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Abstract The multi-objective open vehicle routing problem (MO-OVRP) is a variant
of the classic vehicle routing problem in which routes are not required to return to the
depot after completing their service and where more than one objective is optimized.
This work is intended to solve a more realistic and general version of the problem
by considering three different objective functions. MO-OVRP seeks solutions that
minimize the total number of routes, the total travel cost, and the longest route. For
this purpose, we present a general variable neighborhood search algorithm to approx-
imate the efficient set. The performance of the proposal is supported by an extensive
computational experimentation which includes the comparison with the well-known
multi-objective genetic algorithm NSGA-II.

Keywords General variable neighborhood search · NSGA-II · Open vehicle routing
problem · Sweep algorithm · Local search · Multi-objective optimization

1 Introduction

The distribution of goods and services is a basic logistic operation for most of business
activities, constituting a significant part of the overall costs of a company. There-
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fore, minimizing the cost related to transportation becomes a matter of interest for
researchers of several fields.

Most of the transportation problems found in the literature have been solved by
minimizing the costs associated with the transportation, that is, minimizing the total
cost, following different approaches: reducing the purchase of vehicles, the wages of
the drivers, the diary distance travel by all the vehicles, the economic penalty when a
constraint is violated (as overtime payments), etc. Traditionally, the problem had been
focused on minimizing the total travelled distance (Toth and Vigo 2002). However,
nowadays there is a great interest in considering other aspects. For instance, balancing
the workloads (workers’ point of view) or the waiting time of the customers to receive
the service (customer satisfaction).

This paper deals with real-world situations with the aim of reducing costs for
transportation companies. Most of them need to purchase or hire the vehicles’ fleet, to
optimize the total cost (distance traveled by all vehicles), and to balance the workloads
in order to assure that all routes have a similar duration. In other words, companies try
to balance customer satisfaction in order to homogenize themaximum time a customer
waits to receive the service. Companies are worried about the customers’ satisfaction
since it has an indirect benefit for the company aswell as theworkers’ satisfaction since
it is well-known that they are more productive when they work in better conditions.
Therefore, it is interesting to take into account several objectives that are in conflict.
That is, to solve routing problems within the multi-objective nature.

The optimization problem under consideration can be modeled as the Open Vehicle
Routing Problem (OVRP) which is a variation of the well-known Vehicle Routing
Problem (VRP) with the only difference that vehicles are not required to return to
the depot after completing their service. Formally, the objective of the OVRP is to
find a set of routes traveled by vehicles with the minimum travel cost and such that
each customer is served exactly once. It is worth mentioning that each route starts
at the depot and ends at one of the customers or vice versa; and the side constraints
must be satisfied (for instance, vehicles’ capacity or maximum duration, if any). Here,
we solve a multi-objective problem instead. We introduce the multi-objective open
vehicle routing problem (MO-OVRP) that seeks to minimize the number of vehicles,
the total travel cost, and the maximum travel cost among all routes (makespan). The
relevance of this problem is supported by many practical applications that fit into the
MO-OVRP framework: companies hiring vehicles, pick up and delivery VRP, and
planning of train and bus services, among others.

A general variable neighborhood search (GVNS) algorithm is proposed to tackle
the MO-OVRP. The initial solution for GVNS, as well as an initial approximation
of the Pareto front are obtained using a constructive method called Sweep. Then,
the approximation of the Pareto front is improved by using a set of neighborhood
structures. Contrary to traditional metaheuristics based on local search methods that
follow a trajectory, GVNS is a metaheuristic framework based on systematic changes
of neighborhoods.

The paper is organized as follows. Section 2 presents the considered problem.
Section 3 describes the GVNS algorithm proposed in this paper, and Sect. 4 shows the
adaptation of theNSGA-II to solve theMO-OVRP.Computational results are provided
in Sect. 5 and finally, Sect. 6 summarizes the paper and discusses future work.
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2 Problem description and related work

The Open Vehicle Routing Problem (OVRP) was first described in a paper by Scharge
in 1981 Schrage (1981) and can be formally stated as follows. Let G = (V, E) be
a complete graph, where V = {0, 1, . . . , n} is the node set and E = {(i, j) : i, j ∈
V, i �= j} is the edge set. Node 0 is the depot and N = {1, . . . , n} is the customer set
(i.e., N = V \ {0}). Each edge (i, j) ∈ E has an associated cost ci j . This cost could be
measured in different units, for instance, the distance from i to j or the time that takes to
get from i to j or even the economic cost to service customer i and then j . Furthermore,
each customer i ∈ V has a demand qi > 0 (with q0 = 0). Let M = {1, . . . ,m} be the
fleet of m identical vehicles located at the depot. Note that this value is traditionally
known beforehand. In our case, it is important to highlight that the number of vehicles
is included as an objective function as it will be explained later. Each vehicle could
have some constraints, as an associated fixed cost F , a capacity Q, or a maximum
cost limit C , among others. The customers must be served by at most m Hamiltonian
paths, each one associated with one vehicle, starting at the depot and ending at one of
the customers, or vice versa. Each vehicle’s route must satisfy the imposed constrains,
for instance, they cannot exceed the maximum allowed capacity. The classical OVRP
is focused on firstly minimizing the number of used vehicles and then minimizing the
total cost. Figure 1 shows an example of instance for this kind of problems.

There is another variant of the OVRP named Balanced Open Vehicle Routing
Problem (BOVRP), originally proposed by López Sánchez et al. (2014), in which
the objective is to minimize the number of used vehicles first and then the makespan,
defined as the maximum cost of a route in the solution. Figures 2 and 3 show an OVRP
and a BOVRP solution, respectively. Figure 2 represents three routes for a feasible
OVRP solution where the total cost is minimized. In the example, the solution for
OVRP has a total cost of 12 units and the longest route is the green one with a cost of
5 units. Solving a BOVRP we get a more balanced set of routes, as depicted in Fig. 3,

Fig. 1 Original instance
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Fig. 2 Solution for f1
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Fig. 3 Solution for f2
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where the total cost has incremented (13 units) but the cost of the longest route is now
reduced (4.5 units). Furthermore, Fig. 4 shows another solution where the number of
vehicles is minimized. In this example, a solution with two routes is obtained with a
total cost of 13.5 units and where the cost of the longest route is incremented consid-
erably (9.5 units). Notice that these figures show different solutions that are in conflict
considering the three objective functions.

