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Abstract
Researchers and practitioners have addressed many variants of facility locations prob-
lems. Each location problem can be substantially different from each other depending
on the objectives and/or constraints considered. In this paper, the bi-objective obnox-
ious p-median problem (Bi-OpM) is addressed given the huge interest to locate
facilities such as waste or hazardous disposal facilities, nuclear power or chemical
plants and noisy or polluting services, among others. The Bi-OpM aims to locate p
facilities maximizing two different objectives: the distance between each customer
and their nearest facility center and the dispersion among facilities. To address the
Bi-OpM problem a Multi-objective Parallel Variable Neighborhood Search approach
(Mo-PVNS) is implemented. Computational results indicate the superiority of the
Mo-PVNS compared to the state-of-art algorithms.

Keywords Facility location problem · Obnoxious p-median problem ·
Multi-objective optimization · Variable neighborhood search

1 Introduction

According to [7], location problems can be classified into four categories regarding
the objective function criteria: facility location problems, which seek to find a place
to locate a facility in order to minimize the total cost between demand points and
facilities; p-median problems, which determine the locations of p facilities in order
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to minimize the total cost between demand points and facilities; p-center problems,
which minimize the maximum distance between each demand point and its assigned
facility; and covering problems whose objective is to find the minimum number of
facilities to cover all the demand points or to maximize the number of demand points
covered by a given number of facilities. All those problems can also consider capacities
in the facilities and demands in the demand points. In those cases they are known
as capacitated and uncapacitated problems, when these features are not included
[5,23]. Furthermore, location problems can be considered on the discrete space, when
facilities can be only placed at specific locations [19], or on the continuous space, in
which facilities can be placed at any location of a given region [1].

This work deals with an uncapacitated discrete facility location problem. Specif-
ically, we focus on a variant named the bi-objective obnoxious p-median problem,
Bi-OpM. The Bi-OpM was first introduced in [4] and seeks to locate a set of obnox-
ious facilities as far as possible from the set of demand points and at the same time from
other obnoxious facilities. This situation appears when the interest is to locate facilities
such as waste or hazardous disposal facilities, nuclear power or chemical plants and
noisy or polluting services like airports, among others, and that is why the facilities
are called obnoxious. There are many other real applications that can be modeled as
the Bi-OpM. For instance, it can be considered that the obnoxious facilities to locate
are power plants or mobile phone antennas given that they can produce radiation, and
can make neighbor citizens uncomfortable.

TheBi-OpM can be formally stated as follows. Let I be the set of demand points that
could represent, for instance, customers or cities, and J the set of candidate facilities,
where |I | = n and |J | = m. Furthermore, let d(a, b), be the distance between two
locations, where a, b ∈ I ∪ J . The aim of the Bi-OpM is to locate a subset P ⊆ J of
facilities, having |P| = p and p < m in order to maximize two objective functions:
f1, the distance from each demand point to the facilities, computed as the sum of
the minimum distances from each demand point and the nearest facility; and f2, the
dispersion among the facilities, computed as the sum of the minimum distances from
each facility to the other selected facilities. Some authors name facilities in P as open
facilities and facilities in J\P as closed or unopened facilities. More precisely, these
objective functions can be described in the following way:

max
j∈P

f1 =
∑

i∈I
min di j

max
k∈P,k �= j

f2 =
∑

j∈P

min d jk

s.t.P ⊆ J

|P| = p

Once the problem has been defined, it is important to emphasize that we are dealing
with a multi-objective optimization problem. Therefore, we consider an efficient solu-
tion to be the one where no single-objective function value can be improved without
deteriorating another objective function value. It is said that a solution P∗ dominates
another solution P if P∗ is not worse than P in all the objectives, and P∗ is better than
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P in at least one objective. Similarly, we say that P∗ weakly dominates P if P∗ is not
worse than P in all the objectives [2]. Formally, as we are maximizing the objectives,
a solution P∗ dominates another solution P , if fk(P∗) ≥ fk(P) for all k = 1, 2 and
fk(P∗) > fk(P) for at least one k = 1, 2. According to this, a solution is efficient if
there is no other solution that dominates it. The aim is to achieve the set of efficient
solutions, also known as the efficient frontier or the Pareto front.

As stated before, the Bi-OpM was first introduced in [4]. The authors proposed
a Multi-Objective Memetic Algorithm (MOMA) defining two new variants of the
crossover and mutation operators and studying three local search strategies applied
in the MOMA. Furthermore, they performed a comparison using two multi-objective
state-of-the-art methods, specifically the Non-dominated Sorting Genetic Algorithm
II, (NSGA-II, see [8]), and the Strength-Pareto Evolutionary Algorithm 2 (SPEA2,
see [25]), and also adding a single-objective Genetic Algorithm (GA) which combines
the objectives under study through a weighted sum of their values. The authors proved
that the MOMA approaches obtained better non-dominated solutions within less exe-
cution time. However, there is not a clear decision among the different local search
strategies implemented in theMOMAframework but the specific selectionwill depend
on the decision maker since two of the three MOMA variants, namely Dominance-
Based Local Search (DBLS) and Alternate Objectives Local Search (AOLS), provide
a higher number of efficient solutions, many of them close to higher values for each
objective function separately and the other local search provides solutions with a good
compromise between both objectives. Besides, these algorithms depend on the values
stated for each one of the parameters they need such as the population size, number of
generations, crossover and mutation probabilities and also two different probabilities
related to the execution of the local search process. Aswewill show later, our approach
is easier to adjust to the target set of instances. Furthermore, we refer the reader to [3,4]
where an extensive and recent review of the literature covering obnoxious situations
in both cases, single-objective and multi-objective optimizations is done.

In this paper, a Multi-objective Parallel Variable Neighborhood Search approach
(Mo-PVNS) is specifically designed to solve the Bi-OpM in order to overcome the
limitations found by the algorithms proposed in [4]. Our purpose is to find a good
approximation to the Pareto Front (PF) in terms of convergence and/or diversity.
That is, we aim for solutions close to the exact PF (if known) or to the best-known
PF which, in the best of the cases, will be uniformly spread to cover all the regions
of the search space. Hence, the main contributions of this paper are the adaption of
the VNS schema to this problem in a very efficient way, and the final results obtained,
which overcome the previous state-of-the-art.

The rest of the paper is organized as follows. Section 2 describes the proposed algo-
rithm, Mo-PVNS, and details how the algorithm has been adapted and implemented
to deal with Bi-OpM. Section 3 presents the computational results and finally, Sect. 4
summarizes the paper and discusses future work.
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2 Multi-objective parallel variable neighborhood search algorithm

Our Multi-objective Parallel Variable Neighborhood Search (Mo-PVNS) tackles the
Bi-OpM problem taking into account both the objectives of this problem in a non-
aggregated way. However, before going deeper into the details of our proposal, we
will first briefly describe the VNS methodology.

VNS is ametaheuristic, firstly introduced in [20], that relies on the idea of systematic
changes in the neighborhood structures in order to explore different search spaces and
avoid to be trapped by a local optimum. The flexibility of the VNS methodology
has resulted in several variants in recent years (see [16] for a recent survey on the
methodology), which has led to several successful applications for a variety of difficult
optimization problems, such as those in [10,21]. Particularly, [9] or [17], among others,
have dealt other variants of the p-median problem using the VNS methodology.

In single-objective optimization, the basic version of the VNS algorithm (BVNS)
requires an initial solution as a starting point for the search, as well as the maximum
number of neighborhoods to be explored. Then, the algorithm iterates from the first
neighborhood until reaching the maximum considered neighborhood. In each itera-
tion, BVNS obtains a random solution in the neighborhood under exploration, and
improves it with a local search method. If the improved solution outperforms the
incumbent one, then it is updated, restarting the search from the first neighborhood
again. Otherwise, the search continues in the next considered neighborhood. This is
repeated until a certain stopping condition is reached. Nevertheless, we are addressing
a multi-objective optimization problem and the concept of “improving a solution” is
different. In multi-objective optimization, instead of a single solution, a set of efficient
solutions will be the “starting point” for the VNS algorithm. In this case, it is consid-
ered that the current solution has improved if a new generated solution is included in
the approximate set of efficient solutions. We have followed the indications proposed
by [11], where an innovative way to design the shake, the improvement, and the accep-
tance criterion procedures for multiple objective problems is presented. They propose
to consider the approximate PF found during the search process as the incumbent
solution.

In thiswork, not onlyVNS is adapted to solve this bi-objective optimization problem
but also a parallel design of the algorithm is proposed, which is able to explore a
wider search space. There are mainly four parallel designs for VNS that have been
previously proposed in the literature [6,14]. The Syncrhonous Parallel VNS (SPVNS)
is focused on parallelizing the local search phase, since it is usually the most time-
consuming part of the search. Replicated Parallel VNS (RPVNS) tries to execute
a complete and independent VNS procedure in each available processor, with the
aim of having different starting points for VNS. Replicated Shaking VNS (RSVNS)
parallelizes the shake method in such a way that the algorithm explores more than
one single solution in each considered neighborhood, exploring a wider portion of the
search space. Finally, inCooperativeNeighborhoodVNS (CNVNS) several processors
explore the considered neighborhood simultaneously, collaborating among themwhen
a new best solution is found.

