. Martí et al. (2022) reviewed existing publications on diversity
problems, and conducted a critical analysis to determine the best algorithms to solve them.

One of the most important models when dealing with diversity maximization is the p-dispersion problem (p-DP),
also called the MaxMin dispersion problem (Kuby, 1987). In this model, the number of selected elements p is defined
beforehand, and the diversity is measured as the minimum distance between each pair of elements in the subset P of
selected elements (P  = p). This problem is NP-hard as proved by Erkut (1990). According to the geometrical study
in Parreño et al. (2021), one of the main characteristics of the p-DP is that the selected elements are scattered and
equidistant over the entire region, which makes this model well suited for location problems. This study recommends
the p-DP as the best model for practical applications, especially in logistics.

In this paper, we target a variant of the p-DP proposed by Cherkesly and Contardo (2021), the conditional p-
Dispersion Problem (c-pDP). As far as we know, this is the only publication devoted to this practical variant of
the p-DP. The c-pDP consists in selecting p elements in such a way that the dispersion is maximized, but subject
to a pre-established important constraint: q elements are already selected. The c-pDP has applications in location
problems (Erkut and Neuman, 1989; Rahman and Kuby, 1995), portfolio optimization (Kudela, 2020), decision planner
(Contardo, 2020), biological preservation (Glover et al., 1995, 1998), judiciary or committees evaluation (Adil and
Ghosh, 2005; Weitz and Lakshminarayanan, 1998, 1997). In fact, many of the existing applications of the p-DP
described in the literature are better modeled by the c-pDP. Consider, for example, the location problems in which
we have to establish new hospitals or warehouses in a territory to provide a good level of service. It is more realistic
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to consider that some of the facilities are already operating, and we have to consider them when locating the new
ones, instead of assuming that we are locating all of them from scratch. The c-pDP models di�erent applications, and
its elements may represent facilities in location problems, investments in portfolio context, or group members in the
selection of a committee. We include in the computational experimentation a case study from the food industry that
we solved with the consulting company OGA (www.oga.ai), which triggered our interest on this problem.

This paper is not limited to simply solving the problem of the c-pDP, but it also proposes a methodology that can
be applied to solve other combinatorial optimization problems. In particular, we propose a framework to apply PR
in problems with Max-Min objective function such as the c-pDP (and it is aplicable to Min-Max problems as well).
Specifically, exterior and interior PR strategies have been combined (hybridized) to deal with the flat landscape of
the Max-Min objective function. It is well-documented in the optimization literature, that objective functions with the
Min-Max or Max-Min types, provide very low information to guide the search of heuristic algorithms. Our method
overcomes this lack of information with search indicators to guide the heuristic towards good regions in the search
space. The combination between exterior and interior PR, coined as Reactive Path Relinking (Lozano-Osorio et al.,
2023), was applied to solve the Bi-objective p-Median and p-Dispersion problem. To solve the c-pDP we apply the
Reactive Path Relinking with diversification and intensification purposes by including di�erent designs: the static, the
dynamic, and the evolutionary GRASP with PR. Our computational study will disclose which variant fits better to
c-pDP, the problem of interest in this paper.

To sum it up, the main contributions of this work are: (i) to compare di�erent variants of GRASP with PR to solve
c-pDP; (ii) to propose a GRASP construction phase that ensures diversity among all the constructed solutions; (iii) to
combine exterior and interior path relinking strategies to allow diversification and intensification during the search; (iv)
to propose a new metric to evaluate the diversity between di�erent solutions in the context of max-min and min-max
optimization problems; and (iv) to perform numerical experiments that reveal the best strategies for our problem, and
to solve a real location application from the food industry.

The rest of this paper is organized as follows. In Section 2, we describe the mathematical model and we review the
existing literature in c-pDP. Section 3 describes the GRASP with PR methodology, including its variants. Section
4 provides a detailed description of our proposal to solve the c-pDP, which constitutes a framework for other
combinatorial optimization problems with objective functions of type Min-Max or Max-Min. Then, Section 5 reports
on the experimental study, including a real application on a practical location problem. Finally, our conclusions are
presented in Section 6.

2. Problem description and previous method

As mentioned in the introduction, the conditional p-dispersion problem, introduced by Cherkesly and Contardo
(2021), is a realistic variant of the well-known p-dispersion problem. Given a set V of n elements, let Q œ V be a
subset of q < n elements already selected. The conditional p-dispersion problem (c-pDP) consists of selecting p new
elements from the subset V ‰ Q in such a way that the dispersion among the selected elements is maximized. Table
1 summarizes the nomenclature and mathematical symbols that we use in the paper to describe the model and the
proposed algorithms.

The c-pDP can be formally defined as follows. Let V = Q‰R be a set of n elements where the elements in Q have
been selected in advance, with Q = q. The elements in R have not been selected yet, with R „Q = Á. Let D be the
matrix with D(i, j) = D(j, i) g 0 that measures the dissimilarity between two elements i, j À V with D(i, i) = 0 for
every i À V . The goal of the c-pDP is to select a subset P <

œ R with P < = p that maximizes the overall minimum
dissimilarity among all the selected elements (including the already selected (Q) and the new selected elements (P )).
The c-pDP can be formulated as follows:

P
< = argmax

PœR:P =p
min

i,jÀQ‰P
D(i, j) (1)

In a similar way that in the p-dispersion problem, the mathematical programming model for c-pDP is based on the
binary variables xi that take the value 1 if element i is selected and 0 otherwise. Then, it can be stated as follows:
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Table 1
Symbols and Definitions.

Symbol Definition

V set of n elements

Q set of q elements already selected from V , fixed in advance

R complement set of Q: V = Q ‰ R

P feasible solution, set of the new p selected elements

D(i, j) dissimilarity between element i and j

f (P ) objective function value of solution P

max min
i,jÀQ‰R:xi=xj=1

D(i, j)

s.t.
…
iÀR

xi = p

xi = 1 ≈ i À Q

xj À {0, 1} ≈ j À R.

(2)

Let us define as f (P ) the objective function of the c-pDP, i.e., the minimum distance between each pair of elements
in P ‰Q.