In this paper, both problems, the OVRP and the BOVRP, will be addressed at
the same time. The considered problem turns into the multi-objective open vehicle
routing problem (MO-OVRP), in which the objectives are three: minimize the total
cost ( f1), minimize the makespan ( f2), and minimize the number of vehicles ( f3).
As usual in multi-objective optimization, those objectives are in conflict since there
is not a single solution that simultaneously optimizes each objective. This means
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Fig. 4 Solution for f3
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that the value of one objective function cannot be improved without deteriorating the
value of at least another objective function. Those solutions are known as efficient
solutions, non-dominated solutions or Pareto optimal solutions and henceforth the
set of those solutions will be denoted as R. If we focus again in the problem shown
in Figs. 2, 3, and 4, the conflict in the solutions is clear since the first solution is
( f1, f2, f3) = (12, 5, 3), the second solution is ( f1, f2, f3) = (13, 4.5, 3), and the
third solution is ( f1, f2, f3) = (13.5, 9.5, 2). Each solution obtains a better value for
one objective function but aworse solution regarding the other two objective functions.

As far as we know, the MO-OVRP presented in this paper has not been addressed
in the literature yet. However, the OVRP has been the target of several researchers
and practitioners since many real-world situations fit into the OVRP framework. For
instance, companies which do not own a vehicle fleet and must contract services to
external transporter (Tarantilis et al. 2005), pick up and delivery VRP (Schrage 1981),
and planning of train services or bus routes (Fu et al. 2005). All those situations can
be extrapolated to the BOVRP framework even if another objective is optimized. This
variant has been mainly ignored in the literature, considered into the planning of bus
services (López Sánchez et al. 2014). Finally, it is worth mentioning a contribution
of multi-objective OVRP even if we do not consider the same objective functions.
Norouzi et al. (2012) presented a MO-OVRP with competitive time windows. The
model minimizes the total travel cost of routes and maximizes the obtained sales
while balancing the goods distributed among vehicles, that is, the capacity of the
vehicles.

3 Variable neigborhood search

Variable Neighborhood Search (VNS) is a metaheuristic framework whose main idea
relies on systematic changes of neighborhood structures for finding high quality solu-
tions, without guaranteeing their optimality. Since the original proposal (Mladenović
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and Hansen 1997), VNS has been in continuous evolution, resulting in different VNS
strategies. Specifically, it isworthmentioningVariableNeighborhoodDescent (VND),
Reduced VNS (RVNS), Basic VNS (BVNS), General VNS (GVNS), Variable Neigh-
borhood Decomposition Search (VNDS), and Variable Formulation Search (VFS),
among others. We refer the reader to Hansen and Mladenović (2001) for a complete
review of this methodology. VNS has lead to several successful research in recent
years (Duarte et al. 2016; Hansen et al. 2017; Sánchez Oro et al. 2014, 2015).

Thiswork is focused on theGVNSvariant, which replaces the local search improve-
ment in VNS with a complete Variable Neighborhood Descent (VND) algorithm. In
VND, the neighborhood change is performed in a deterministic way, by removing the
perturbation method. This methodology is particularly interesting when considering
several different neighborhood structures that can be combined, as the ones defined
in this paper (see Sect. 3.2). The GVNS method proposed in this work is presented in
Algorithm 1.

Algorithm 1 GVNS(S, kmax)
1: k ← 1
2: while k ≤ kmax do
3: S′ ← Shake(S, k)
4: S′′ ← VND(S′)
5: k ← NeighborhoodChange(S, S′′, k)
6: end while

Given an initial solution S and the maximum neighborhood to be explored kmax, the
algorithm starts from the first considered neighborhood (line 1), iterating until reaching
the maximum neighborhood (line 2–6). For each iteration, GVNS randomly perturbs
the incumbent solution to generate a new one in the neighborhood under evaluation
(line 3), using the shake procedure later described in Sect. 3.3. Then, the perturbed
solution S′ is improved using the VND method described in Sect. 3.2 until reaching
a local optimum S′′ (line 4). The neighborhood change method (line 5) is responsible
for deciding whether to restart the search from the first neighborhood (k = 1) if an
improvement has been found or to continue with the next neighborhood otherwise
(k = k + 1). The method ends when the maximum predefined neighborhood has been
reached or a maximum CPU time of 1000s is achieved.

Single-objective GVNS ends returning the best solution found during the search.
However, regarding the multi-objective nature of the problem under consideration,
the proposed GVNS maintains the set of all non-dominated solutions, (approximation
of the Pareto front) found during the search. Specifically, each solution generated is
checked to be included in the Pareto front. Then, if the solution is non-dominated, it is
inserted, removing all those solutions already included in the front that are dominated
by the new one. Otherwise, the solution is discarded, continuing the search. Finally,
the algorithm returns the set of all non-dominated solutions.

3.1 Constructive procedure

In this section we describe the constructive procedure used to generate an initial solu-
tion for the GVNS algorithm, also creating an initial approximation of the Pareto front.
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The constructive procedure, called Sweep, follows a strategy that leverages the struc-
ture of the problem, based on open routes. The method is a two-phase constructive
algorithm that belongs to the traditional cluster-first, route-second methods used to
solve routing problems, originally proposed by Gillett and Miller (1974). In the first
phase, the algorithm decomposes the problem by clustering customers according to
their location, that is, grouping customers that are geographically close among them
in the same route. Then, in the second phase, every route (cluster) is optimized inde-
pendently by using the nearest neighbor algorithm. The Sweep algorithm is applied
iteratively as follows:

1. The depot is considered as the center (or origin) of the two-dimensional plane.
2. The polar coordinates of each customer with respect to the depot are computed.
3. All customers are sorted by increasing polar angle.
4. A seed node is chosen in order to start the assignment of customers to vehicles

(clusters). The depot is joined with the arbitrarily chosen seed node. Traditional
Sweep algorithms consider the nodewith the smallest polar angle as the seed. How-
ever, in order to generate diverse solutions, our constructive procedure considers
a different seed node in each iteration.

5. A cluster is constructed by sweeping all nodes by increasing polar angle with
respect to the selected seed node.

6. A new cluster is created when the current one is complete, considering the maxi-
mum vehicle capacity.

7. Repeat steps 5 and 6, until all customers have been included in a cluster.
8. Once all clusters have been included in a vehicle, routes are created by using the

nearest neighbor algorithm.

As the number of vehicles is a discrete objective function, and in order to consider
this objective specifically in the construction phase since no neighborhood will be
specially designed to improve the former objective, some variability will be included
in the step 6 of the Sweep algorithm. To vary the number of vehicles used during the
execution of the algorithm, we limit the capacity of each vehicle to a percentage of its
maximum. Therefore, the algorithm is executed considering that the capacity is βC
where β ∈ [0, 1] but satisfying that βC ≥ maxi∈N di to avoid the construction of
infeasible solutions. For each β value, randomly chosen in the interval [0, 1], a new
set of non-dominated solutions will be constructed.