In this work, the SPVNS has not been considered since it is focused on reducing
the computation time by parallelizing the local search. This is not necessary for the
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Bi-OpM since the proposed local search method is indeed quite fast, as it can be seen
in the results of Sect. 3. RPVNS has also been discarded for solving the Bi-OpM
mainly due to the quality of the starting point found by the constructive procedure,
that is not a single solution but a set of efficient solutions (see Sect. 2.1), which makes
unnecessary starting the search in a new solution. Finally, CNVNS is not suitable for
the proposal since we do not consider collaborations among processors for obtaining
better solutions to allow more diversity in the search. On the other hand, the ability
of RSVNS to explore wider solution spaces makes it the most suitable framework for
the tackled problem, and allows us to obtain better solutions in the same computation
time. Therefore, in this paper a RSVNS is considered with the aim of exploring a
wider portion of the search space.

The pseudocode of the Mo-PVNS algorithm is briefly described in Algorithm 1.

Algorithm 1Mo-PVNS(PF, kmax)
1: k ← 1
2: while k �= kmax or a time limit is reached do
3: PF′ ← PF
4: for all P ∈ PF′ do
5: for pi ∈ 1 . . .AVP do 
 Parallel Section
6: P ′ ← Shake(P, k)
7: PF′ ← Insert&Update(P ′)
8: P ′′ ← LocalSearch(P ′)
9: PF′ ← Insert&Update(P ′′)
10: end for
11: if PF′ �= PF then 
 Improve in the Pareto front
12: k ← 1
13: PF ← PF′
14: else
15: k ← k + 1
16: end if
17: end for
18: end while
19: return PF

OurMo-PVNS requires two input parameters: a set of non-dominated solutions PF
and the number of the largest neighborhood to be explored, kmax. Starting from the
first neighborhood (step 1), themethod iterates until reaching themaximumpredefined
neighborhood kmax (steps 2–18). Notice that, in addition to the maximum predefined
neighborhood, we have included another stopping criterion which is a maximum time
limit. At each iteration, two different phases are applied to every efficient solution in
the approximate Pareto front, which are explored in each available processor (AVP),
denoted as pi (step 5). In particular, every efficient solution is randomly perturbed in
the current neighborhood k using the Shake procedure (step 6). The proposed Shake
algorithm consists in randomly interchanging k open facilities with k closed facilities
from the set of candidate facilities, generating solution P ′, which is added to the
updated Pareto front, PF ′ (step 7). It is worth mentioning that the shake method
performs randommovements (whose sizes depend on the current neighborhood)which
are not considered in the local search (i.e., interchange k ≤ p facilities simultaneously,

123



J. Sánchez-Oro et al.

while the local search only interchanges a single facility). Moreover, the shake method
accepts solutions of lower quality that will eventually allows us to explore further
regions of the search space, while the local search only considers improved solutions.
In the context of the multi-objective optimization it could happen that the perturbed
solution is not dominated and, therefore, it must be inserted in the Pareto Front. Since
the update of the Pareto Front is implemented in a very efficient way, step 7 assures
that we are not losing any non-dominated solution during the search. After that, a
local search method is responsible of locally improving the perturbed solution P ′,
obtaining solution P ′′ (step 8). Notice that every feasible solution generated during
the search is a candidate solution for entering in the set of non-dominated solutions.
The method Insert & Update (steps 7 and 9) performs this verification, inserting the
solution if it is non-dominated by others already in the set, removing those solutions
dominated by the new one. Regarding this behavior, any modification in the Pareto
front is considered as an improvement since a new non-dominated solution has been
included in it. The complexity of the process that compares both fronts is linear with
respect to the size of PF . Therefore, if the Pareto front has been modified, the search
starts again from the first neighborhood (step 11), updating the incumbent Pareto
front. Otherwise, the method explores the next neighborhood (step 15) until reaching
the largest considered neighborhood. Mo-PVNS ends up returning the set of non-
dominated solutions generated in the search.

VNS performs a single shake and local search to each solution of the Pareto front.
However, with the aim of exploring a wider portion of the search space, the proposed
algorithm performs several shake and local search steps in each iteration. Specifically,
a different shake and local search step is performed in each available processor. This
feature allows the algorithm to explore more than one single solution in the current
neighborhood, which will eventually lead it to find better quality solutions, improving
the Pareto Front.

Several parallelization techniques are suitable for designing and implementing
parallel algorithms, such as threads, OpenMP, or CUDA, among others. The par-
allelization considered in the Mo-PVNS algorithm is focused on the use of threads,
which can be defined as fragments of code that are independently executed in a pro-
cessor. Since we are using Java programming language, we propose the use of Java
threads, which can be easily used to tackle parallel task applications. In brief, the
parallelization of an algorithm can have two different objectives: reduce the comput-
ing time or explore a wider portion of the search space. In this work we are focused
in the latter, allowing VNS to perform several simultaneous shake and local search
methods in the same neighborhood without increasing the computing time required to
execute the complete algorithm. Thus, this parallelization allows us to explore more
than one solution in each neighborhood spending similar computing times, which may
eventually lead to a better set of non-dominated solutions.

2.1 Constructive method

The input for the Mo-PVNS algorithm is an initial approximation to the Pareto front
named PF. To obtain this set of efficient solutions, we have opted for a constructive
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procedure inspired by the construction phase of the Greedy Randomized Adaptive
Search Procedure (GRASP) methodology, firstly introduced by [13]. This procedure
combines greediness (intensification) and randomness (diversification) to build a vari-
ety of initial efficient solutions. In our case, as we are dealing with two objective
functions, the procedure generates a predefined number of initial solutions for each
objective function separately. Each solution is evaluated for entering in the approxi-
mated set of efficient solutions, PF, which is initially empty. This set is updated and,
therefore, the output of the constructive phase is then the set of efficient solutions, PF,
which acts as the input for the Mo-PVNS algorithm, as mentioned.

Algorithm 2 details the constructive method proposed to build initial efficient solu-
tions for the Bi-OpM, which is generalized for any objective function, fi . The input for
the method is the set of candidate locations to host an obnoxious facility J , the param-
eter α which controls the greediness / randomness of the method, and the objective
function under consideration fi . The method starts by randomly selecting a candi-
date facility which is included in the solution under construction (steps 1-2). Then, a
Candidate List (CL) is created with the remaining candidate facilities (step 3). The
method iteratively selects other candidate facilities until p locations have been selected
(step 4). In each iteration, the minimum andmaximum values of the objective function
among all the candidates are evaluated (steps 5–6). After that, theRestrictedCandidate
List (RCL) is created (step 8) with the most promising candidates, i.e., those whose
objective function value is larger or equal than a threshold th (step 7). Notice that if
α = 0, the construction is totally greedy (it only considers the facilities that produce
the greatest increase in the objective function value). On the contrary, if α = 1, then
all facilities are included in the RCL so the construction is totally random. The next
vertex to be added to the solution is selected at random from the RCL (step 9), updating
the solution under construction and the CL (steps 10–11). The method ends when the
solution has exactly p locations selected.

Algorithm 2 Construct(J , α, fi )
1: v ← Random(J )

2: P ← {v}
3: CL ← J \ {v}
4: while |P| < p do
5: gmin ← minv∈CL fi (P ∪ {v})
6: gmax ← maxv∈CL fi (P ∪ {v})
7: th ← gmax − α · (gmax − gmin)

8: RCL ← {v ∈ CL : fi (P ∪ {v}) ≥ th}
9: v′ ← Random(RCL)

10: P ← P ∪ {v′}
11: CL ← CL \ {v′}
12: end while
13: return P
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2.2 Local search

Once the initial approximation of the Pareto front has been built using the greedy
methodology, it is used to define the local search. The problem under considera-
tion tries to optimize more than one objective function, so a reasonable and trivial
approach would propose a different local search method for each objective function.
However, this approach will likely intensify the search in the extreme parts of the
Pareto front, but in multi-objective optimization it is desirable to obtain solutions
uniformly spread along it. To overcome this issue, we propose a single local search
method that aggregates both objective functions in a unique local search by means of
a parameter β ∈ [0, 1] that controls the influence of each objective function in the
aggregated function fa . This way, the aim is to explore a wider area in the search
space. More formally, and for the particular case of a bi-objective optimization prob-
lem, fa(P) = β · f1(P) + (1− β) · f2(P). Note that the function fa is also known as
the weighted-sum function, with β balancing the weight of each objective function.

Varying the value of β parameter will result in exploring different regions of the
search space, potentially increasing the number of solutions included in the set of
efficient solutions. Note that the previous expression can be easily generalized when
m > 2 : fa(P) = ∑m

j=1 β j · f j (P) with
∑m

j=1 β j = 1.
For the Bi-OpM, the local search method traverses all the open facilities and tries

to exchange them with every closed candidate facility. The search follows a first
improvement approach in order to reduce the computational effort of the algorithm. In
particular, every time an improvement move is found, it is performed and the search
starts again.

3 Computational results

This section presents and discusses the results obtained in our experimental experience.
In order to perform a fair comparison against the most competitive algorithm proposed
in the literature, we have solved the same set of instances considered in [4]. Besides,
we have also considered an additional number of instances and solved them in order
to show amore exhaustive experimentation. Specifically, the previous paper presented
8 instances where the number of nodes (indicated as |V | = |I ∪ J |) ranges from 400
to 900, the number of demand points and facilities (|I | and |J |) varies from 200 to
450 and the number of open facilities (p) is between 25 and 225. In this paper, we
have considered 64 additional instances under the same constraints, reaching a total
number of 72 instances including the 8 instances considered in [4]. Table 1 shows the
features for all the instances, which are available at http://grafo.etsii.urjc.es/optsicom/
biopm/. Notice that they come from 24 different files which are processed with 3
different values of p. Our experiments were run on a computer provided with an
Intel(R) Core(TM) i5-3470 processor running at 3.2 GHz, with 8 GB of RAM and
Ubuntu 16.04. All the algorithms were implemented using Java 8.