Cherkesly and Contardo (2021) propose an exact method to solve the c-pDP. Their proposal, called the exact
decremental clustering algorithm, has the following main steps. Initially, it constructs a feasible solution using a
heuristic algorithm. The objective function value of the constructed solution serves as a lower bound for the optimal
solution. The algorithm then discards all elements with a distance to the fixed elements less than this lower bound
(z). It is clear that a better solution should contain elements with a distance larger than z from the selected elements.
The algorithm takes advantage of this fact, reducing the size of the graph and, consequently, the computational time.
Finally, the authors employ the exact algorithm proposed by Contardo (2020) for the p-DP on the reduced graph to
identify a new solution or conclude that it does not exist. It is important to highlight that this proposal is executed
within a prescribed time limit, which implies that not all instances are solved to optimality.

As shown in the computational experimentation of Cherkesly and Contardo (2021), their exact algorithm performs
well on small instances, especially those with a small value of p. We have empirically found that its performance
quickly deteriorates when increasing the value of p. This is to be expected since, as shown in Martí et al. (2022), the
number of solutions exponentially grows with this parameter. Figure 1 illustrates this fact by showing the number of
solutions in a small instance with n = 25 as a function of the number of selected elements m.

The main motivation of our paper is to target medium and large size instances, in line with the realistic applications
of this problem, and to provide high-quality solutions to them.

3. GRASP with Path Relinking Methodology

Path Relinking (PR) is a trajectory-based metaheuristic mostly applied as an intensification strategy to enhance
di�erent optimization technologies. It was proposed in the context of Tabu Search (Glover and Laguna, 1997), and it
has evolved into a more generic methodology, usually applied as a post-processing in GRASP (Resende et al., 2010).

The PR methodology explores trajectories that connect pairs of solutions (Pi,Pg), with the aim to find improved
solutions along the path from the initiating solution Pi to the guiding solution Pg . The procedure generates intermediate
solutions by combining attributes from both solutions, the initiating and the guiding solutions, iteratively including
attributes of Pg into Pi until Pg is obtained.

Laguna and Martí (1999) incorporated PR into the framework of GRASP as a long-term intensification. In this
context, the concept of relinking involves establishing a connection between a solution obtained through GRASP and
a selected elite solution, also obtained with a previous GRASP iteration. As a result, the interpretation of relinking
within GRASP di�ers from its original implementation in Tabu Search, where solutions from consecutive iterations are
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Figure 1: Number of solutions, as a function of m = p + q in the x-axis, of an instance with n = 25.

linked through a sequence of moves. Moreover, this seminal work opened the door to other hybridizations in which PR
is coupled with other heuristics, such as Variable Neighborhood Search, Iterated Local Search or Genetic Algorithms.
These hybridizations resulted in improvements in solution quality and running times. According to Resende et al.
(2010), there are several possibilities for combining GRASP with PR, resulting in di�erent variants. In this paper we
focus on the most successful ones: static, dynamic, and evolutionary PR.

3.1. Static Path Relinking

To simplify the description, and to keep it in generic terms, we consider that we have obtained an initial population,
Pop, of N solutions (Pop = N), with the previous application of GRASP.

Static Path Relinking first selects a small set with the best GRASP solutions, and then operates on it (ignoring the
rest of the solutions in the initial population). This set is called elite set (ES), and it contains the best solutions to be
combined with PR. It must be noted that the meaning of best in this context refers to both quality and diversity. In
particular, a subset of b solutions (where b < N) is selected from the initial population to form ES, and a solution Pj

generated with GRASP is included in the ES if it satisfies any of the following conditions:

• The elite set is not entirely populated, i.e., ES f b.
• The elite set is complete, i.e., ES = b, and the solution Pj has better objective function value than the worst

solution in ES. In this case, the most similar solution in ES to Pj is removed from ES (i.e., Pj replaces it).

GRASP

|Pop|=N |ES|=b PR

Start End

Figure 2: Static GRASP with PR.

Once the elite set with size b is created, PR is applied to combine every pair of solutions in ES. The flow diagram
depicted in Figure 2 is referred to as the static approach because it involves two steps: initially applying GRASP to
create the ES, and subsequently using PR to generate solutions by considering all pairs of solutions within ES. Note
that these two steps are sequentially performed, and PR is applied when GRASP has already finished.
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3.2. Dynamic Path Relinking

A di�erent approach to implementing GRASP with PR involves a dynamic update of the ES, as in the original
proposal by Laguna and Martí (1999). In this design, every solution generated using GRASP undergoes the PR
algorithm directly. PR is applied between this solution and a solution randomly chosen from the ES.

It is worth mentioning that in this design the ES changes throughout the process. As depicted in Figure 3, GRASP
constructs b solutions to initialize the ES. Subsequently, GRASP is executed, and PR is applied between each newly
generated solution and a randomly selected solution from the ES. This process is repeated N times.

GRASP

PR

|ES|< b Improve?

Yes

No

Yes

No

|Pop|≤N

Start

Yes

End

No

Figure 3: Dynamic GRASP with PR.

An important di�erence between the static and the dynamic designs is that, in the static PR, the solutions obtained
from the application of PR are not considered to enter in the ES. In this variant, PR is applied as a post-processing
phase to all the pairs of solutions in the ES; and after this, the method stops. On the other hand, in the dynamic design,
the solutions obtained with PR are considered to become part of ES. Therefore, it is possible to replace a solution
in the elite set if any of the intermediate solutions qualify. Consequently, iterations in this design have two steps, the
first one applying GRASP, and the second one PR, and the method performs iterations until the stopping criterion is
reached.

3.3. Evolutionary Path Relinking

This is the most complex PR implementation proposed so far, since it combines the dynamic and static variants in
an e�ective way. We usually refer as GRASP with EvPR to its hybridization with GRASP proposed first by Resende
and Werneck (2004).

In the first stage, GRASP with EvPR follows a similar approach that the dynamic strategy. In each iteration, it
applies both GRASP, as well as PR, to obtain the elite set (see Figure 4). After a predetermined number of iterations,
the first stage terminates. This is depicted in the bottom part of the figure highlighted in gray.