As we previously mentioned, during the construction phase, an approximate set of
efficient solutions, Ê , will be obtained. Every time a new feasible solution is built,
we need to check whether it should be included in the approximate set of efficient
solutions or not. Specifically, if the current solution S is a non-dominated one, it is
included in the set, removing those that are dominated by S. Otherwise, solution S is
discarded.

3.2 Neighborhood structures

The VND algorithm used as improvement method inside the proposed GVNS requires
from a set of neighborhoods to be deterministically explored. In this section we
describe different neighborhood structures, each one designed to find better solutions
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with respect to a different objective function. Specifically, we propose five different
neighborhood structures for each objective function: those devoted to minimize the
total cost are denoted by Nm , while the ones designed to minimize the maximum route
cost are denoted by N∗

m , with 1 ≤ m ≤ 5.
It is worth mentioning that the objective of minimizing the number of vehicles is

not considered in any neighborhood structure, since it is used in the construction phase
of the search, as described in Sect. 3.1.

We define the following five neighborhood structures:

– N1 and N∗
1 : Insertion of a node in a different position of the same route.

– N2 and N∗
2 : Swap of two consecutive nodes in the same route.

– N3 and N∗
3 : Exchange of two non-consecutive nodes in the same route.

– N4 and N∗
4 : Insertion of a node in the best position of a different route.

– N5 and N∗
5 : Exchange of two nodes of different routes, inserting them in the best

position of the destination route.

Using these neighborhooddefinitions,wepropose two local searchmethods for each
considered neighborhood, which differ in the objective function under evaluation. On
the one hand, those methods considering the minimization of the total cost (exploring
neighborhoods N1, N2, . . . , N5) perform the correspondingmove of the neighborhood
for each available route, stopping when no improvement is found in any of the routes.
On the other hand, those methods considering the minimization of the maximum
cost (exploring neighborhoods N∗

1 , N∗
2 , . . . , N∗

5 ) perform the corresponding move
of the neighborhood considering only the route with the maximum cost, stopping
when this maximum cost cannot be improved. It is worth mentioning that, in the
case of N∗

4 the node to be inserted in a new route is selected from the route with
maximum cost. Similarly, the neighborhood N∗

5 exchanges one node from the route
with maximum cost with one node of any other route while this objective function is
minimized.

Therefore, the neighborhoods explored by local search methods for the minimiza-
tion of total cost are considerably larger than the ones devoted to minimize the
maximum cost. Regarding the VND methodology, it is recommended to explore the
neighborhoods from the smallest and fastest one to be evaluated to the largest and
slowest one (Mladenović and Hansen 1997). Following this idea, the proposed VND
firstly considers the local search procedures devoted to reduce the maximum cost (N∗

1
to N∗

5 ), and then the ones intended to reduce the total cost (N1 to N5).
Algorithm 2 shows the pseudocode of the VND algorithm.

Algorithm 2 VND(S, kmax)
1: N ← {N∗

1 , N∗
2 , . . . , N∗

5 , N1, N2, . . . , N5}
2: k ← 1
3: while k ≤ kmax do
4: S� ← argmin

S′∈Nk (S)

f (S′)

5: k ← NeighborhoodChange(S, S�, k)
6: end while
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Starting from an initial solution S, VND iterates until reaching the maximum pre-
defined neighborhood kmax (in our case, kmax = 10 neighborhoods), finding in each
iteration the best solution in the neighborhood under evaluation (line 4). Then, the
neighborhood change procedure decides whether to evaluate the next neighborhood
(k = k + 1) if no improvement has been found, or to restart from the first considered
neighborhood (k = 1) otherwise.

Notice that given the multi-objective nature of the problem considered in this work,
each neighborhood is devoted to improve a different objective function. Therefore,
the evaluation in line 4 of the algorithm refers to the objective function for which
the corresponding local search is designed. This strategy leads the VND algorithm to
focus on a different objective depending on the neighborhood under evaluation.

3.3 Shake

The shake method is used in the VNS methodology as a perturbation method with the
aim of increasing the diversity of the search and escape from local optima. We define
a shake method for the problem under consideration that randomly selects a source
and destination route. Then, the method selects a node from each route at random and
interchange their positions. Notice that source and destination route can eventually be
the same route and, therefore, this method considers movements in the same route and
in different ones. The maximum perturbation size is given by parameter nmax which
indicates the percentage of nodes that will be involved in the perturbation. On the other
hand, kstep represents the increment in the perturbation size for each iteration.

3.4 Final algorithm

This subsection is devoted to summarize the complete algorithm described in the
previous subsections. A pseudocode is included containing the construction phase
and the GVNS method where all the details are given such as the non-dominated set
updating or the stopping conditions, among others. See Algorithm 3 for deeper details.

The algorithm receives the graphG, the parameter β to vary the number of vehicles,
the number of iterations i t , and themaximum number of neighborhoods to be explored
kmax as input. The algorithm starts by creating an empty non-dominated set of solutions
and then it is executed during i t iterations (lines 1 and 2). In each iteration a solution
is constructed (line 3) using the procedure explained in Sect. 3.1. Notice that every
solution is checked for its possible inclusion in the set of non-dominated solutions,
R. The function Insert&Update(S) checks whether the solution S is a non-dominated
solution and, if so, the solutions of the set that are dominated by S are removed (lines 4,
9, and 11). Once a solution is built, the GVNS is applied until themaximum predefined
neighborhood is reached (lines 5 to 17). For each iteration of the GVNS, the shake
method is performed and the VND method is applied (see Sects. 3.2 and 3.3). Here it
is extremely important to check if the size of the set of non-dominated solutions has
changed and in such a casewe restart the search from thefirst neighborhood.Otherwise,
the algorithm continues the search in the next neighborhood. The algorithm finishes
returning the set of non-dominated solutions (line 19).
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Algorithm 3 MO-OVRP-GVNS (G, β, i t , kmax )
1: R ← ∅
2: for i = 1, . . . , i t do
3: S ← construct(G, β)

4: R ← Insert&Update(S)

5: k ← 1
6: while k ≤ kmax do
7: R′ ← R
8: S′ ← shake(S, k)
9: R ← Insert&Update(S′)
10: S′′ ← VND(S′)
11: R ← Insert&Update(S′′)
12: if |R| �= |R′| then
13: k ← 1
14: else
15: k ← k + 1
16: end if
17: end while
18: end for
19: return R

4 NSGA-II adaptation

To prove the quality of the proposed algorithm, NSGA-II is adapted to our problem.
NSGA-II is a multiobjective evolutionary algorithm proposed as an improvement
version of the NSGA (Non-dominated Sorting Genetic Algorithm) to outperform it
(Deb et al. 2002).