Despite that there exists a large number of performancemetrics, we have considered
six different indicators: number of efficient solutions, hypervolume, coverage, epsilon,
generational distance and generalized spread. As it is well-known, there is no single
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Table 1 Features of the
instances under study

Instance |V | |I | |J | p

pmed17 400 200 200 25, 50, 100

pmed18 400 200 200 25, 50, 100

pmed19 400 200 200 25, 50, 100

pmed20 400 200 200 25, 50, 100

pmed21 500 250 250 31, 62, 125

pmed22 500 250 250 31, 62, 125

pmed23 500 250 250 31, 62, 125

pmed24 500 250 250 31, 62, 125

pmed25 500 250 250 31, 62, 125

pmed26 600 300 300 37, 75, 150

pmed27 600 300 300 37, 75, 150

pmed28 600 300 300 37, 75, 150

pmed29 600 300 300 37, 75, 150

pmed30 600 300 300 37, 75, 150

pmed31 700 350 350 43, 87, 175

pmed32 700 350 350 43, 87, 175

pmed33 700 350 350 43, 87, 175

pmed34 700 350 350 43, 87, 175

pmed35 800 400 400 50, 100, 200

pmed36 800 400 400 50, 100, 200

pmed37 800 400 400 50, 100, 200

pmed38 900 450 450 56, 112, 225

pmed39 900 450 450 56, 112, 225

pmed40 900 450 450 56, 112, 225

metric that is capable of measuring all the aspects such as the cardinality (number of
solutions in the set), the convergence (how close of the set to the Pareto front is) and
the diversity (how are they spread, that is, the distribution and coverage of the set).
This is the main reason why we have selected the most discriminant and used metrics.

The number of efficient solutions, #Sol, indicates the size of the approximation
to the Pareto front obtained by the algorithm. Generally speaking, it is preferable a
larger quantity of efficient solutions even if this metric ignores the quality of them. The
hypervolume, HV, calculates the volume in the objective space covered by the points
of an efficient set of solutions. To that end, a reference point is used and it can simply be
found by constructing a vector of worst objective function values. In terms of quality,
the larger the hypervolume value, the better the quality of the Pareto front analyzed.
The coverage, C(A, B), calculates the proportion of solutions of algorithm B that are
weakly dominated by the efficient solutions found by the algorithm A. C(A, B) = 1
means that all the solutions in B are weakly dominated by A and C(A, B) = 0 means
that no solution B is weakly dominated by A. Notice that it is not necessarily equal
to 1 − C(B, A). The epsilon indicator, ε, measures the smallest distance to translate
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Table 2 Preliminary results for different α values. Best values are depicted in bold font

α #Sol. HV C(R,Mo-PVNS) ε GD Δ CPU Time (s)

Random 190.8750 0.7496 0.6027 0.0151 439.1371 0.9541 1642.0730

0.25 201.6250 0.7489 0.6228 0.0166 431.9362 0.9512 1660.8313

0.50 192.1250 0.7489 0.6034 0.0175 444.3233 0.9518 1613.1695

0.75 191.7500 0.7473 0.6730 0.0167 438.4848 0.9522 1650.1633

every point obtained in the approximation set so that it dominates the reference set
(denoted as R) or the optimal Pareto if known. A lower indicator indicates a better
approximation set. The generational distance, GD, measures how far are the efficient
solutions in the computed approximation set obtained by the algorithm from those in
the reference set or the optimal Pareto if known. If GD = 0, then all the solutions
are in the reference set or the Pareto front. The generalized spread, Δ, measures the
distance from a given efficient solution to its nearest neighbor. Δ = 0 indicates a
perfect spread of the efficient solutions in the reference set or the optimal Pareto if
known, i.e., an ideal distribution. In addition to these indicators, we report the CPU
time, which refers to the number of seconds required by the algorithm to obtain the
set of efficient solutions. Obviously, a shorter computational time is preferable. We
refer the reader to [12] for the definition and implementation of these multi-objective
performance metrics.

The computational experience is divided into two parts: preliminary and final exper-
iments. The first part allows us to select the best parameter setting for Mo-PVNS, and
the second part compares the best performance of theMo-PVNSagainst the state-of-art
algorithms.

3.1 Preliminary experiments

Preliminary results of our Mo-PVNS are shown in order to select the best parameters
for the algorithm.To that end, a representative subset of 8 instances out of 72 is selected.
Specifically, the training set of instances is exactly the same set of instances used in
[4]. The proposed algorithm requires two input parameters: α and kmax. As suggested
in [22], we will first determine the best value for one of the parameters, fix it and, then,
determine the value of the second parameter. Hence, the first preliminary experiment
aims to select the best value for the α parameter. To this end, we have obtained
the Pareto front created after constructing and improving 100 solutions with each
constructive procedure and the local search described in Sect. 2.2. Each experiment
was run once. Column 1 of Table 2 includes the different α values for this parameter,
specifically, random, 0.25, 0.50 and 0.75. The remaining columns of Table 2 show
the average values of each performance metric (the number of efficient solutions, the
hypervolume, the coverage, the epsilon indicator, the generational distance, the spread
and the computational time respectively) obtained in this experiment.

On average, the best results are obtained when considering a random value for the α

parameter in each construction. Specifically, this configuration reaches the best values
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Table 3 Preliminary results for different kmax values. Best values are depicted in bold font

kmax #Sol. HV C(R,Mo-PVNS) ε GD Δ CPU Time (s)

0.1p 200.0000 0.7380 0.6074 0.0145 433.5662 0.9495 1623.0769

0.2p 191.6250 0.7359 0.7121 0.0208 432.6298 0.9524 1628.1353

0.3p 196.7500 0.7372 0.6670 0.0166 433.3020 0.9532 1638.7465

0.4p 193.2500 0.7368 0.6730 0.0167 438.2227 0.9530 1649.9543

0.5p 200.7500 0.7378 0.6123 0.0156 430.4560 0.9496 1660.2193

for the hypervolume, the coverage, and the epsilon indicators, while the differences
in terms of spread values are insignificant. Therefore, we have selected a randomly
generated value for α for the final version of the algorithm.

The second preliminary experiment is devoted to find the best value for the kmax
parameter of the Mo-PVNS. Specifically, we have tried kmax = {0.1p, 0.2p, 0.3p,
0.4p, 0.5p}, p being the number of open facilities. We do not consider larger values
since such a large perturbation is equivalent to starting the search from a completely
different solution, which is not in line with the VNS methodology. The values of the
kmax parameter are shown in the first column of Table 3. The remaining columns
of Table 3 show the average values of each performance metric derived from this
experiment.

As it can be derived from Table 3, the best results are obtained when considering
the smallest neighborhood size, kmax = 0.1p. In particular, the value kmax = 0.1p is
able to obtain the best results for all the metrics except for the generational distance
and for the number of efficient solutions but being very similar to the best value of
the experiment, kmax = 0.5p. Therefore, we have selected kmax = 0.1p for the final
version of the algorithm.

3.2 Final experiments

In the final experiment we perform a comparison against four different algorithms:
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [8], which is a classical
multi-objective evolutionary algorithm, the Strength-Pareto Evolutionary Algorithm
2 (SPEA2) [24], and the two variants of the memetic algorithm that obtained the best
results in the current state of the art [4]: Alternate Objective Local Search, AOLS and
Dominance-Based Local Search, DBLS. The values of the parameters for NSGA-II
and SPEA2 are those described in [4], obtained after running iRace [18] on the 8
instances from the representative subset. iRace is a software package that obtains the
best combination of parameters after running an iterated race procedure (see [4] for
details). We performed the same parameter tuning for AOLS and DBLS, stating a
maximum number of evaluations of 106. Table 4 shows the ranges of the parameters
analyzed by iRace and the corresponding results for the parameter values.

All the previous algorithms were run 30 times, as performed in [4]. In the case of
our proposed Mo-PVNS, the results correspond to just one run. We have discarded
the classical Genetic Algorithm presented in the previous paper since, as stated by
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Table 4 Parameter optimization
for DBLS and AOLS with iRace

Parameter Range AOLS DBLS

Generations (100, 5000) 3677 3912

Population (50, 250) 214 212

Mutation probability (0.100, 0.999) 0.6397 0.7011

Crossover probability (0.100, 0.999) 0.5225 0.7083

Table 5 Average results for the final experiments

#Sol. HV C(R,Alg.) ε GD Δ CPU Time (s)

Mo-PVNS 248.0833 0.7422 0.0486 0.0028 431.6168 0.9479 1615.1111

AOLS 107.6250 0.6794 0.8065 0.0802 583.7231 0.9591 1826.7894

DBLS 115.2222 0.6820 0.7938 0.0739 564.8547 0.9582 1881.0322

NSGA-II 30.3472 0.3856 0.8497 0.3837 1092.0925 0.9727 11794.3458

SPEA2 47.8472 0.5165 0.7918 0.2571 883.7648 0.9724 16543.8166

the authors, it consistently obtains worse quality solutions. Table 5 shows the average
results obtained for the complete set of 72 instances by each algorithm.

Analyzing the results presented in Table 5, we can confirm the superiority of Mo-
PVNSwith respect to the previous algorithms, since it is able to obtain better results in
all the considered metrics. Regarding the number of efficient points, Mo-PVNS is able
to obtain, on average, more than twice the number of efficient points of the second
best algorithm, which is DBLS. Furthermore, it is worth mentioning the coverage
value obtained byMo-PVNS, which is very close to zero. This result indicates that the
reference set, R, contains most of the solutions given by the Mo-PVNS and meaning
that our algorithm is able to better approximate the Pareto front. Notice that the small
value of the epsilon indicator for the Mo-PVNS supports this statement. Similarly,
Mo-PVNS obtains the smallest GD from the reference set and the best spread. In this
latter case,Δ is similar in all the algorithms although the Mo-PVNS reaches a slightly
smaller value. Details of the indicators for each problem separately can be found in
the Appendix.