In the second stage, GRASP with EvPR applies a post-processing phase based on the static design. In particular,
PR is applied to every pair of solutions in the ES. The solutions obtained through this subsequent application of PR
are considered as potential candidates to enter in the ES, thus replacing the elements there. This process allows the
elite set to evolve over time, and this is why the method is called Evolutionary PR. Solutions in the ES are combined
(i.e., submitted to PR) until the time limit is reached or until no improvement is attained from one iteration to the next
one. This second stage is represented in the upper right part of the diagram in Figure 4.

GRASP with EvPR is based on the evolution of a small set of selected solutions (Resende and Werneck, 2004).
Algorithm 1 shows the pseudo-code for the GRASP with EvPR. The inputs of the algorithm are the parameters ↵ and
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Figure 4: GRASP with Evolutionary PR.

b. Parameter ↵ balances the greediness and randomness of GRASP, and parameter b is the size of the elite set. In the
first while-loop (from step 3 to 18), the pseudo-code of the dynamic GRASP with PR is shown. First, the algorithm
populates the set ES using GRASP (steps 4 to 8). Each new incumbent solution P (steps 9 and 10) is hybridized with
a randomly selected solution from the elite set. Then, the best solution found during the path is incorporated in the
ES if an intermediate solution has a better objective function value, and the set is updated. The specific details of the
algorithm for solving the conditional p-dispersion is defined in Section 4.

4. The proposed algorithm for the Conditional p-Dispersion

This section focuses on applying the three variants of GRASP with PR described in Section 3 to solve the
Conditional p-Dispersion problem. Additionally, we propose the use of two di�erent PR strategies, interior PR (IPR)
and exterior PR (EPR) in order to provide intensification and diversification in the search, respectively.

Although path relinking has been applied to many optimization problems, most of these implementations limit
themselves to the IPR, which creates a path between two solutions. We may consider that this IPR somehow generalizes
the concept of the so-called convex combination in global optimization as long as it explores the solutions that
rely between two given solutions. In this paper however, we complement this exploration with the beyond-form of
path relinking (non-convex exploration) proposed in Glover (2014) and called Exterior Path Relinking. Instead of
introducing into the initiating solution elements from the guiding solution, EPR introduces in the initiating solution
elements not present in the guiding solution. In this way, we may say that EPR separates or disconnects two elite
solutions (Lozano-Osorio et al., 2023).

In this section, we first describe our heuristic algorithm for solving the c-pDP. We introduce the search elements and
key characteristics of the proposed GRASP for c-pDP (see Subsection 4.1), and then, we describe our Path Relinking
implementation for this problem (4.2). Note that we propose several search strategies that include not only those
mentioned above, but also some reactive mechanisms that permit our heuristic to automatically adapt itself to e�ciently
solve each specific instance.

4.1. GRASP

As briefly introduced, the PR strategy begins with the creation of an elite set consisting of high-quality and diverse
solutions. One of the features of the Greedy Randomized Adaptive Search Procedure (GRASP) is its ability to balance
the quality and the diversity of the generated solutions. In general terms, GRASP (Feo et al., 1994) is a multi-start
algorithm in which each iteration consists of two phases: construction phase and improvement phase. As its very name
indicates, the construction phase builds initial feasible solutions using a greedy randomized adaptive algorithm and the
improvement phase applies a local search by exploring the neighborhood solutions in order to escape from possible
local optimum. Usually, the output of the GRASP is the best solution found along a number of N iterations. However,
when combining GRASP with PR, a subset of GRASP solutions are kept in the elite set to apply the PR post-processing.
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Algorithm 1 GRASP with Evolutionary PR(↵,b)
1: f

< } *ÿ . Initialize the objective function value
2: ES } Á . Initialize the Elite Set
3: while stopping criterion is not satisfied do

4: while ES < b do

5: P } Greedy_Randomized_Adaptive_Construction(↵) . see Section 4.1.1
6: P } Local_Search(P ) . see Section 4.1.2
7: ES } {P }
8: end while

9: P } Greedy_Randomized_Adaptive_Construction(↵) . see Section 4.1.1
10: P } Local_Search(P ) . see Section 4.1.2
11: P

® } Select_Solution(ES)
12: P

®® } PR(P ®
,P ) . see Section 4.2

13: ES } Update_Elite(ES,P
®®)

14: if f (P ®®) > f
<

then

15: P
< } P

®®

16: f
< } f (P <)

17: end if

18: end while

19: while « Pi,Pg À ES not yet relinked do

20: P } PR(Pi,Pg) . see Section 4.2
21: ES } Update_Elite(ES,P )
22: if f (P ) > f

<
then

23: P
< } P

24: f
< } f (P <)

25: end if

26: end while

27:
28: return P

<

4.1.1. Construction phase
Solutions for the c-pDP consist of subsets P œ R of p selected elements. To implement the GRASP construction,

a Candidate List (CL) is created containing all available elements to be added to the solution (initially, CL = R).
Subsequently, a subset of the CL, known as the Restricted Candidate List (RCL) is calculated containing the most
promising candidate elements to be added to the solution. An element is considered if its greedy function value exceeds
a threshold ⌧, which is calculated as: ⌧ = gmax * ↵ � (gmax * gmin), where the parameter ↵ is responsible for controlling
the elements that will be part of the RCL and gmin and gmax are the minimum and maximum value of the greedy
function g(i) = minjÀP D(i, j) for all candidate elements i À CL, respectively. Note that, if ↵ = 1, the RCL will
contain all candidate elements, so RCL and CL are equal and therefore, the construction is totally random. On the
contrary, if ↵ = 0, the RCL will only contain the most promising element to be added to the solution, therefore the
construction is totally deterministic. An element is randomly selected from the RCL to be included in the solution
under construction P , and then the CL is updated by removing the selected element. This process is repeated until a
feasible solution is reached.