The NSGA-II starts by generating an initial population of solutions in the form of
chromosomes, which are formed by either binary or numeric values that are called
genes. Each chromosome, which is an individual from the population, represents a
solution to the problem at hand. The initial population is evolved according to the
features of NSGA-II, and the non-dominated solutions are kept and included in the
set of non-dominated solutions, using a separated file.

Regarding the adaptation of NSGA-II to our problem, the initial population is
randomly generated. Given that this algorithm is based on population, this random
method provides diversity in the solutions and allows a wider cover of the objective
space.However,we have implemented amethod to repair the random solutions in order
to fit the capacity constraints. Therefore, all the solutions of the initial population are
feasible according to the capacity constraints.

We have used an integer codification for the chromosomes similar to the one
described in We et al. (2013). Each chromosome is divided into two parts separated
by the number zero, as shown in Fig. 5. In the first part of the chromosome, each gene
represents one customer. The second part of the chromosome contains the information
of the vehicles. Each gene in the second part indicates the number of customers served
by each vehicle. Of course, the sum of the numbers in the second part must be equal
to the number of customers. For example, Fig. 5 shows a representation of a feasible
solution with 10 customers and 3 vehicles where vehicle 1 serves 3 customers which
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1 5 4 2 8 7 6 3 9 10 0 3 2 5

Route 1

selciheVsremotsuC

Route 2 Route 3

Fig. 5 Chromosome representation

1 5 4 2 8 7 6 3 9 10 0 3 2 5

Parent 1

10 2 3 5 7 8 9 6 3 1 0 2 2 4 2

Parent 2

2 2 4 21 5 4 2 8 7 6 3 9 10 0

Offspring 1

3 2 510 2 3 5 7 8 9 6 3 1 0

Offspring 2

Fig. 6 Crossover operator

are 1, 5, and 4; vehicle 2 serves 2 customers which are 2, and 8; and finally, vehicle 3
serves 5 customers which are 7, 6, 3, 9, and 10 (maintaining the order).

The previously mentioned repair operator travels both parts of the chromosome:
the customers and the vehicles parts. Hence, for each vehicle, it is verified that its
capacity allows to serve the customers that correspond to its route. If this constraint is
not satisfied, the route for this vehicle is minored until the capacity is satisfied. Those
customers removed from the current vehicle are transferred to the subsequent vehicle
repeating this process until the last vehicle. Notice that this strategy requires a linear
cost because the next vehicle is identified by the subsequent gene in the vehicle part.
Once all the vehicles are traversed, it may happen that some remaining customers do
not belong to any vehicle. In that case, new vehicles are added to the chromosome
until all the customers belong to one route.

The crossover operation is based on the well-known one-point crossover (Eiben and
Smith 2003). However, in order to maintain the feasibility of the combined solutions,
the point where the crossover is performed is always the same, which is the separator
(number zero) between the two parts that we have previously defined. Figure 6 illus-
trates the process of one-point crossover. Offspring 1 is generated by selecting the
first part of parent 1 and the second one of parent 2, while offspring 2 results from the
combination of the second part of parent 1 and the first one of parent 2.
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Table 1 Best genetic
parameters found in a
preliminary experimentation for
the NSGA-II

Parameter Value

Population size 200

Generations 5000

Crossover probability 0.6

Mutation probability 0.3

The mutation operator is different than the standard case of genetic algorithms. The
aim of the operator is to disturb a solution and provide diversity changing the genes
of a chromosome according to a probability. However, taking into account again the
feasibility of the solutions, we decided to implement a special case of mutation. Our
proposal tries to imitate themovements between neighbors of solutions, as described in
Sect. 3.2. Therefore, if themutation has to be performed on a chromosome, two equally
probable operations may occur: customer part mutation or vehicle part mutation.

In the customer part mutation, two randomly selected genes are exchanged. This
way, it could lead to the modification of the order in one route or the exchanging of
customers among different routes. However, this mutation does not change the length
of any of the routes.

In the vehicle part mutation, two genes are selected by random. One of the genes
is reduced in one unit and the other one is added one unit. This process modifies the
length two routes in one unit. In addition, we also allow the addition of one vehicle. To
produce this behavior, we include in the random selection a final genewhose value is 0,
representing the possible new vehicle. The only constraint that we have implemented
is to avoid those vehicles with one customer to be minored. In order to guarantee
the feasibility of the solutions, the repair operator is applied after both crossover and
mutation operators.

Finally, a binary tournament operator (Eiben and Smith 2003) was applied for the
selection of the offspring, taking into account the dominance.

After some preliminary experiments where several values of population size and
number of generations were tested, we selected the values of the parameters that are
shown in Table 1 because they obtain the best compromise between execution time
and convergence of the solutions. For further details see Tables 2, 3 and 4 where a
subset of instances has been selected and solved in order to set the parameters.

For each instance, the NSGA-II algorithm was executed 30 times to avoid the
random bias. The Pareto fronts obtained for each instance correspond to the non-
dominated solutions considering the 30 runs.

5 Computational results

This section is divided into two parts. In the first one a set of indicators or metrics are
described in order to assess the quality of the algorithms. In the second part a set of
instances is solved implementing the previous indicators in order to decide the best
algorithm.
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Table 2 Results of the coverage metric for the NSGA-II parameter tuning

Cr = 0.6 Cr = 0.6 Cr = 0.7 Cr = 0.7 Cr = 0.8 Cr = 0.8
Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3