In relation to the execution time, we stated a stopping condition in Mo-PVNS. We
let the algorithm run a maximum execution time of 1800 seconds, which is close to the
average value of the fastest memetic approach of the state of the art. This way, we are
able to compare the efficiency of the search spending a comparable amount of time.
The analysis in terms of quality has been done above. Moreover, Table 5 also shows
that the average execution time of Mo-PVNS is, aproximately, a 10% below the 1800
seconds time, which means that in many instances the algorithm ends the execution
before reaching the deadline. The execution time of NSGA-II and SPEA2 is higher
than the other algorithms, as it is explained in [4]. For future comparison, we also
provide the detailed results of all instances in all the analyzed metrics in tables 9 to 14
in the Appendix section. Besides, Table 15 shows a breakdown of execution times for
each instance and algorithm.
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Table 6 Results of the nonparametric Kruskal-Wallis test

#Sol. HV C(R,Alg.) ε GD Δ

Mo-PVNS 299.93 262.67 48.97 44.19 88.11 115.60

AOLS 212.81 198.58 205.36 172.78 146.44 155.50

DBLS 226.18 201.13 202.31 166.74 138.83 154.11

NSGA-II 61.40 97.39 233.66 278.15 283.81 239.24

SPEA2 102.17 142.74 212.21 240.65 245.31 238.06

Chi-squared 250.75 105.29 172.88 213.57 174.87 81.75

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

In order to statistically support that the performance among the five algorithms is
different, for any of the considered indicators, nonparametric tests have been applied.
To that end, the Kruskal-Wallis test checks if the five samples (solutions of the indica-
tors obtainedwith thefive algorithms) belong tofivedifferent populations. Specifically,
Kruskal-Wallis test computes the averages of the ranks of each sample. Then, if the
averages of the ranks are similar, it can be stated that they belong to the same popu-
lation, otherwise, they do not belong to the same population. Rows 2 till 6 of Table 6
include the averages of the ranks of the Kruskal-Wallis test for each indicator (see
columns 2–7). Row 7 includes the value of the statistic for future comparisons, and
Row 8 includes the obtained p-values. For any of the indicators, the results of the p-
values are close to zero (<0.0001), see Row 8 of Table 6. Then, this clearly indicates
that there is enough statistical evidence to confirm that there are differences among the
five algorithms. To get a visual idea of how superior is the Mo-PVNS with regard to
the remaining algorithms, for each indicator, the best average of the ranks is depicted
in bold font.

Nevertheless, the Wilcoxon test is also included to statistically prove that the Mo-
PVNS performs always better than any of the other algorithms and perform a more
comprehensive analysis. To that end, this test is carried out comparing every algorithm
against theMo-PVNS algorithm. In Table 7 the values of the statistic for theWilcoxon
test are shown, including the p-values in brackets. We have used one-tailed Wilcoxon
tests that check if the results obtained by the Mo-PVNS are better than the other
considered algorithms (AOLS, DBLS, NSGA-II and SPEA2). All p-values are equal
to 1, except for two cases of theΔ indicator, being larger than 0.99, and confirming that
theMo-PVNS is indeed better than the AOLS, DBLS, NSGA-II or SPEA2 algorithms.
The statistic of the Wilcoxon test is computed as the sum of the positive ranks of the
absolute differences among the two samples (in our case, solutions of the indicators
obtained with the two compared algorithms).

Finally, we conduct an experiment to evaluate the robustness of the proposed algo-
rithm. In particular, we test the impact of the inherent stochastic nature of Mo-VNS
which provides diversification. The initial hypothesis is that the randomness in Mo-
PVNS does not produce drastically different solutions depending on the initial random
seed on each execution. In order to confirm this hypothesis, we have performed 30
independent executions of the Mo-PVNS proposal. Then, we have created a reference
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Table 7 Statistics of the nonparametric Wilcoxon test

Mo-PVNS vs #Sol. HV C(R,Alg.) ε GD Δ

AOLS 4456.5 (1) 3827.5 (1) 275 (1) 186 (1) 1452.5 (1) 1861.5 (0.9983)

DBLS 4377.5 (1) 3785.5 (1) 311 (1) 266.5 (1) 1525.5 (1) 1927.5 (0.9961)

NSGA-II 5120 (1) 4503 (1) 194 (1) 42 (1) 267 (1) 953 (1)

SPEA2 5013 (1) 4168 (1) 117.5 (1) 59 (1) 471 (1) 953 (1)

Table 8 Standard deviation of
the considered metrics over 30
independent runs

Metric SD

HV 0

C(R, Alg.) 0.18

ε 4.43

GD 23.51

Δ 0

front with the union of all the sets of non-dominated solutions, analyzing the standard
deviation of the previously considered metrics in relation to the reference front. If the
Mo-PVNS is robust against randomness, then the standard deviation will be small in
all the metrics. Table 8 shows the standard deviation for all the multi-objective metrics
previously analyzed.

One of the most important results to analyze is the deviation of the hypervolume.
In this case, as it is equal to 0, it indicates that all the non-dominated fronts present the
same hypervolume. The same result is obtained by theΔmetric. Hence, the robustness
of the algorithm is confirmed in these metrics. In the case of coverage, the deviation of
0.18 indicates that all the non-dominated fronts are rather similar. The deviation of ε

is slightly larger with respect to the average value (6.88). Finally, the deviation of GD
is also small because it represents a 0.5% of the average value, 4743.56. Therefore,
these results confirm the hypothesis: the Mo-PVNS algorithm is not affected by the
inherent randomness of the process.

4 Conclusions and future research

This paper generalizes the Variable Neighborhood Search algorithm (VNS) to solve
a bi-objective optimization problem known as the bi-objective obnoxious p-median
problem, Bi-OpM. To that end, the VNS approach is designed to take into account
two conflicting objectives: to maximize the sum of the distances between demand
points and their nearest obnoxious facility and, to maximize the dispersion among
obnoxious facilities. The interest of this problem appears because the Bi-OpM fits in
many realistic situations where it is desired to locate facilities as far as possible from
the demand points and among them.

We have coined the algorithm Multi-objective Parallel Variable Neighborhood
Search (Mo-PVNS). The Mo-PVNS includes two new features: an adaptation of the
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VNS, which has been mainly considered to deal single-objective optimization prob-
lems, to this multi-objective optimization problem, and an adaptation of the Replicated
Shaking VNS design presented in [14] in order to increase the explored search space
in a multi-objective scenario. Although VNS has been already adapted for tackling
multi-objective problems [15], thiswork proposes a generalization ofVNS for tackling
multi-objective problems which mainly relies on the idea of considering the complete
Pareto Front as the incumbent solution for VNS.

Computational results show the superiority of Mo-PVNS against the state-of-art
algorithms to solve the Bi-OpM. To that end we have used the same set of instances
but, furthermore, the set has been enlarged from 8 to 72 instances. Results obtained
by the Mo-PVNS algorithm outperform, in most of the instances, the other considered
algorithms: the two variants of the MOMA (Multi-Objective Memetic Algorithm),
namely DBLS (Dominance-Based Local Search) and AOLS (Alternate Objectives
Local Search), and the classical NSGA-II (the Non-dominated Sorting Genetic Algo-
rithm II) and Strength-Pareto EvolutionaryAlgorithm 2 (SPEA2) algorithms in shorter
computational times.

As future work, it would be interesting to solve an extension of the Bi-OpM which
will include an additional objective function becoming in a multi-objective obnoxious
p-median problemMo-OpM. The idea is to optimize three objective functions: to max-
imize the sum of the minimum distances between each demand point and its nearest
facility and maximize the sum of the minimum distances between two facilities as in
the Bi-OpM but also to minimize the number of demand points affected (or covered)
by the facilities. This is a natural generalization of the Bi-OpM since it is crucial to
consider the number of citizen affected by the obnoxious facilities. Furthermore, we
would like to discuss and compare a variant of the Bi-OpM in which the objectives
will be to maximize the minimum distance between each demand point and its nearest
obnoxious facility and maximize the minimum distance between two obnoxious facil-
ities. In this way we are ensuring a minimum distance between each pair of demand
points and obnoxious facilities and between each pairs of two obnoxious facilities.
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Appendix