To address the c-pDP, the greedy function is directly the objective function of the problem. Therefore, the most
promising element to be added to the solution will be the furthest from all already selected elements (see equation 1).
An important strategy in the method is that, as previously mentioned, solutions need to be both good and diverse. By
generating solutions based on the increment of the objective function value, we ensure their relative quality. However,
to achieve diversity, the algorithm checks that each newly generated solution di�ers from previously constructed ones.
If the new solution shares the same elements as any previously generated solution, it is discarded as it has already been
examined.
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4.1.2. Improvement phase
Once a solution has been constructed, the improvement phase is applied. During this phase, the solution is enhanced

through the execution of a standard local search until a termination criterion is satisfied. We define N(P ) as the
neighborhood of solution P , which is determined by swap moves. Specifically, N(P ) consists of the set of all solutions
that can be reached by exchanging an element u À P with an element v À R ‰ (P ‰Q). In mathematical terms:

N(P ) = {P ®
œ V : P

® = P ‰ {u} ‰ {v}, u À P , v À R ‰ (P ‰Q)} (3)

The proposed local search instead of performing a complete exploration of the search space only considers strategic
exchanges not only to save computing time, but also because we are only interested in the movements able to reduce
the value of the objective function. This local search is based on similar local search strategies have been proposed in
related problems (Lozano-Osorio et al., 2022; Lu et al., 2023).

Our improvement method creates two lists and conducts exchanges between elements in both lists. On the one hand,
in_list contains the elements of the solution with the minimum distance value, i.e., in_list = {i À P : di = d

<},
where di = minjÀQ‰PD(i, j) and d

< is the objective function value of the solution P , d< = mini,jÀQ‰PD(i, j). On
the other hand, out_list contains the non-selected elements with distances larger than d

<, i.e., out_list = {j À
R ‰ P ‰Q : dj > d

<}. To improve the objective function value, the algorithm exchanges elements in in_list with
elements in out_list.

4.2. Reactive Path Relinking

In this work, we propose to hybridize two PR methodologies, Interior and Exterior Path Relinking instead of
applying a standard PR. This algorithm has been recently proposed by Lozano-Osorio et al. (2023), and it is coined
as Reactive Path Relinking (RPR). The rationale behind the RPR is to intensify when two solutions are di�erent (by
applying IPR) and diversify when two solutions are similar (by applying EPR). IPR and EPR are explained in detail in
the following subsections.

4.2.1. Interior Path Relinking
IPR creates a path that connects two good solutions, exploring new intermediate solutions attaining a high

probability of finding good solutions in the path that connects them. This is the standard PR. This strategy intensifies
the search by exploring repeatedly promising regions of the search space.

The path between Pi and Pg is created by including in Pi elements that are in Pg ‰ Pi, exchanging them with those
elements in Pi ‰Pg . Then, at every step, the IPR modifies the current intermediate solution P

j

i
to become more similar

to Pg , until it is reached.
Figure 5 shows an example of the IPR where the initiating and guiding solutions are Pi = {1, 2, 3, 4, 5, 6} and

Pg = {1, 2, 3, 7, 8, 9}, respectively. At the first step of the IPR, element 4 is replaced by element 7, obtaining the
intermediate solutionP 1

i
= {1, 2, 3, 7, 5, 6}, then, at the second step, element 5 is interchanged by element 8, resulting in

other intermediate solution, P 2
i
= {1, 2, 3, 7, 8, 6}, and at the last step, element 6 is substituted by element 9 obtaining,

in such a way, the guiding solution, Pg . Similarly, to transform Pg into Pi, the first step of the IPR replaces element 7 by
element 4, obtaining the intermediate solution P

1
g
= {1, 2, 3, 4, 8, 9}, then, at the second step, element 8 is interchanged

by element 5, resulting in the solution P
2
g

= {1, 2, 3, 4, 5, 9}, and the last step substitutes element 9 by element 6
obtaining, in such a way, the initiating solution, Pi.

Notice that the IPR is applied when the two high-quality solutions are su�ciently di�erent according to a given
distance metric. In Section 4.2.3, we propose a new metric and compare it with the conventional one.

4.2.2. Exterior Path Relinking
EPR follows the opposite idea of IPR in geometrical terms and creates a path that “disconnect” or “separates” two

promising solutions given that they are similar, leading to explore new solutions. This strategy inputs diversity in the
search by exploring di�erent regions of the search space.

Given an initiating solution Pi and a guiding solution Pg , EPR iteratively includes in Pi elements that are not in
Pg , with the aim of reaching new solutions which are diverse with respect to both Pi and Pg .

Figure 6 shows an example of the EPR where Pi = {1, 2, 3, 4, 5, 6} and Pg = {1, 2, 3, 7, 8, 9} are two pairs of
solutions. The task is to eliminate the shared elements, Pi „ Pg = {1, 2, 3}, from both solutions. At the first step
of the EPR, element 1 is replaced with element 10, getting the intermediate solution P

1
i
= {10, 2, 3, 4, 5, 6}. At the
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Figure 5: Interior Path Relinking.

second step, element 2 is interchanged by element 11, obtaining P
2
i
= {10, 11, 3, 4, 5, 6}. At the third step, element 3

is substituted by element 12, resulting in the intermediate solution P
3
i
= {10, 11, 12, 4, 5, 6}. Similarly, if we start with

the solution Pg thought Pi, Pg = {1, 2, 3, 7, 8, 9}, then the first step of the EPR interchanges element 1 with element
10, resulting in the intermediate solution P

1
g
= {10, 2, 3, 7, 8, 9}. The second step of the EPR replaces element 2 by

element 11, getting the solution P
2
g

= {10, 11, 3, 7, 8, 9}. And finally, at the last step of the EPR, the element 3 is
substituted by element 12, obtaining the intermediate solution P

3
g
= {10, 11, 12, 7, 8, 9}.

Figure 6: Exterior Path Relinking.

Notice that the EPR is applied when two solutions contain similar elements to diversify the search (see Section
4.2.3).

4.2.3. Evaluating solution diversity
To measure the diversity between two solutions Pi and Pj , a standard metric � is the number of di�erent elements

between both solutions, i.e., �(Pi,Pj) = n * Pi „ Pj. Therefore, the diversity between a given solution Pj and
the set of solutions in ES is measured as the distance to the nearest solution Pj in the elite set ES. Formally,
�(Pj ,ES) = minPiÀES{n * Pj „ Pi}.