A-n33-k5 1.0000 0.5918 1.0000 0.7600 0.9811 0.6667

A-n37-k5 1.0000 0.6207 0.8710 0.6000 0.9394 0.5806

A-n45-k7 1.0000 0.1026 1.0000 0.8246 1.0000 0.8235

A-n55-k9 1.0000 0.3871 0.9565 0.6923 1.0000 0.7308

A-n61-k9 1.0000 0.1515 1.0000 0.8667 1.0000 0.7027

A-n65-k9 0.8699 0.9212 0.8155 0.9064 0.8099 0.8887

B-n34-k5 1.0000 0.5938 1.0000 0.6552 0.9565 0.9565

B-n38-k6 1.0000 0.8750 0.8462 0.5294 1.0000 0.7500

B-n45-k6 1.0000 0.6452 1.0000 0.4783 1.0000 0.5000

B-n56-k7 1.0000 0.7059 1.0000 0.7027 1.0000 0.6538

B-n64-k9 1.0000 0.6522 1.0000 0.4375 1.0000 0.5833

B-n67-k10 1.0000 1.0000 1.0000 0.0000 0.9565 0.9737

E-n30-k3 0.9630 0.2750 0.9583 0.6667 0.9189 0.8491

E-n76-k8 1.0000 0.1207 1.0000 0.9615 1.0000 0.8438

E-n101-k8 1.0000 0.0000 1.0000 1.0000 1.0000 0.9324

F-n45-k4 0.8500 0.9143 1.0000 0.7727 1.0000 0.2857

M-n121-k7 0.9000 0.0192 1.0000 0.9298 1.0000 0.5965

M-n151-k12 1.0000 1.0000 1.0000 0.7600 1.0000 0.2083

M-n200-k17 1.0000 1.0000 1.0000 0.7308 1.0000 0.2308

P-n20-k2 0.7647 0.9630 0.9091 0.8000 0.8824 0.6000

P-n22-k8 0.9474 0.2424 0.9615 0.7273 1.0000 0.6522

P-n45-k5 1.0000 0.8378 1.0000 0.4324 0.9767 0.5000

P-n50-k10 1.0000 0.8571 1.0000 0.2000 1.0000 0.7027

P-n55-k15 1.0000 0.8519 1.0000 0.4545 1.0000 0.8750

P-n60-k15 1.0000 0.3889 1.0000 0.7188 1.0000 0.8571

P-n76-k5 1.0000 0.8103 1.0000 0.6897 1.0000 0.5000

Mean 0.9729 0.5972 0.9738 0.6653 0.9777 0.6709

# best 0 11 0 7 1 7

Smaller is better

5.1 Metrics for multi-objective problems

To measure the quality of the proposed algorithms some indicators must be used. In
multi-objective optimization problems, to evaluate different algorithms it is necessary
to compare the whole sets of solutions obtained by each algorithm. The performance
can be measured in different ways, for instance measuring the proximity of the gen-
erated solutions to the true Pareto front or measuring the diversity of the solutions.

In those problems where the true Pareto front is known it is usually selected as the
reference set to compare the results of the algorithms under evaluation. However, this
real Pareto front is not known for the problem under consideration so a reference set
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Table 3 Results of the hypervolume metric for the NSGA-II parameter tuning

Cr = 0.6 Cr = 0.6 Cr = 0.7 Cr = 0.7 Cr = 0.8 Cr = 0.8
Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3

A-n33-k5 0.7911 0.8781 0.7880 0.8631 0.7944 0.8823

A-n37-k5 0.7641 0.8468 0.7891 0.8473 0.8116 0.8854

A-n45-k7 0.7200 0.8697 0.7747 0.8637 0.7619 0.8433

A-n55-k9 0.7930 0.8701 0.6805 0.8969 0.7403 0.8476

A-n61-k9 0.7930 0.8701 0.6805 0.8969 0.7403 0.8476

A-n65-k9 0.9655 0.5000 1.0000 0.7073 1.0000 0.9667

B-n34-k5 0.8484 0.8956 0.8245 0.9119 0.8229 0.8937

B-n38-k6 0.8055 0.8971 0.8294 0.9192 0.7686 0.8885

B-n45-k6 0.9087 0.9377 0.9034 0.9201 0.8939 0.9207

B-n56-k7 0.7529 0.9635 0.8670 0.9359 0.7721 0.9272

B-n64-k9 0.9088 0.9408 0.8597 0.9204 0.8255 0.9243

B-n67-k10 0.7031 0.8403 0.7231 0.9468 0.7308 0.8637

E-n30-k3 0.8220 0.8697 0.8410 0.8701 0.8507 0.8329

E-n76-k8 0.7835 0.9369 0.7539 0.8922 0.7865 0.8939

E-n101-k8 0.6428 0.8865 0.5198 0.7800 0.5495 0.7313

F-n45-k4 0.8183 0.8774 0.7152 0.8619 0.7578 0.9458

M-n121-k7 0.8752 0.9438 0.7964 0.8901 0.7936 0.9094

M-n151-k12 0.4661 0.7794 0.6079 0.8826 0.5835 0.9650

M-n200-k17 0.4104 0.8539 0.5675 0.8521 0.5631 0.9292

P-n20-k2 0.8089 0.8023 0.7955 0.8135 0.7916 0.8131

P-n22-k8 0.7856 0.8810 0.8024 0.8754 0.7687 0.8468

P-n45-k5 0.6718 0.8081 0.6954 0.8343 0.7852 0.8403

P-n50-k10 0.7987 0.8948 0.8262 0.9151 0.8217 0.9151

P-n55-k15 0.8679 0.9573 0.8762 0.9512 0.9004 0.9346

P-n60-k15 0.8279 0.9344 0.8506 0.9239 0.8628 0.9311

P-n76-k5 0.7189 0.8064 0.6846 0.8339 0.6552 0.8590

Mean 0.7712 0.8670 0.7712 0.8772 0.7743 0.8861

# best 0 10 1 8 1 8

Larger is better

is constructed with all the non-dominated solutions of the set resulting from merging
the solutions found by all the algorithms being compared. This set, named R, acts
as the best known Pareto front for the problem. Then, the following metrics will be
computed:

– CPU timeThismetric computes thewall-clock time spent by the computer execut-
ing one algorithm solving the given problem. Obviously, a shorter computational
time is preferable.

– Number of efficient pointsThismetric counts the number of efficient points found
by each algorithm. The decision-maker usually prefers the maximum quantity of
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Table 4 Results of the epsilon metric for the NSGA-II parameter tuning

Cr = 0.6 Cr = 0.6 Cr = 0.7 Cr = 0.7 Cr = 0.8 Cr = 0.8
Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3 Mut = 0.1 Mut = 0.3