In this section we provide a breakdown of results for each algorithm and instance on
all the metrics we have shown in the paper (See Tables 9, 10, 11, 12, 13, 14, 15).
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Table 9 Number of efficient solutions obtained for each algorithm on each instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 96 87 87 81 70

pmed17.p50 207 156 168 29 126

pmed17.p100 317 128 158 34 43

pmed18.p25 43 43 43 42 41

pmed18.p50 241 150 167 43 101

pmed18.p100 311 131 154 31 26

pmed19.p25 109 105 103 99 91

pmed19.p50 206 138 162 28 102

pmed19.p100 299 134 147 30 37

pmed20.p25 74 75 74 71 64

pmed20.p50 219 113 117 50 103

pmed20.p100 373 176 195 33 43

pmed21.p31 58 58 58 54 49

pmed21.p62 166 76 84 13 37

pmed21.p125 305 135 124 29 32

pmed22.p31 114 100 112 91 89

pmed22.p62 259 127 151 17 52

pmed22.p125 347 173 182 23 34

pmed23.p31 95 91 91 88 84

pmed23.p62 251 123 130 18 52

pmed23.p125 302 139 114 32 33

pmed24.p31 111 105 110 100 93

pmed24.p62 277 125 151 19 48

pmed24.p125 338 166 159 21 32

pmed25.p31 37 39 39 36 38

pmed25.p62 179 90 97 16 35

pmed25.p125 347 154 146 25 30

pmed26.p37 80 75 75 61 72

pmed26.p75 270 97 109 19 29

pmed26.p150 344 114 115 23 24

pmed27.p37 72 70 72 57 70

pmed27.p75 220 93 96 18 19

pmed27.p150 365 117 142 22 30

pmed28.p37 54 46 48 42 42

pmed28.p75 262 99 111 13 33

pmed28.p150 334 142 135 15 22

pmed29.p37 126 106 105 55 106
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Table 9 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed29.p75 229 117 120 15 33

pmed29.p150 371 161 144 29 35

pmed30.p37 118 79 85 55 74

pmed30.p75 257 116 112 15 31

pmed30.p150 347 147 126 23 28

pmed31.p43 130 88 105 22 86

pmed31.p87 277 109 127 12 26

pmed31.p175 384 147 152 24 34

pmed32.p43 187 86 104 32 97

pmed32.p87 292 101 98 18 17

pmed32.p175 385 126 128 22 20

pmed33.p43 186 92 124 33 104

pmed33.p87 285 86 96 26 30

pmed33.p175 462 157 170 13 30

pmed34.p43 144 74 80 33 84

pmed34.p87 277 108 109 11 22

pmed34.p175 444 145 152 30 24

pmed35.p50 195 79 92 19 77

pmed35.p100 264 84 86 10 12

pmed35.p200 325 86 131 14 18

pmed36.p50 187 73 84 18 66

pmed36.p100 276 75 106 14 16

pmed36.p200 390 112 140 22 28

pmed37.p50 175 86 96 19 89

pmed37.p100 303 96 109 14 29

pmed37.p200 420 139 137 26 31

pmed38.p56 192 79 77 12 43

pmed38.p112 253 75 81 11 12

pmed38.p225 432 109 123 12 21

pmed39.p56 177 81 76 13 48

pmed39.p112 288 82 95 17 7

pmed39.p225 329 107 108 19 27

pmed40.p56 272 102 129 15 69

pmed40.p112 340 120 118 13 17

pmed40.p225 461 129 145 26 28
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Table 10 Hypervolume value of the final set of non-dominated solutions for each algorithm on each instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 0.7538 0.7779 0.7759 0.7741 0.7747

pmed17.p50 0.7543 0.7500 0.7524 0.6294 0.7315

pmed17.p100 0.7499 0.7214 0.7249 0.3402 0.4878

pmed18.p25 0.7648 0.7648 0.7648 0.7640 0.7643

pmed18.p50 0.7373 0.7177 0.7244 0.5830 0.7061

pmed18.p100 0.7620 0.7373 0.7413 0.3262 0.4813

pmed19.p25 0.7544 0.7542 0.7540 0.7533 0.7530

pmed19.p50 0.7559 0.7454 0.7490 0.6133 0.7251

pmed19.p100 0.6993 0.6691 0.6628 0.2974 0.4163

pmed20.p25 0.7138 0.7138 0.7138 0.7135 0.7119

pmed20.p50 0.7291 0.7214 0.7209 0.5792 0.7124

pmed20.p100 0.6744 0.6453 0.6481 0.3559 0.4563

pmed21.p31 0.7794 0.7795 0.7795 0.7756 0.7762

pmed21.p62 0.7606 0.7311 0.7401 0.3496 0.6590

pmed21.p125 0.7286 0.6676 0.6690 0.2005 0.3315

pmed22.p31 0.7854 0.7855 0.7853 0.7787 0.7840

pmed22.p62 0.7831 0.7611 0.7671 0.4926 0.6959

pmed22.p125 0.7161 0.6592 0.6616 0.2791 0.3841

pmed23.p31 0.7360 0.7365 0.7367 0.7347 0.7355

pmed23.p62 0.7416 0.7178 0.7262 0.4249 0.6585

pmed23.p125 0.7056 0.6543 0.6397 0.1942 0.3157

pmed24.p31 0.7697 0.7694 0.7697 0.7680 0.7690

pmed24.p62 0.7069 0.6737 0.6838 0.4138 0.6147

pmed24.p125 0.7097 0.6482 0.6570 0.2677 0.3666

pmed25.p31 0.8272 0.8277 0.8277 0.8272 0.8274

pmed25.p62 0.7393 0.7130 0.7128 0.3598 0.6427

pmed25.p125 0.6987 0.6334 0.6459 0.2417 0.3582

pmed26.p37 0.7156 0.7630 0.7626 0.7500 0.7627

pmed26.p75 0.7610 0.7106 0.7151 0.3149 0.5420

pmed26.p150 0.7606 0.6622 0.6778 0.2033 0.3129

pmed27.p37 0.7746 0.7744 0.7746 0.7705 0.7744

pmed27.p75 0.7753 0.7150 0.7158 0.2597 0.5279

pmed27.p150 0.7206 0.6212 0.6381 0.1591 0.2629

pmed28.p37 0.7979 0.7945 0.7969 0.7760 0.7940

pmed28.p75 0.7443 0.7133 0.7201 0.3341 0.5634

pmed28.p150 0.6785 0.5744 0.5768 0.1445 0.2488

pmed29.p37 0.7729 0.7678 0.7691 0.7398 0.7706

pmed29.p75 0.7767 0.7142 0.7157 0.3350 0.5628

pmed29.p150 0.6962 0.5967 0.6035 0.1928 0.2834
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Table 10 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed30.p37 0.7970 0.7896 0.7884 0.7521 0.7904

pmed30.p75 0.7090 0.6405 0.6378 0.2588 0.4928

pmed30.p150 0.6897 0.5961 0.5921 0.1488 0.2550

pmed31.p43 0.7607 0.7447 0.7516 0.6251 0.7499

pmed31.p87 0.7581 0.6821 0.6947 0.2176 0.4381

pmed31.p175 0.7001 0.5840 0.5901 0.1455 0.2292

pmed32.p43 0.8007 0.7769 0.7752 0.6703 0.7841

pmed32.p87 0.7675 0.6749 0.6810 0.2266 0.4382

pmed32.p175 0.7090 0.5742 0.5579 0.1308 0.2243

pmed33.p43 0.7522 0.7314 0.7360 0.6187 0.7244

pmed33.p87 0.7636 0.6617 0.6655 0.2741 0.4831

pmed33.p175 0.6845 0.5686 0.5886 0.1682 0.2446

pmed34.p43 0.7513 0.7262 0.7269 0.6177 0.7269

pmed34.p87 0.7245 0.6387 0.6248 0.2078 0.3986

pmed34.p175 0.7011 0.5859 0.5908 0.1809 0.2639

pmed35.p50 0.7344 0.6698 0.6744 0.4492 0.6673

pmed35.p100 0.7972 0.6602 0.6490 0.1250 0.3334

pmed35.p200 0.7410 0.5349 0.5467 0.0721 0.1500

pmed36.p50 0.7419 0.6904 0.6952 0.4872 0.7119

pmed36.p100 0.7542 0.6167 0.6270 0.1250 0.3184

pmed36.p200 0.6868 0.4936 0.5031 0.1081 0.1770

pmed37.p50 0.7276 0.7029 0.7047 0.4327 0.6781

pmed37.p100 0.7025 0.5649 0.5776 0.1215 0.3122

pmed37.p200 0.7175 0.5414 0.5584 0.1411 0.2135

pmed38.p56 0.7874 0.7051 0.7091 0.3823 0.6796

pmed38.p112 0.8038 0.6602 0.6387 0.0787 0.2888

pmed38.p225 0.7233 0.5226 0.5258 0.0655 0.1319

pmed39.p56 0.7618 0.7272 0.7202 0.3482 0.6751

pmed39.p112 0.7571 0.6213 0.6289 0.0505 0.2771

pmed39.p225 0.7127 0.4760 0.4708 0.0484 0.1070

pmed40.p56 0.7415 0.7101 0.7186 0.3897 0.6560

pmed40.p112 0.7563 0.6432 0.6442 0.1468 0.3225

pmed40.p225 0.7082 0.5136 0.5080 0.1309 0.1979
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Table 11 Coverage measure of the final set of non-dominated solutions for each algorithm on each instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 0.8333 0.0000 0.0230 0.0000 0.1571