Let Pa = {1, 2, 3, 4, 5, 6}, Pb = {1, 2, 3, 4, 7, 8}, and Pc = {1, 2, 7, 8, 9, 10}, be three feasible solutions, then
�(Pa,Pb) = 2, since they have two di�erent elements, and �(Pa,Pc) = 4, since they have four di�erent elements.
Therefore, solution Pa is more diverse compared to Pc than compared to Pb.

In this problem, given that the objective function value is determined by the shortest edge, we propose an alternative
metric to evaluate the diversity between two solutions Pi and Pj . This new diversity metric, denoted by �, takes the
value 1 if the shortest edge of solution Pi is di�erent to the shortest edge of solution Pj and 0, otherwise. Therefore,
the diversity of a solution Pj compared to the ES solutions is 1 if the shortest edge of Pj di�ers from the shortest

J. Sánchez-Oro et al.: Preprint submitted to Elsevier Page 9 of 18



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

GRASP with EvPR for the Conditional p-Dispersion Problem

edges in all solutions in ES. The diversity �(Pj ,ES) is calculated for each solution Pj À ES. The idea is to add a
solution to ES if the value of the � diversity is 1. Note that this way of measuring the diversity is valid not only for the
conditional p-dispersion problem but also for the optimization problems in which the objective function is focused on
maximizing a minimum or minimizing a maximum in which case, it is necessary to define � as 1 if the largest value
of solution two solutions are di�erent.

Let Pa = {1, 2, 3, 4, 5, 6}, Pb = {1, 2, 3, 4, 7, 8}, and Pc = {1, 2, 7, 8, 9, 10}, be three feasible solutions.
Furthermore, let’s assume that (1, 2), (1, 2) and (7, 10) are the shortest edges of Pa, Pb and Pc , respectively. Then
�(Pa,Pb) = 0, since they have the same shortest edge so both solutions are similar, but �(Pa,Pc) = 1 or �(Pb,Pc) = 1,
since they do not have the same shortest edge so such solutions are considered diverse.

At this point, it is worth mentioning how the diversity metric is used in the RPR. As previously mentioned, RPR
applies IRP if two solutions are di�erent, that is, if they are diverse, meanwhile RPR applies EPR if two solutions are
similar. To determine which of the PR variants must be used by the RPR, it is crucial to know how the diversity will
be measure.

Note that if we use � to measure the diversity, it is considered that two solutions are di�erent if they have more
than a half elements di�erent, and so, IPR is applied, otherwise, EPR is applied. When measuring the diversity with
�, it is much more easier since the value 1 indicates that solutions are di�erent, so IPR should be applied, otherwise,
value 0 indicates that solutions are similar, so EPR should be applied.

4.3. Computational complexity

This section is devoted to present the computational complexity of the proposed algorithm. In particular, each
component of the algorithm is first independently analyzed and, then, the complexity of the complete proposal is
computed. The complexity is analyzed in terms of the Big O notation, which refers to the worst case scenario to
establish the bounds of the algorithm.

The first component of the algorithm is the constructive procedure presented in Section 4.1.1. The creation of the
CL has a complexity of O(n), since it requires to add every single candidate to the list. Then, in each iteration, the RCL
is computed with a complexity ofO(n) and, after selecting the next element, the remaining ones in CL are updated, with
a complexity of O(n). Therefore, the final complexity of each iteration is max(O(n),O(n)) = O(n). Then, the complete
constructive procedure has a complexity of O(n2), since it has a complexity of O(n) in each iteration, requiring to
perform n iterations, (O(n � n) = O(n2)).

The second component evaluated is the local search method described in Section 4.1.2. This is usually the most
computationally demanding part of any optimization algorithm, so it has to be carefully implemented in order to have
an e�cient procedure. In each iteration of the local search, all the elements of the solution are examined in the worst
case and, for each iteration, the evaluation of the movement is performed with a complexity of O(n). Therefore, the
complete complexity of the local search procedure is O(n2).

Finally, the complexity of the complete Evolutionary Path Relinking procedure is evaluated. The first stage of the
algorithm consists of generating the initial elite set. This stage creates a fixed number of solutions and the complexity
of each generated solution is the maximum between the complexity of the constructive procedure and the complexity of
the local search method. Therefore, generating n solutions results in a complexity ofO(n�n2) = O(n3). The second stage
is the Dynamic PR. In this phase, for each iteration a solution is constructed and improved, resulting in a complexity
of O(n2). Then, the combination method is applied. The proposed combination methods traverses all the candidates
and perform a local search to each solution in the path, with a total complexity of O(n3). Hence, the complexity of
Dynamic PR is evaluated as max(O(n2),O(n2),O(n3)) = O(n3).

The final stage of the algorithm is the evolution of the elite set applying path relinking. In this case, the procedure
iterates while an improvement is found, with linear complexity. In each iteration, it is required to consider every pair
of solutions to be combined, with a complexity of O(n2), performing a combination over every pair of solutions with
a complexity of O(n2). Thus, the complete complexity of this phase is equal to O(n4).

Summarizing, the final complexity of the proposed algorithm is the maximum among all the evaluated elements,
resulting in max(O(n2),O(n2),O(n3),O(n4)) = O(n4). It is interesting to remark that this evaluation refers to the
worst-case scenario, which is not the most common situation of the algorithm. Therefore, as it is customary in
“heuristic papers”, to have a more precise and representative analysis of the performance of the method, we perform
an experimental evaluation via simulation over a set of representative instances, which permits to draw significant
conclusions, as described in the following in Section 5.
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Table 2
Comparison among different values for ↵ parameter in GRASP.