A-n33-k5 0.1192 0.0513 0.1409 0.0916 0.0956 0.0344

A-n37-k5 0.1671 0.0744 0.1737 0.0863 0.0792 0.0541

A-n45-k7 0.1693 0.0525 0.1242 0.0495 0.1377 0.0881

A-n55-k9 0.1430 0.1184 0.1996 0.0296 0.2964 0.1350

A-n61-k9 0.2839 0.0358 0.3218 0.1245 0.3357 0.1257

A-n65-k9 0.0769 0.0110 0.0919 0.0423 0.1574 0.0506

B-n34-k5 0.1256 0.1196 0.1396 0.0639 0.1315 0.0927

B-n38-k6 0.1463 0.0645 0.1823 0.0811 0.2370 0.1249

B-n45-k6 0.0423 0.0192 0.0532 0.0261 0.0590 0.0065

B-n56-k7 0.2446 0.0396 0.1286 0.0444 0.2795 0.0568

B-n64-k9 0.0282 0.0234 0.1310 0.0177 0.1372 0.0256

B-n67-k10 0.3084 0.1883 0.2107 0.0177 0.2926 0.0760

E-n30-k3 0.2899 0.0000 0.3642 0.1548 0.3723 0.1979

E-n76-k8 0.0854 0.0539 0.0661 0.0358 0.0611 0.1034

E-n101-k8 0.1681 0.0000 0.2890 0.0666 0.1765 0.0684

F-n45-k4 0.0614 0.1100 0.2168 0.1100 0.2116 0.0471

M-n121-k7 0.0929 0.0146 0.1571 0.0626 0.1904 0.0688

M-n151-k12 0.4895 0.1972 0.3930 0.1623 0.3419 0.0000

M-n200-k17 0.5393 0.1469 0.4442 0.2066 0.4296 0.0000

P-n20-k2 0.0710 0.0440 0.0789 0.0456 0.0805 0.0554

P-n22-k8 0.0771 0.0213 0.0485 0.0522 0.0699 0.0212

P-n45-k5 0.2076 0.1127 0.2013 0.0547 0.0960 0.0868

P-n50-k10 0.1693 0.0586 0.1421 0.0363 0.1280 0.0435

P-n55-k15 0.0857 0.0203 0.0789 0.0175 0.0600 0.0227

P-n60-k15 0.1601 0.0122 0.1152 0.0513 0.1113 0.0301

P-n76-k5 0.2483 0.1711 0.2238 0.1019 0.3345 0.0581

Mean 0.1769 0.0677 0.1814 0.0705 0.1886 0.0644

# best 0 8 0 9 0 9

Smaller is better

efficient points. Nevertheless, this metric ignores the quality of the points and it
could happen that an approximation set dominates the other one.

– Coverage The coverage metric, C(A, B), was proposed by Zitzler in 1999 Zitzler
(1999). It calculates the proportion of solutions in the estimated efficient frontier
B, which are weakly dominated1 by the efficient solutions in the estimated frontier
A:

1 a 
 b means that the solution a weakly dominates the solution b, i.e., a is not worse than b in any of the
objectives.
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C(A, B) = |{b ∈ B|∃a ∈ A : a 
 b}|
|B| .

The metric value C(A, B) = 1 means all the solutions in B are weakly dominated
by A and C(A, B) = 0 means that no solution of B is weakly dominated by A.
Note that C(A, B) is not necessarily equal to 1 − C(B, A).

– Hypervolume Indicator This metric, first introduced by Zitzler and Thiele in
1998 Zitzler and Thiele (1998), calculates the size of the space covered, that is,
it computes the hypervolume of the portion of the objective space that is weakly
dominated by the estimated efficient frontier A. In order to measure the hypervol-
ume, the objective space must be bounded by fixing a reference set R. The larger
the value, the better the quality.

– Unary Epsilon Indicator This metric, first introduced by Zitzler et al. in 2003
Zitzler et al. (2003), makes direct use of Pareto dominance, and hence is highly
intuitive. Iε(A), calculates the minimum factor ε by which each point of R must
be multiplied or summed such that the resulting transformed approximation set is
weakly dominated by the estimated efficient frontier A. The smaller the value, the
better the quality. In this paper, we will use the unary multiplicative version of the
epsilon indicator.

Note that each indicator is based on different preference information. Therefore,
using all the indicators will provide more information than simply using just one
indicator.

5.2 Computational experiments

Considering the metrics proposed above, the performance of the proposed algorithm
is shown on a set of OVRP instances. The set of instances are available in http://econ.
au.dk/lys, named as A, B, E, F, M, and P benchmarks. A total of 92 problems were
solved on an Intel Core i7 920 (2.67 GHz) and 8 GB RAM, and the algorithms have
been implemented using Java 8.

We have divided our results into two parts: preliminary and final experiments.
The former are devoted to select the best parameter setting for the NSGA-II and the
GVNS, while the latter show the performance of all the considered instances for the
best parameterization of the NSGA-II and the GVNS.

5.2.1 Preliminary experiments

Throughout this section, where the preliminary results are shown, a representative
subset of 26 instances with different characteristics is studied. Furthermore, to choose
the best parameter setting three metrics will be considered; the coverage metric, the
hypervolume and the epsilon indicator. In this section, the CPU time and the number
of efficient points have not been taken into account.

First of all, computational results for the NSGA-II are shown in order to set the
parameters (crossover and mutation probabilities). Specifically, Table 2 shows the
coverage metric, Table 3 measures the hypervolume and Table 4 computes the epsilon
indicator for the subset of 26 instances. In those three tables, the first column shows
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the name of the instance and the remaining columns (2–7) present the results for the
six combinations of the three crossover probabilities (0.6, 0.7 and 0.8) and the two
mutation probabilities (0.1 and 0.3). The three last rows of all the tables compute the
mean and the number of times that the algorithm obtains the best indicator value. The
bold values in all the tables correspond to the best value of each row.

As can be seen from Table 2, on average, the best parameter combination is a
crossover probability of 0.6 and a mutation probability of 0.3. Furthermore, in 11 out
of 26 instances this combination of parameters is the best by considering the coverage
metric. If we check the hypervolume, see Table 3, where there are no significant
differences on average considering a mutation probability of 0.3 for any crossover
probability. However, when the crossover probability is 0.6, in 10 out of 26 problems
the size of the space covered is better than using other probability. Similar results
are obtained in Table 4, there are no significant differences on average considering a
mutation probability of 0.3 for any crossover probability. Then, to solve the complete
set of instances we have considered a crossover probability of 0.6 and a mutation
probability of 0.3.

To design the GVNS, the first step is to compute which one is the contribution
of the construction and the neighborhoods as well as to decide the order to travel
through the neighborhoods. Although the neighborhoods are usually explored from
the smallest and fastest to evaluate to the largest and slowest one, we have performed
an additional experiment to select the best neighborhood order. In this way, we have
defined six different sequences that consider the neighborhoods in different order.
These sequences, VND1 to VND6, are the following:

– VND1 includes all the neighborhoods to optimize the total cost and then all the
neighborhoods to optimize the makespan: N1, N2, N3, N4 N5, N∗

1 , N
∗
2 , N

∗
3 , N

∗
4

N∗
5

– VND2 includes all the neighborhoods to optimize the makespan and then all the
neighborhoods to optimize the total cost: N∗

1 , N
∗
2 , N

∗
3 , N

∗
4 N∗

5 , N1, N2, N3, N4 N5
– VND3 considers similar neighborhoods for each objective minimizing first the
total cost and second the makespan: N1,N∗

1 , N2, N∗
2 , N3, N∗

3 , N4, N∗
4 , N5, N∗

5
– VND4 considers similar neighborhoods for each objective minimizing first the
makespan and second the total cost: N∗

1 , N1, N∗
2 , N2, N∗

3 , N3, N∗
4 , N4, N∗

5 , N5
– VND5 considers the intra-route movements and then the inter-route movements
to minimize the total cost first and then the makespan: N1, N2, N3, N∗

1 , N
∗
2 , N

∗
3 ,

N4 N5, N∗
4 N∗

5
– VND6 considers the intra-route movements and then the inter-route movements
to optimize the makespan first and then the total cost: N∗