pmed17.p50 0.4879 0.7115 0.5714 1.0000 0.3730

pmed17.p100 0.0032 0.9844 1.0000 1.0000 1.0000

pmed18.p25 0.0000 0.0000 0.0000 0.0000 0.0488

pmed18.p50 0.0000 0.9733 0.9162 1.0000 0.9307

pmed18.p100 0.0064 1.0000 0.9870 1.0000 1.0000

pmed19.p25 0.0000 0.0571 0.0583 0.0707 0.1978

pmed19.p50 0.0000 0.8478 0.7963 1.0000 0.8431

pmed19.p100 0.0000 1.0000 1.0000 1.0000 1.0000

pmed20.p25 0.0000 0.0267 0.0000 0.0141 0.1406

pmed20.p50 0.5342 0.8142 0.8205 1.0000 0.6796

pmed20.p100 0.0000 1.0000 1.0000 1.0000 1.0000

pmed21.p31 0.0000 0.0000 0.0172 0.0370 0.0612

pmed21.p62 0.0000 0.9737 0.9286 1.0000 1.0000

pmed21.p125 0.0000 1.0000 1.0000 1.0000 1.0000

pmed22.p31 0.0702 0.0100 0.0804 0.1758 0.2697

pmed22.p62 0.0000 0.9921 0.9669 1.0000 1.0000

pmed22.p125 0.0000 1.0000 1.0000 1.0000 1.0000

pmed23.p31 0.1053 0.0330 0.0000 0.1250 0.1429

pmed23.p62 0.1076 0.9675 0.8846 1.0000 1.0000

pmed23.p125 0.0000 1.0000 1.0000 1.0000 1.0000

pmed24.p31 0.0000 0.0286 0.0091 0.0300 0.1398

pmed24.p62 0.0000 1.0000 0.9868 1.0000 1.0000

pmed24.p125 0.0000 1.0000 1.0000 1.0000 1.0000

pmed25.p31 0.0541 0.0000 0.0000 0.0000 0.0263

pmed25.p62 0.0000 0.9778 0.9897 1.0000 1.0000

pmed25.p125 0.0000 1.0000 1.0000 1.0000 1.0000

pmed26.p37 0.9875 0.0133 0.0133 0.4754 0.0556

pmed26.p75 0.0000 1.0000 1.0000 1.0000 1.0000

pmed26.p150 0.0000 1.0000 1.0000 1.0000 1.0000

pmed27.p37 0.0000 0.0143 0.0000 0.2456 0.0286

pmed27.p75 0.0000 1.0000 1.0000 1.0000 1.0000

pmed27.p150 0.0000 1.0000 1.0000 1.0000 1.0000

pmed28.p37 0.0000 0.1087 0.0417 0.2619 0.0952

pmed28.p75 0.2023 0.9495 0.7748 1.0000 1.0000

pmed28.p150 0.0000 1.0000 1.0000 1.0000 1.0000

pmed29.p37 0.0000 0.4057 0.3143 0.8182 0.3774

pmed29.p75 0.0000 1.0000 1.0000 1.0000 1.0000

pmed29.p150 0.0000 1.0000 1.0000 1.0000 1.0000

pmed30.p37 0.0000 0.5696 0.5765 0.9273 0.5000
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Table 11 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed30.p75 0.0000 1.0000 1.0000 1.0000 1.0000

pmed30.p150 0.0000 1.0000 1.0000 1.0000 1.0000

pmed31.p43 0.0000 0.8295 0.5619 1.0000 0.3140

pmed31.p87 0.0000 1.0000 1.0000 1.0000 1.0000

pmed31.p175 0.0000 1.0000 1.0000 1.0000 1.0000

pmed32.p43 0.0000 0.9884 1.0000 1.0000 0.7216

pmed32.p87 0.0000 1.0000 1.0000 1.0000 1.0000

pmed32.p175 0.0000 1.0000 1.0000 1.0000 1.0000

pmed33.p43 0.0000 0.9565 0.9113 1.0000 0.7404

pmed33.p87 0.0000 1.0000 1.0000 1.0000 1.0000

pmed33.p175 0.0000 1.0000 1.0000 1.0000 1.0000

pmed34.p43 0.0000 0.9459 0.9750 1.0000 0.7143

pmed34.p87 0.0000 1.0000 1.0000 1.0000 1.0000

pmed34.p175 0.0000 1.0000 1.0000 1.0000 1.0000

pmed35.p50 0.0000 1.0000 1.0000 1.0000 0.9221

pmed35.p100 0.0000 1.0000 1.0000 1.0000 1.0000

pmed35.p200 0.0000 1.0000 1.0000 1.0000 1.0000

pmed36.p50 0.0000 1.0000 1.0000 1.0000 0.8333

pmed36.p100 0.0000 1.0000 1.0000 1.0000 1.0000

pmed36.p200 0.0000 1.0000 1.0000 1.0000 1.0000

pmed37.p50 0.0057 0.9767 0.9896 1.0000 0.7753

pmed37.p100 0.0000 1.0000 1.0000 1.0000 1.0000

pmed37.p200 0.0000 1.0000 1.0000 1.0000 1.0000

pmed38.p56 0.0000 1.0000 1.0000 1.0000 0.9767

pmed38.p112 0.0000 1.0000 1.0000 1.0000 1.0000

pmed38.p225 0.0000 1.0000 1.0000 1.0000 1.0000

pmed39.p56 0.0621 0.9136 0.9737 1.0000 1.0000

pmed39.p112 0.0000 1.0000 1.0000 1.0000 1.0000

pmed39.p225 0.0000 1.0000 1.0000 1.0000 1.0000

pmed40.p56 0.0404 1.0000 0.9845 1.0000 0.9420

pmed40.p112 0.0000 1.0000 1.0000 1.0000 1.0000

pmed40.p225 0.0000 1.0000 1.0000 1.0000 1.0000
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Table 12 ε indicator of the final set of non-dominated solutions for each algorithm on each instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 0.0402 0.0024 0.0182 0.0328 0.0279

pmed17.p50 0.0126 0.0166 0.0134 0.1636 0.0711

pmed17.p100 0.0009 0.0416 0.0324 0.3719 0.2303

pmed18.p25 0.0000 0.0000 0.0000 0.0129 0.0137

pmed18.p50 0.0000 0.0308 0.0178 0.1735 0.0630

pmed18.p100 0.0021 0.0337 0.0296 0.4030 0.2901

pmed19.p25 0.0000 0.0048 0.0048 0.0112 0.0112

pmed19.p50 0.0000 0.0181 0.0138 0.1828 0.0605

pmed19.p100 0.0000 0.0398 0.0389 0.3829 0.2757

pmed20.p25 0.0000 0.0018 0.0000 0.0076 0.0143

pmed20.p50 0.0118 0.0235 0.0170 0.1627 0.0386

pmed20.p100 0.0000 0.0439 0.0446 0.3411 0.2405

pmed21.p31 0.0098 0.0052 0.0052 0.0350 0.0182

pmed21.p62 0.0000 0.0402 0.0241 0.3876 0.1476

pmed21.p125 0.0000 0.0823 0.0746 0.5140 0.3969

pmed22.p31 0.0098 0.0107 0.0080 0.0402 0.0134

pmed22.p62 0.0000 0.0359 0.0221 0.3204 0.1436

pmed22.p125 0.0000 0.0956 0.1015 0.4474 0.3504

pmed23.p31 0.0113 0.0113 0.0049 0.0199 0.0119

pmed23.p62 0.0073 0.0272 0.0303 0.3243 0.1386

pmed23.p125 0.0000 0.0637 0.0834 0.5614 0.3928

pmed24.p31 0.0000 0.0069 0.0026 0.0220 0.0086

pmed24.p62 0.0000 0.0441 0.0278 0.3200 0.1453

pmed24.p125 0.0000 0.0943 0.0779 0.4451 0.3905

pmed25.p31 0.0048 0.0016 0.0027 0.0048 0.0110

pmed25.p62 0.0000 0.0267 0.0457 0.4332 0.1993

pmed25.p125 0.0000 0.0728 0.0842 0.4653 0.3612

pmed26.p37 0.0510 0.0127 0.0021 0.0494 0.0127

pmed26.p75 0.0000 0.0556 0.0483 0.4702 0.2508

pmed26.p150 0.0000 0.1122 0.1012 0.5208 0.4312

pmed27.p37 0.0000 0.0069 0.0000 0.0184 0.0083

pmed27.p75 0.0000 0.0750 0.0574 0.5306 0.3065

pmed27.p150 0.0000 0.1456 0.1084 0.6055 0.4739

pmed28.p37 0.0000 0.0218 0.0138 0.0509 0.0195

pmed28.p75 0.0125 0.0704 0.0687 0.4561 0.2285

pmed28.p150 0.0000 0.1419 0.1170 0.5469 0.4299

pmed29.p37 0.0000 0.0215 0.0139 0.0644 0.0119

pmed29.p75 0.0000 0.0701 0.0537 0.3528 0.2188

pmed29.p150 0.0000 0.1182 0.0998 0.5144 0.4129

pmed30.p37 0.0073 0.0156 0.0168 0.0728 0.0219
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Amulti-objective parallel variable neighborhood search...

Table 12 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed30.p75 0.0000 0.0498 0.0690 0.4931 0.2761

pmed30.p150 0.0000 0.1469 0.1659 0.6292 0.5143

pmed31.p43 0.0000 0.0433 0.0273 0.1565 0.0410

pmed31.p87 0.0000 0.0964 0.0719 0.6095 0.3938

pmed31.p175 0.0000 0.1365 0.1080 0.5519 0.4707

pmed32.p43 0.0015 0.0264 0.0322 0.1595 0.0337

pmed32.p87 0.0000 0.0762 0.0825 0.5542 0.3774

pmed32.p175 0.0000 0.1368 0.1774 0.6014 0.4654

pmed33.p43 0.0000 0.0471 0.0219 0.2159 0.0968

pmed33.p87 0.0000 0.1118 0.1005 0.4217 0.2572

pmed33.p175 0.0000 0.1685 0.1292 0.5969 0.4854

pmed34.p43 0.0000 0.0412 0.0373 0.1933 0.0824

pmed34.p87 0.0000 0.0761 0.1162 0.5827 0.3854

pmed34.p175 0.0000 0.1563 0.1675 0.5721 0.4752

pmed35.p50 0.0000 0.0729 0.0506 0.3105 0.1535

pmed35.p100 0.0000 0.1036 0.1085 0.6910 0.4640

pmed35.p200 0.0000 0.2380 0.2057 0.7307 0.6347

pmed36.p50 0.0000 0.0573 0.0507 0.2082 0.0683

pmed36.p100 0.0000 0.1644 0.1151 0.6727 0.4652

pmed36.p200 0.0000 0.2311 0.2011 0.6120 0.5339

pmed37.p50 0.0038 0.0328 0.0267 0.3559 0.1374

pmed37.p100 0.0000 0.2043 0.1656 0.6974 0.4783

pmed37.p200 0.0000 0.2331 0.1959 0.6273 0.5281

pmed38.p56 0.0000 0.0742 0.0913 0.4034 0.1663

pmed38.p112 0.0000 0.1448 0.1678 0.7692 0.5179

pmed38.p225 0.0000 0.2477 0.2326 0.6910 0.6272

pmed39.p56 0.0087 0.0436 0.0590 0.4242 0.1465

pmed39.p112 0.0000 0.1499 0.1231 0.7806 0.4757

pmed39.p225 0.0000 0.2748 0.2583 0.7151 0.6333

pmed40.p56 0.0046 0.0445 0.0320 0.4417 0.1887

pmed40.p112 0.0000 0.1468 0.1438 0.6890 0.4991

pmed40.p225 0.0000 0.2554 0.2610 0.6315 0.5478
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Table 13 Generational Distance of the final set of non-dominated solutions for each algorithm on each
instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 682.6014 718.2675 717.6131 742.6109 799.3765