↵ T(s) OF Dev(%) #Best

RND 0.10 12251.29 0.94 73

0.1 0.07 12047.88 1.63 55

0.2 0.08 12064.61 1.63 48

0.3 0.08 12065.79 1.48 56

0.4 0.09 12155.39 1.33 64

0.5 0.10 12167.34 1.18 69

0.6 0.11 12154.90 1.23 66

0.7 0.11 12095.57 1.09 68

0.8 0.12 12225.22 0.80 77

0.9 0.13 12247.71 0.60 94

5. Computational experiments

This section is devoted to present and discuss the computational experiments. We use the same set of 40 instances
solved by Cherkesly and Contardo (2021) taken from the well-known TSPLIB (Reinelt, 1991), with a number of
elements ranging between 1621 and 104815. To adapt these instances to the conditional p-dispersion problem, the
authors generated the set Q using three strategies: greedy, optimal and random, and with the values of q and p being 5,
10, 15 and 20, obtaining a total of 16 combinations. In this work, we consider the set Q generated using the same greedy
algorithm. For further details about the generation of the instances see Cherkesly and Contardo (2021). Therefore, a
total of 640 instances are solved to perform a fair comparison with the state-of-the-art. All instances were solved on
an AMD Ryzen 5950x with 128 GB RAM, and the algorithms were implemented using Java 17. Note that throughout
this section, tables summarize the results obtained in each specific experiment. All instances, source code, and detailed
results are publicly available at https://grafo.etsii.urjc.es/cpDP.

To evaluate the performance of each procedure, we consider the following metrics:

- T (s), the total time in seconds.

- OF , the average of the objective function value.

- Dev(%), average value of the percentage deviation with respect to the best solution found in the experiment.

- #Best, the number of best solutions with each algorithm.

Results are divided into two subsections: preliminary experiments and final results. In the preliminary experiments,
parameters are tuned and furthermore, the contribution of each component of the algorithm is tested. This section is
also called “scientific testing” in the literature on optimization to highlight that it provides insight on the strategies and
elements of the algorithm. To avoid overfitting, we have selected a subset of 25% instances, in total 160 instances. As
customary in the literature, in the preliminary experiments, GRASP was performed 100 iterations, and the size of the
ES is fixed at 10 solutions. Once the final configuration of our proposal is set, we present a comparison against the
state-of-the-art in the final results, also called competitive testing.

5.1. Preliminary experiments

As previously explained our proposal requires an initial population of solutions that is built with GRASP. Therefore,
the first preliminary experiment is focused on selecting the best parameter ↵ for the GRASP algorithm. To that end,
we have generated 100 solutions by testing values ranging from 0.1 to 0.9 with a step of 0.1. Additionally, the value
RND indicates that a random value for ↵ is selected in each construction. Table 2 shows the results obtained in this
experiment.

As can be drawn from the results, the quality of the solutions increases with the value of ↵. This indicates that
diversity plays an important role in the proposed algorithm. Although the best results are found by both ↵ = 0.9
and ↵ = RND, we select ↵ = RND for the remaining experiments since it provides equivalent results but with more
diversity.
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Table 3
Comparison between two diversity strategies in Static GRASP with RPR.

T(s) OF Dev(%) #Best

�-RPR 0.78 12258.35 0.04 152

�-RPR 0.77 12257.17 0.12 149

Table 4
Comparison among GRASP and the different GRASP with PR strategies proposed.

T(s) OF Dev(%) #Best

GRASP 1.14 12197.01 1.30 73

Static GRASP with RPR 1.30 12245.00 0.96 92

Dynamic GRASP with RPR 1.46 12300.24 0.70 105

GRASP with EvRPR 2.52 12363.47 0.23 131

Given the nature of the c-pDP, where the objective function is a max-min mathematical expression (see Section
4.2.3), we have introduced a new diversity metric, �, to compare two solutions in the RPR, instead of the traditional
diversity metric, � . Therefore, the following experiment evaluates the relevance of selecting an adequate diversity
metric. Moreover, we analyze the impact of the proposed diversity metric in the context of RPR.

The two strategies compared are the static GRASP with RPR with the � diversity metric, which considers the
diversity between two solutions with respect to their objective function value, and the traditional strategy, based on
the � diversity metric, which evaluates the number of di�erent elements selected in each solution. We called them as
�-RPR and �-RPR, respectively. Table 3 shows the results obtained in this experiment performed using the standard
parameters for Pop and ES sizes, which are 100 and 10, respectively.

Although both strategies present similar results in terms of quality and computing time, it can be seen that the new
diversity metric performs slightly better, being able to reach a larger number of best solutions with a deviation which
is almost 0. Therefore, we select �-RPR as the best Static GRASP with RPR strategy.

At this point, we intend to compare the Static GRASP with PR, the Dynamic GRASP with PR and the EvPR where
the variant of PR is a �-RPR as in the previous variants. The objective of this comparison is to evaluate which is the
best proposal to solve the considered problem. Table 4 shows the results when comparing GRASP, GRASP with Static
RPR, GRASP with Dynamic RPR, and GRASP with EvRPR.

Table 4 provides relevant information on the performance of the algorithmic variants proposed. First, it is important
to remark that GRASP isolated is able to provide high-quality solutions, being competitive with the PR variants.
However, these results suggest that applying PR increases the portion of the search space explored, thus leading to
better results. Specifically, the best PR variant is clearly EvPR, which is able to reach 131 out of 160 best solutions.
Furthermore, the deviation of 0.23% indicates that, in those instances in which EvPR is not able to reach the best
solution, it still remains really close to it, emerging as the best PR strategy for the c-pDP. Regarding Static and Dynamic
PR, the dynamic nature of the latter is a key feature to find better results than the former. Although both present high-
quality solutions, Dynamic PR is slightly better, with a smaller deviation and a larger number of best solutions found.
Finally, the computing time for all the variants is negligible, requiring, on average, approximately 2 seconds, being
GRASP with EvRPR the slowest variant. Overall, we consider GRASP with EvRPR as our reference method, to be
applied in comparison with all instances in the Competitive-experiments subsection.

The final preliminary experiment is designed to determine the best values for the population and elite set size.
The main objective is to evaluate if the combination of these parameters contributes to an improvement of the average
objective function value without a significant increase in the required computing time. Specifically, we have combined
both parameters in the following way: N = 100 with ES = 10; N = 250 with ES = 10 and 25; and finally,
N = 500 with ES = 10, 25, and 50. In this manner, the maximum size of the elite set is limited to 10% of the
population size to keep a reasonable proportion in this subset of good and diverse solutions compared to the initial
population.