1 , N
∗
2 , N

∗
3 , N1, N2, N3,

N∗
4 N∗

5 , N4 N5

Taking into account the different neighborhood sequences, we have run our exper-
iments on the representative subset of 26 instances. Tables 5, 6 and 7 present the
coverage metric, the hypervolume and the epsilon indicator, respectively. Column 1
in those tables contains the name of the instance. Column 2 considers the construc-
tive procedure without neighborhoods, and the remaining columns (3–8) orders the
neighborhoods in theVNDalgorithm according to the previously described sequences.
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Table 5 Results of the coverage metric for the GVNS neighborhood selection

Constructive VND1 VND2 VND3 VND4 VND5 VND6

A-n33-k5 1.0000 0.4167 0.7143 0.7692 0.8571 0.9375 0.5385

A-n37-k5 1.0000 0.5385 0.6875 0.8125 0.6250 0.7333 0.6250

A-n45-k7 1.0000 0.7143 0.8667 0.7000 0.5333 0.5833 0.7500

A-n55-k9 1.0000 0.2500 0.3750 0.5455 0.1250 0.2500 0.0000

A-n61-k9 1.0000 0.8125 0.8182 0.6364 0.6154 0.7500 0.7692

A-n65-k9 1.0000 0.8421 0.6818 0.8182 0.9583 0.9167 0.7143

B-n34-k5 1.0000 0.2500 0.8571 1.0000 1.0000 0.2500 0.5714

B-n38-k6 0.7500 1.0000 0.6667 0.6667 0.8000 0.8000 0.6000

B-n45-k6 0.7500 0.8182 0.3333 0.7000 0.4167 0.7778 0.3333

B-n56-k7 1.0000 0.8750 0.7000 0.7500 0.7000 0.5000 0.8750

B-n64-k9 1.0000 0.6667 0.7500 1.0000 0.7500 1.0000 0.7500

B-n67-k10 1.0000 1.0000 0.6000 0.5000 0.6000 0.6000 1.0000

E-n30-k3 0.8333 0.7500 0.6250 0.4444 0.8889 0.7273 0.5000

E-n76-k8 1.0000 0.8696 0.7600 0.8750 0.6522 0.8889 0.6800

E-n101-k8 1.0000 0.7895 0.6889 0.9756 0.6222 0.8372 0.8491

F-n45-k4 1.0000 0.7143 0.4000 0.5000 0.8000 0.5714 0.4000

M-n121-k7 1.0000 1.0000 0.2308 0.7778 0.8750 0.8621 0.9032

M-n151-k12 1.0000 0.8621 0.5806 0.8214 0.8372 0.7568 0.8500

M-n200-k17 1.0000 0.9583 0.6552 0.8421 0.5652 0.8125 0.8649

P-n20-k2 0.7692 0.5000 0.5000 0.4375 0.3750 0.3750 0.4444

P-n22-k8 0.7500 0.0000 0.0000 0.2000 0.0000 0.2000 0.2000

P-n45-k5 0.9375 0.6471 0.6111 0.5333 0.6818 0.6875 0.6500

P-n50-k10 1.0000 0.6667 0.7692 0.5333 0.7692 0.8571 0.4615

P-n55-k15 1.0000 0.7500 0.6667 0.8182 0.7778 0.8889 0.7000

P-n60-k15 1.0000 0.6250 0.7000 0.7500 0.6000 0.5556 0.4444

P-n76-k5 0.9583 0.8205 0.6944 0.9167 0.8810 0.8108 0.7714

Mean 0.9519 0.6976 0.6128 0.7048 0.6656 0.6896 0.6248

# best 0 5 8 3 7 3 6

Smaller is better

If we focus on the coverage metric, shown in Table 5, the VND2 gives performance
advantage in mean and in most of the instances (8 out of 26). The hypervolume,
displayed in Table 6, gives the advantage on average to VND2 and VND3 over the
other variants. Finally, the epsilon indicator, seeTable 7, shows thatVND2outperforms
the other strategies on average. Then, we can conclude that VND2 is the best variant
on average and in most of the instances (9 out of 26). Consequently, the variant that is
implemented in the GVNS will be the one that includes all the movements to optimize
the makespan first and then all the movements to optimize the total distance. This
result was expected since the majority of papers in the literature hold that the best
order is to include neighborhoods from the smallest and fastest one to be evaluated,
to the largest and slowest one. Besides, the neighborhoods designed to optimize the
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Table 6 Results of the hypervolume metric for the GVNS neighborhood selection

Constructive VND1 VND2 VND3 VND4 VND5 VND6

A-n33-k5 0.7648 0.8536 0.8725 0.8457 0.8653 0.8598 0.8753

A-n37-k5 0.7425 0.8683 0.8714 0.8690 0.8790 0.8714 0.8742

A-n45-k7 0.8719 0.9054 0.9178 0.9084 0.9135 0.9060 0.9198

A-n55-k9 0.6696 0.7547 0.7547 0.7539 0.7557 0.7547 0.7557

A-n61-k9 0.6876 0.8011 0.8103 0.8088 0.8155 0.8145 0.8096

A-n65-k9 0.7805 0.8890 0.8927 0.8955 0.8853 0.8922 0.8908

B-n34-k5 0.5515 0.7713 0.6782 0.6861 0.6473 0.7717 0.6530

B-n38-k6 0.8083 0.8697 0.8743 0.8716 0.8746 0.8758 0.8738

B-n45-k6 0.5707 0.7676 0.8010 0.7281 0.7964 0.7775 0.7978

B-n56-k7 0.5443 0.7045 0.7060 0.9176 0.7044 0.7073 0.7045

B-n64-k9 0.6694 0.6983 0.6960 0.6885 0.6960 0.6901 0.6981

B-n67-k10 0.8948 0.9510 0.9519 0.9518 0.9520 0.9511 0.9510

E-n30-k3 0.6758 0.6783 0.6782 0.6783 0.6567 0.6753 0.6786

E-n76-k8 0.7884 0.8614 0.8733 0.8605 0.8749 0.8599 0.8636

E-n101-k8 0.7281 0.8177 0.8354 0.8151 0.8384 0.8316 0.8346

F-n45-k4 0.8108 0.8249 0.8245 0.8248 0.8248 0.8229 0.8250

M-n121-k7 0.8973 0.9397 0.9544 0.9385 0.9457 0.9432 0.9436

M-n151-k12 0.8215 0.8913 0.8946 0.8877 0.8901 0.8897 0.8915

M-n200-k17 0.7999 0.9264 0.9314 0.9300 0.9329 0.9269 0.9311

P-n20-k2 0.8102 0.8250 0.8345 0.8267 0.8235 0.8217 0.8226

P-n22-k8 0.6747 0.7317 0.7317 0.7132 0.7317 0.7132 0.7132

P-n45-k5 0.7721 0.8107 0.8101 0.8174 0.8096 0.8120 0.8113

P-n50-k10 0.7922 0.8698 0.8677 0.8698 0.8677 0.8690 0.8687

P-n55-k15 0.7619 0.8622 0.8598 0.8579 0.8616 0.8594 0.8514

P-n60-k15 0.7750 0.8319 0.8406 0.8300 0.8280 0.8314 0.8544

P-n76-k5 0.8133 0.8582 0.8722 0.8587 0.8711 0.8562 0.8736

Mean 0.7491 0.8294 0.8321 0.8321 0.8285 0.8302 0.8295

# best 0 4 5 3 7 2 7

Larger is better

makespan are contained in the neighborhoods designed to optimize the total cost and
consequently, they are ordered in such a way.