pmed17.p50 366.5348 420.5569 406.5507 970.7395 470.3925

pmed17.p100 222.9321 349.6170 315.3498 626.9825 578.5875

pmed18.p25 1126.2960 1126.2960 1126.2960 1141.1869 1153.2455

pmed18.p50 365.0371 459.4856 437.7471 842.9593 561.7705

pmed18.p100 246.7130 378.7096 349.9274 715.7064 815.3289

pmed19.p25 645.8529 660.2317 666.7024 679.3313 707.0364

pmed19.p50 373.1332 455.5424 422.2088 998.3336 531.4072

pmed19.p100 228.2869 336.9255 322.1547 667.2333 616.5681

pmed20.p25 818.3851 812.0056 818.3851 836.6844 877.2007

pmed20.p50 361.0605 498.8161 498.2598 739.2626 532.7560

pmed20.p100 208.8278 301.2730 286.8968 649.8956 585.0368

pmed21.p31 910.1904 911.5798 910.1940 945.4771 990.2287

pmed21.p62 441.0065 650.8282 617.4048 1506.6107 928.2819

pmed21.p125 236.8979 352.7487 368.5287 679.8536 676.4789

pmed22.p31 696.1699 742.4685 700.8017 776.7884 785.5626

pmed22.p62 368.4225 523.0520 483.4876 1370.7647 819.3678

pmed22.p125 234.7197 329.0590 320.7949 830.8207 704.1327

pmed23.p31 745.4123 762.3869 761.6229 773.3442 792.9854

pmed23.p62 360.5358 514.6290 500.3929 1267.0752 791.0246

pmed23.p125 244.6033 357.2316 393.8264 668.3395 682.6403

pmed24.p31 670.4326 689.1839 673.5149 709.2484 733.4901

pmed24.p62 317.8548 473.1110 430.9972 1155.6913 756.2919

pmed24.p125 227.9126 319.9483 326.6105 820.9291 692.1546

pmed25.p31 1207.2365 1177.0556 1179.2726 1225.6926 1192.8628

pmed25.p62 430.7704 608.9646 585.5257 1381.6618 967.7145

pmed25.p125 226.1971 336.4071 344.1785 755.6140 716.8575

pmed26.p37 879.7379 910.7808 910.5640 1008.3537 928.9677

pmed26.p75 349.9560 578.2535 547.1109 1218.8545 1032.5665

pmed26.p150 236.6365 403.0100 402.9871 792.8840 810.4364

pmed27.p37 876.5294 889.0487 876.5294 983.2731 888.4462

pmed27.p75 380.8768 580.5014 575.2429 1228.2739 1268.5891

pmed27.p150 223.9964 390.0619 353.6005 795.9591 704.5608

pmed28.p37 969.3420 1048.8186 1028.6926 1100.5853 1103.5470

pmed28.p75 332.6085 537.1208 509.7066 1411.6300 921.4635

pmed28.p150 226.3381 339.4269 347.3296 950.6045 807.6491

pmed29.p37 655.2992 720.2695 723.0062 994.4825 716.8821

pmed29.p75 363.4618 508.1099 498.1451 1331.4896 930.0311

pmed29.p150 213.1853 318.5955 337.5243 682.1500 636.0246

pmed30.p37 686.8881 841.7132 811.9352 1004.7000 866.0828
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Amulti-objective parallel variable neighborhood search...

Table 13 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed30.p75 363.5582 534.1136 544.5783 1406.0311 1019.5077

pmed30.p150 236.3526 357.5844 385.7675 807.6625 762.8214

pmed31.p43 642.3415 783.3927 714.8207 1548.9224 791.6145

pmed31.p87 330.4778 519.8974 482.2298 1436.9312 1019.8650

pmed31.p175 208.6309 329.0982 325.6057 731.2962 627.9198

pmed32.p43 538.8510 792.9545 719.1834 1276.6904 745.4626

pmed32.p87 342.2828 572.9157 584.8245 1226.1514 1341.0397

pmed32.p175 223.2873 381.2530 376.2404 810.4169 881.7499

pmed33.p43 513.5106 728.9604 629.7209 1205.0228 682.4682

pmed33.p87 328.4795 583.7081 558.3950 983.2009 975.7037

pmed33.p175 198.4986 331.8241 319.6863 1017.2745 695.1418

pmed34.p43 595.2837 826.3426 794.2950 1226.4950 776.8750

pmed34.p87 333.6813 527.5438 522.2113 1525.0196 1134.0517

pmed34.p175 201.2278 344.0923 334.1119 673.0675 786.2632

pmed35.p50 509.0748 790.5519 732.2403 1569.5109 798.1588

pmed35.p100 343.2090 596.6679 590.8014 1546.2968 1500.2466

pmed35.p200 231.8542 436.2805 354.0421 950.4703 874.0185

pmed36.p50 566.3094 905.4624 845.2145 1781.4894 959.7074

pmed36.p100 360.9054 679.9167 570.2162 1433.7374 1415.4989

pmed36.p200 227.1976 410.8491 367.3732 827.5135 759.8592

pmed37.p50 597.7990 850.1961 807.1015 1755.7718 832.6347

pmed37.p100 350.4797 607.9668 572.8995 1440.4825 1063.1787

pmed37.p200 218.6207 368.7275 371.5727 760.7885 727.7165

pmed38.p56 526.8598 811.7415 826.6376 1978.8671 1099.4753

pmed38.p112 361.0170 647.7181 624.1910 1498.6687 1531.6331

pmed38.p225 214.7684 413.2992 389.1924 1082.8317 852.9001

pmed39.p56 547.5834 805.7422 829.7982 1939.8672 1042.6890

pmed39.p112 344.2937 634.8333 592.1237 1227.5681 2058.1886

pmed39.p225 240.7103 408.5102 405.8770 846.0695 735.2185

pmed40.p56 464.3982 757.5564 672.3495 1871.3496 911.2670

pmed40.p112 335.5068 554.9588 561.0442 1471.1939 1363.9258

pmed40.p225 220.4799 401.3087 377.5764 791.9202 790.2374
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Table 14 Δ Generalized Spread of the final set of non-dominated solutions for each algorithm on each
instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 0.9756 0.9743 0.9717 0.9721 0.9769

pmed17.p50 0.9508 0.9463 0.9485 0.9964 0.9604

pmed17.p100 0.9228 0.9399 0.9394 0.9409 0.9813

pmed18.p25 0.9729 0.9729 0.9729 0.9734 0.9714

pmed18.p50 0.9471 0.9460 0.9518 0.9663 0.9661

pmed18.p100 0.9291 0.9503 0.9383 0.9666 0.9599

pmed19.p25 0.9587 0.9625 0.9626 0.9675 0.9548

pmed19.p50 0.9407 0.9445 0.9479 0.9578 0.9753

pmed19.p100 0.9191 0.9341 0.9448 0.9679 0.9720

pmed20.p25 0.9694 0.9677 0.9694 0.9689 0.9687

pmed20.p50 0.9350 0.9371 0.9347 0.9652 0.9566

pmed20.p100 0.9058 0.9256 0.9216 0.9615 0.9479

pmed21.p31 0.9761 0.9771 0.9766 0.9797 0.9732

pmed21.p62 0.9669 0.9656 0.9691 0.9729 0.9751

pmed21.p125 0.9227 0.9293 0.9477 0.9698 0.9802

pmed22.p31 0.9687 0.9715 0.9709 0.9696 0.9701

pmed22.p62 0.9502 0.9633 0.9515 0.9923 0.9695

pmed22.p125 0.9188 0.9410 0.9444 0.9599 0.9439

pmed23.p31 0.9725 0.9706 0.9706 0.9701 0.9661

pmed23.p62 0.9451 0.9634 0.9416 0.9665 0.9689

pmed23.p125 0.9271 0.9398 0.9265 0.9534 0.9482

pmed24.p31 0.9799 0.9792 0.9794 0.9794 0.9776

pmed24.p62 0.9436 0.9570 0.9441 0.9720 0.9610

pmed24.p125 0.9164 0.9327 0.9370 0.9525 0.9649

pmed25.p31 0.9884 0.9890 0.9879 0.9889 0.9890

pmed25.p62 0.9604 0.9665 0.9663 0.9858 0.9749

pmed25.p125 0.9149 0.9398 0.9390 0.9520 0.9421

pmed26.p37 0.9792 0.9826 0.9880 0.9785 0.9802

pmed26.p75 0.9525 0.9557 0.9615 0.9831 0.9794

pmed26.p150 0.9248 0.9532 0.9466 0.9654 0.9900

pmed27.p37 0.9850 0.9847 0.9850 0.9889 0.9859

pmed27.p75 0.9581 0.9627 0.9645 0.9701 0.9792

pmed27.p150 0.9226 0.9463 0.9438 0.9589 0.9616

pmed28.p37 0.9862 0.9823 0.9878 0.9835 0.9877

pmed28.p75 0.9463 0.9655 0.9655 0.9719 1.0020

pmed28.p150 0.9239 0.9384 0.9332 0.9635 0.9496

pmed29.p37 0.9707 0.9689 0.9791 0.9742 0.9744

pmed29.p75 0.9513 0.9577 0.9629 0.9808 0.9717
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Amulti-objective parallel variable neighborhood search...