As shown in Table 5, the larger the population size, the better the average objective function value. Evidently,
the sample size of the solution space increases with larger population sizes, leading to higher solution quality.
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Table 5
Parameter comparison in GRASP with EvRPR.

N ES T(s) OF Dev(%) #Best

100 10 8.23 12497.82 0.33 114

250 10 16.55 12482.09 0.28 125

25 35.68 12491.89 0.20 127

500 10 39.59 12500.78 0.10 141

25 53.44 12506.79 0.12 142

50 122.48 12507.66 0.05 150

Consequently, this increase results in longer execution times. Moreover, the improvement is not as significant when
the size of the elite set increases. In conclusion, the combination parameter N = 250 and ES = 25 o�ers the best
trade-o� between solution quality and computational time.

5.2. Competitive experiments

In the previous section, the configuration of the algorithmic proposal has been set. Specifically, the GRASP
parameter ↵ is randomly selected at each iteration of the algorithm see Table 2. The diversity metric in RPR is the
metric �, as indicated in Table 3. Additionally, we use the best variant among the four considered in Table 4, that
is, the GRASP with EvRPR, with N = 250 and ES = 25 (see Table 5). Therefore, in this section, we focus on a
comparison with the state-of-the-art algorithm (SOTA). Specifically, we compare GRASP with EvRPR, and the SOTA
on the testbed set, which consists of 640 instances with values of p: 5, 10, 15, and 20.

In this first experiment, we test the ability of GRASP with EvRPR to match the best-known values obtained by the
SOTA algorithm (Cherkesly and Contardo, 2021). We run our heuristic once on each instance, and then, we summarize
the comparative between SOTA and GRASP with EvRPR using statistical metrics in Table 6. Detailed results are
available in the aforementioned repository.

It is well known that a fair empirical comparison between two algorithms relies on running them under the same
conditions. This mainly implies to run them on the same computer and for the same time. Although the authors of
the previous heuristic, SOTA, kindly shared their implementation with us, their executable program does not permit
to adjust the running time, which makes a comparison with other methods complicated. In our experiments with their
SOTA program, we observed a large variability in its running times across instances. We therefore classified the results
according to these running times, that range from 10 to 10000 seconds in three groups (below 60 seconds, between 60
and 600 seconds, and above 600 seconds).

It is well accepted in the optimization literature that heuristics are meant to be fast. In line with that, we design
our method, GRASP with EvRPR, to obtain high-quality solutions in short computational times (i.e., in few seconds
in most of the cases). We then compare our method with the previous heuristic in the instances in which its program
returns a solution in short running times (say lower than 60 seconds). For the sake of completeness, we include in
Table 6 the summary results of both methods (SOTA and GRASP with EvRPR) in all the instances, although we do
not believe that their comparison when the running times are so di�erent is adequate.

Table 6 shows that GRASP with EvRPR outperforms SOTA in terms of average running times, percent deviation,
and objective function value on the instances where SOTA is able to produce a solution in requires less than 60 seconds
of CPU time. The average deviation from the best-known solution is 0.07% and our proposal achieves the best value
in 345 out of 367 instances. For the instances where SOTA requires more than 60 seconds, it exhibits slightly better
metrics than our algorithm. However, SOTA requires 13 times more CPU time than our algorithm (199.7 seconds
versus 15.5 seconds) for the instances with execution times between 60 seconds and 600 seconds, and more than 24
times for the instances with more than 600 seconds of running time. To complement this analysis, we performed a
paired-samples t-test1 (see Dem�ar (2006) for more details on the statistical test). This test resulted in a p * value of
0.0145, which is not less than the significance level of 0.01, and there is no significant di�erences between GRASP with
EvRPR and SOTA when grouping all the instances together. Note that this is remarkable considering the extremely
short running times of our algorithm.

1We chose this test because with a sample size of at least 40, the Wilcoxon W statistic tends to follow a normal distribution.
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Table 6
Comparison of SOTA with GRASP with EvRPR on testbed instances with p f 20.

SOTA with SOTA GRASP with EvRPR

CPU time p T(s) OF Dev(%) #Best T(s) OF Dev(%) #Best

below 60s.
(367 inst.)

5 21.6 13510.5 0.66 131 0.1 13521.1 0.00 136

10 26.3 6250.4 0.39 99 0.6 6255.1 0.00 101

15 31.0 5488.8 0.24 75 1.7 5490.6 0.04 69

20 31.3 5034.9 0.00 51 2.4 5031.6 0.22 39

all 27.5 7571.1 0.32 356 1.2 7574.6 0.07 345

between 60s.
and 600s.
(169 inst.)

5 168.1 31853.9 0.79 13 0.5 31874.1 0.00 14

10 205.5 26249.2 0.00 43 4.9 26226.6 0.37 34

15 217.9 13483.5 0.35 50 18.5 13483.5 0.31 44

20 207.2 7200.7 0.21 57 38.2 7161.5 0.69 32

all 199.7 19696.8 0.34 163 15.5 19686.4 0.34 124

above 600 s.

(88 inst.)

5 930.9 106107.6 0.00 5 3.5 106107.6 0.00 5

10 3015.7 67205.9 0.00 10 61.9 67172.8 0.33 8

15 3516.7 39414.6 0.00 27 167.1 39396.9 0.76 17

20 7756.7 28919.6 0.00 46 405.8 28655.0 1.39 16

all 3805.0 60411.9 0.00 88 159.6 60333.1 0.62 46

0.00 means less than 0.001

Table 7
New best-known objective function values.

Instance p q SOTA algorithm GRASP with EvRPR

brd14051 5 10 1554 1780

brd14051 5 15 1264 1460

brd14051 10 15 1125 1194

brd14051 15 15 1040 1079

brd14051 5 20 1082 1460

brd14051 10 20 969 1186

brd14051 15 20 880 1079

brd14051 20 20 838 872

d18512 5 5 2258 2540

d18512 5 10 1758 2000

d18512 5 15 1419 1616

d18512 10 15 1261 1323

d18512 15 15 1194 1219

d18512 5 20 1250 1460

d18512 10 20 1155 1305

d18512 15 20 1041 1194

d18512 20 20 1000 1091

We now analyze the instances in which our method surpasses the previous one. In particular, GRASP with EvPR
algorithm outperforms the best-known value found so far in 17 instances. Specifically, in Table 7, we provide the names
and objective function values for these 17 instances in both algorithms.