Table 14 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed29.p150 0.9166 0.9338 0.9348 0.9831 0.9648

pmed30.p37 0.9756 0.9740 0.9785 0.9852 0.9768

pmed30.p75 0.9536 0.9566 0.9608 0.9759 0.9668

pmed30.p150 0.9258 0.9395 0.9290 0.9477 0.9681

pmed31.p43 0.9781 0.9771 0.9761 0.9793 0.9766

pmed31.p87 0.9449 0.9568 0.9577 0.9818 0.9759

pmed31.p175 0.9182 0.9452 0.9212 0.9681 0.9658

pmed32.p43 0.9603 0.9775 0.9690 0.9756 0.9659

pmed32.p87 0.9406 0.9557 0.9557 0.9521 0.9791

pmed32.p175 0.9266 0.9374 0.9494 0.9589 0.9812

pmed33.p43 0.9611 0.9680 0.9659 0.9717 0.9741

pmed33.p87 0.9430 0.9549 0.9534 0.9709 0.9696

pmed33.p175 0.9060 0.9393 0.9249 0.9687 0.9676

pmed34.p43 0.9764 0.9808 0.9763 0.9830 0.9748

pmed34.p87 0.9477 0.9577 0.9655 0.9843 0.9648

pmed34.p175 0.9179 0.9482 0.9356 0.9487 0.9664

pmed35.p50 0.9684 0.9711 0.9716 0.9786 0.9782

pmed35.p100 0.9538 0.9596 0.9675 0.9747 0.9817

pmed35.p200 0.9315 0.9617 0.9473 0.9818 0.9802

pmed36.p50 0.9727 0.9776 0.9798 0.9803 0.9791

pmed36.p100 0.9486 0.9657 0.9751 0.9784 0.9782

pmed36.p200 0.9186 0.9493 0.9469 0.9499 0.9508

pmed37.p50 0.9722 0.9786 0.9770 0.9943 0.9857

pmed37.p100 0.9453 0.9643 0.9682 0.9735 0.9853

pmed37.p200 0.9196 0.9505 0.9524 0.9818 0.9854

pmed38.p56 0.9695 0.9764 0.9762 0.9730 0.9906

pmed38.p112 0.9593 0.9697 0.9726 1.0009 0.9737

pmed38.p225 0.9301 0.9599 0.9517 0.9589 0.9845

pmed39.p56 0.9698 0.9786 0.9774 0.9799 0.9853

pmed39.p112 0.9513 0.9617 0.9674 0.9897 0.9763

pmed39.p225 0.9416 0.9631 0.9566 0.9697 0.9762

pmed40.p56 0.9662 0.9759 0.9711 0.9891 0.9811

pmed40.p112 0.9396 0.9556 0.9591 0.9795 0.9742

pmed40.p225 0.9217 0.9478 0.9410 0.9762 0.9700
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Table 15 Execution time (in sec) of the final set of non-dominated solutions for each algorithm on each
instance

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed17.p25 559.983 369.612 379.108 1157.423 5144.575

pmed17.p50 1802.588 647.113 679.37 2648.074 6296.037

pmed17.p100 1811.224 1323.026 1403.544 7326.294 11880.241

pmed18.p25 92.487 347.191 350.027 1131.032 5013.282

pmed18.p50 1801.08 654.385 685.117 2666.113 6427.61

pmed18.p100 1809.333 1324.969 1386.195 7305.665 11844.258

pmed19.p25 448.756 368.043 368.555 1167.528 5328.069

pmed19.p50 1802.241 629.078 664.59 2658.088 6255.026

pmed19.p100 1810.26 1328.724 1381.216 7276.104 12127.677

pmed20.p25 205.215 364.279 349.17 1148.515 5320.73

pmed20.p50 1802.998 620.675 661.355 2708.265 6315.136

pmed20.p100 1800.735 1348.659 1399.609 7388.828 11791.64

pmed21.p31 348.614 502.4 511.384 1762.34 5767.847

pmed21.p62 1801.751 945.08 932.561 4421.521 8175.701

pmed21.p125 1802.054 1943.117 2008.801 12869.981 17970.712

pmed22.p31 1606.733 492.568 510.675 1732.194 5818.799

pmed22.p62 1801.13 943.297 990.107 4423.24 8235.734

pmed22.p125 1804.348 1905.451 1990.034 12611.729 17983.946

pmed23.p31 735.774 515.735 511.487 1759.389 5851.096

pmed23.p62 1800.561 933.461 968.829 4383.554 8234.126

pmed23.p125 1804.022 1995.179 2105.019 12668.718 18065.158

pmed24.p31 687.912 517.201 524.938 1759.696 5857.967

pmed24.p62 1800.748 960.589 995.015 4437.905 8345.57

pmed24.p125 1804.457 1965.128 2056.015 12647.184 18026.662

pmed25.p31 199.774 487.641 492.433 1750.982 5805.962

pmed25.p62 1802.596 899.387 946.281 4383.757 8360.203

pmed25.p125 1803.307 1931.682 1954.247 12609.062 17951.188

pmed26.p37 1118.214 665.78 737.047 2431.13 6041.432

pmed26.p75 1807.249 1326.218 1408.527 6723.191 10585.28

pmed26.p150 1807.973 2730.115 2773.622 19739.998 25929.23

pmed27.p37 754.313 713.257 742.613 2477.731 6061.52

pmed27.p75 1806.876 1333.999 1314.75 6748.584 10499.909

pmed27.p150 1806.931 2974.384 3074.018 19717.685 24901.292

pmed28.p37 896.867 638.057 671.094 2429.35 5998.978

pmed28.p75 1806.134 1254.454 1283.845 6726.993 10593.659

pmed28.p150 1805.361 2722.156 2750.252 19710.687 24931.718

pmed29.p37 1800.679 700.39 698.378 2512.337 6120.816

pmed29.p75 1806.135 1265.987 1328.631 6895.147 10988.397

pmed29.p150 1805.637 2717.277 2787.273 19841.529 24923.703
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Amulti-objective parallel variable neighborhood search...

Table 15 continued

INSTANCE Mo-PVNS AOLS DBLS NSGA-II SPEA2

pmed30.p37 1802.752 662.114 679.167 2364.12 6065.077

pmed30.p75 1806.544 1289.904 1292.473 6451.738 10502.388

pmed30.p150 1808.724 2715.869 2801.296 19835.739 25492.628

pmed31.p43 1803.061 884.717 921.729 3350.292 6891.541

pmed31.p87 1801.483 1702.271 1779.913 9232.899 13741.315

pmed31.p175 1813.708 3712.982 3868.433 28272.49 35200.497

pmed32.p43 1802.565 899.956 911.044 3285.824 6987.454

pmed32.p87 1802.363 1720.503 1735.69 9205.704 13678.591

pmed32.p175 1821.504 3644.142 3753.658 28263.174 35254.251

pmed33.p43 1800.874 888.341 955.148 3314.222 7014.248

pmed33.p87 1801.869 1667.102 1822.25 9227.759 13857.293

pmed33.p175 1818.281 3708.179 3869.516 28356.023 35259.477

pmed34.p43 1802.233 912.531 934.587 3565.131 6949.487

pmed34.p87 1802.89 1726.789 1757.17 9117.993 13689.109

pmed34.p175 1812.499 3863.333 3960.955 29173.071 35260.57

pmed35.p50 1807.055 1154.553 1217.844 4375.293 7961.46

pmed35.p100 1802.602 2133.513 2267.524 12730.265 17807.547

pmed35.p200 1819.452 4967.695 5095.762 39311.767 48200.588

pmed36.p50 1800.81 1202.682 1182.833 4431.054 8001.283

pmed36.p100 1805.465 2325.931 2329.336 12809.812 17802.27

pmed36.p200 1818.113 4998.88 5037.924 39346.173 48220.558

pmed37.p50 1807.431 1120.823 1145.495 4419.85 7742.646

pmed37.p100 1804.63 2140.454 2194.717 12788.378 17620.304

pmed37.p200 1829.425 4823.23 4950.464 39249.805 46698.738

pmed38.p56 1806.912 1392.809 1447.755 5973.063 9448.258

pmed38.p112 1803.072 2698.415 2803.455 17561.161 22492.692

pmed38.p225 1841.457 6244.761 6471.206 53841.901 62415.004

pmed39.p56 1803.702 1354.027 1498.687 5942.783 9440.823

pmed39.p112 1805.135 2907.285 2884.457 17545.61 22606.509

pmed39.p225 1837.069 6142.333 6331.688 53844.378 62390.012

pmed40.p56 1811.11 1506.756 1480.359 5964.141 9562.193

pmed40.p112 1808.26 2829.047 2994.584 17498.675 22642.241

pmed40.p225 2001.9 6281.163 6281.467 53785.068 62486.857
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