To complement the above findings, we evaluate the performance of GRASP with EvRPR across a total of 220
instances. We combine parameter values of q (5, 10, 15, and 20) with larger values of p (25 and 30) while maintaining
similar computational times. Table 8 shows that our proposed method achieves an average percent deviation of 0.05%
from the best-known solutions and it finds the best solution for 218 out of 220 instances. In contrast, the state-of-the-
art (SOTA) method finds only 99 best solutions with an average deviation of 0.65%. There are statistical significant
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Table 8
Comparison of SOTA with GRASP with EvRPR on testbed instances with p = 25, 30.

SOTA GRASP with EvRPR

p OF Dev(%) #Best OF Dev(%) #Best

25 7308.41 0.49 58 7339.98 0.07 113

30 6328.50 0.83 41 6357.84 0,03 105

all 6836.27 0.65 99 6866.77 0.05 218

0.00 means less than 0.001

di�erence (p-value of 0.004, less than 0.01) between SOTA and our proposal for p = 25 and 30, meaning that there
is significant evidences to reject the hypothesis that the GRASP with EvRPR and the SOTA attain similar objective
function values.

To sum it up, the experimentation shows that our proposal provides the best trade-o� between solution quality and
computational running times.

5.3. Case study

This section details the strategic expansion of a Spanish company aiming to enhance its distribution network
across the national territory. As part of this expansion, the company seeks to identify the best locations to host new
warehouses and to improve product distribution e�ciency. Given the dynamic nature of customer locations and the
need for a robust preliminary approach, we considered the p-dispersion problem as a first approximation for warehouses
location. Additionally, considering that the company is already operating and has some warehouses set, we address the
Conditional p-Dispersion Diversity Problem to account for existing warehouse locations in our optimization model.

Due to the confidentiality clause with the consulting company, OGA, for which we solved this problem, we cannot
disclose the identity of the customer, but we can mention that it belongs to the food industry. This Spanish company has
experienced significant growth and aims to expand its logistical footprint to better serve its customer base. The primary
objective of this project is to determine new warehouse locations that maximize geographic diversity, ensuring broad
coverage and e�cient distribution capabilities. We therefore considered to apply a diversity optimization model based
on maximize the inter-distance minimum value since it is well documented that this model allows for the identification
of locations that are widely spread out, thus providing a diverse and strategically advantageous distribution network
(Parreño et al., 2021; Lu et al., 2023).

Given that the company already operates several warehouses, we consider the conditional p-dispersion model. It
must be noted that this model perfectly fits the typical expansion scenario in which some locations are already selected
(due to the current operations of the company), and we have to select some new sites to maximize overall distribution
diversity while incorporating these pre-established nodes.

Key steps in our methodology include:

• Data Collection. Gathering geographical and logistical data relevant to potential warehouse sites across the
national territory.

• Problem Formulation. Defining the Conditional p-Dispersion Problem to incorporate existing warehouse
locations into our model.

• Optimization. Applying metaheuristic techniques to identify new sites maximally dispersed. In particular, we
ran the GRASP Evolutionay PR algorithm to solve the problem.

• Evaluation. Assessing the proposed locations for feasibility, accessibility, and alignment with the company’s
strategic goals.

The instance provided by OGA contained 800 potential sites for warehouses over the Spanish territory. From this
set of sites, 150 are already selected and they are currently operating, providing service to their customers. In their
expansion plan, the company considers to select 50 new sites to cover the entire Spanish peninsula. At this stage, the
set of customers is not defined and so they resort to geographical information to identify scatter and well-distributed
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Figure 7: Candidate sites for warehouse location. Red bullet: existing warehouse locations (Q). Black bullet: new sites (P).

points, as identified by our model. Our heuristic method based on the evolutionary path relinking methodology is able
to provide a high-quality solution in 1 minute of computing time. Figure 7 shows the solution on a map. By solving
the Conditional p-Dispersion Problem, we provide a robust framework for identifying optimal warehouse locations,
ensuring the company’s continued growth and operational e�ciency in the Spanish market.

6. Conclusion

This paper solves a problem known as the c-pDP recently proposed by Cherkesly and Contardo (2021). The c-pDP
is a variant of the well-known dispersion problem that aims to select a set of p elements when q elements has been
already selected while maximizing the dissimilarity among the elements.

This problem is NP-hard, which makes exact methods impractical for large scale instances. In this research, we
propose di�erent metaheuristics, from the simplest one (GRASP) to a set of more complex metaheuristics focused
on combining GRASP with PR, such as: static GRASP with PR, dynamic GRASP with PR and GRASP with EvPR.
In the context of path relinking, instead of implementing the standard variant, we propose a more intelligent strategy
that combines interior and exterior PR, that is, the RPR, to intensify the search (when two solutions are di�erent) or
diversity it (when two solutions are similar).

Many combinatorial optimization problems, and in particular the c-pD, that present flat landscapes where it is easy
to find several di�erent solutions presenting the same objective function value pose a challenge to heuristic methods.
In order to overcome this di�culty, a new diversity metric has been proposed to evaluate the similarity of two solutions
and in such a way, to allow the algorithm to escape from suboptimal basin of attractions. The metric has been coined
as the �-metric along this work and it is not only valid to solve the c-pD problem, but also to solve any combinatorial
optimization problem in which the objective value is a max-min objective function (or a min-max objective function).

Computational results conclude that our proposal, GRASP with EvRPR, is able to solve large and complex
instances in short computational time. A comparison with the state-of-the-art algorithm shows that both have a similar
performance but our algorithm exhibits significantly in shorter times. Additionally, our experimentation shows the
suitability of this method to solve a practical case from a Spanish company in the food industry. To conclude, GRASP
with EvRPR is suitable to solve both academic and realistic problems.
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