Once we have decided the order of the neighborhoods, we need to set the param-
eters of the GVNS algorithm considering again the subset of 26 instances. We have
considered a combination of parameters nmax that is the proportion of the number of
nodes that will be perturbed in the shaking phase, and kstep, which is the perturbation
size, considered in the shake procedure. In our computational experiments we have
implemented nmax = {0.10, 0.25, 0.50} and kstep = 0.01.

Tables 8, 9 and 10 show the coverage, the hypervolume and the epsilon indicator,
respectively. Column 1 displays the name of the problems and columns 2, 3 and 4
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Table 7 Results of the epsilon metric for the GVNS neighborhood selection

Constructive VND1 VND2 VND3 VND4 VND5 VND6

A-n33-k5 0.2419 0.1100 0.0387 0.0938 0.0704 0.0771 0.0183

A-n37-k5 0.3029 0.0579 0.0579 0.0579 0.0176 0.0611 0.0197

A-n45-k7 0.1275 0.0455 0.0271 0.0345 0.0123 0.0455 0.0077

A-n55-k9 0.2836 0.0199 0.0199 0.0211 0.0000 0.0199 0.0000

A-n61-k9 0.2365 0.0530 0.0619 0.0619 0.0370 0.0601 0.0429

A-n65-k9 0.1267 0.0706 0.0311 0.0570 0.0706 0.0308 0.0706

B-n34-k5 0.3995 0.0068 0.2261 0.2273 0.2261 0.0002 0.2736

B-n38-k6 0.0907 0.0562 0.0108 0.0278 0.0148 0.0474 0.0138

B-n45-k6 0.3934 0.0918 0.0121 0.1132 0.0467 0.0821 0.0467

B-n56-k7 0.1987 0.0452 0.0213 0.0361 0.0121 0.0361 0.0361

B-n64-k9 0.1018 0.0211 0.0140 0.0211 0.0090 0.0352 0.0124

B-n67-k10 0.1485 0.0104 0.0002 0.0002 0.0029 0.0104 0.0104

E-n30-k3 0.1222 0.0517 0.0261 0.0475 0.0196 0.0475 0.0284

E-n76-k8 0.0821 0.0263 0.0263 0.0263 0.0821 0.0821 0.0251

E-n101-k8 0.1573 0.0282 0.0246 0.0282 0.0111 0.0282 0.0784

F-n45-k4 0.0578 0.0007 0.0007 0.0007 0.0007 0.0000 0.0007

M-n121-k7 0.0987 0.0599 0.0123 0.0693 0.0561 0.0412 0.0333

M-n151-k12 0.1645 0.0204 0.0110 0.0448 0.0337 0.0535 0.0337

M-n200-k17 0.2369 0.0409 0.0222 0.0296 0.0224 0.0413 0.0265

P-n20-k2 0.0829 0.0541 0.0506 0.0541 0.0361 0.0574 0.0506

P-n22-k8 0.2687 0.0000 0.0000 0.0723 0.0000 0.0723 0.0723

P-n45-k5 0.0990 0.0551 0.0464 0.0290 0.0424 0.0584 0.0342

P-n50-k10 0.2235 0.0187 0.0267 0.0111 0.0267 0.0187 0.0267

P-n55-k15 0.2090 0.0257 0.0171 0.0171 0.0221 0.0249 0.0605

P-n60-k15 0.3384 0.1175 0.0517 0.1265 0.1175 0.1175 0.0056

P-n76-k5 0.1266 0.0492 0.0158 0.0536 0.0167 0.0612 0.0172

Mean 0.1892 0.0437 0.0328 0.0524 0.0387 0.0465 0.0402

# best 0 1 9 4 9 3 5

Smaller is better

consider nmax = 0.10, nmax = 0.25 and nmax = 0.50, respectively. In all columns,
kstep = 0.01 (since this value should be small).

Table 8 shows that in most of the cases (13 out of 26 instances) the proportion of
solutions coverage by the three parameters is better considering nmax = 0.50. This
is supported by the mean values obtained in this experiment. The hypervolume, see
Table 9, also gives the advantage when nmax = 0.50 regarding the average value and
also in 13 out of 26 instances the size of the space covered is greater. However, the
epsilon indicator, see Table 10, holds that nmax = 0.25 is the best approximation
set on average but the results for nmax = 0.50 are quite similar. Therefore, we have
selected nmax = 0.50 to perform the final computational results.
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Table 8 Results of the coverage
metric for the parameter tuning
in GVNS

nmax = 0.10 nmax = 0.25 nmax = 0.50

A-n33-k5 0.7097 0.7143 0.4103

A-n37-k5 0.7333 0.6389 0.4000

A-n45-k7 0.5652 0.7586 0.3667

A-n55-k9 0.8571 0.3684 0.6400

A-n61-k9 0.7692 0.5333 0.6842

A-n65-k9 0.5000 0.6818 0.6667

B-n34-k5 0.9545 0.5000 0.1875

B-n38-k6 0.8000 0.6429 0.4737

B-n45-k6 0.8000 0.5000 0.4074

B-n56-k7 0.4000 0.7647 0.5000

B-n64-k9 0.2857 0.8125 0.3571

B-n67-k10 0.7500 0.3333 0.6667

E-n30-k3 0.8889 0.3529 0.6667

E-n76-k8 0.6042 0.6538 0.3846

E-n101-k8 0.7105 0.5385 0.5536

F-n45-k4 0.7500 0.2381 0.4375

M-n121-k7 0.7255 0.6818 0.6522

M-n151-k12 0.5818 0.7000 0.7213

M-n200-k17 0.5641 0.7429 0.7429

P-n20-k2 0.9091 0.6522 0.3214

P-n22-k8 1.0000 0.3333 0.2000

P-n45-k5 0.6977 0.4474 0.5682

P-n50-k10 0.8824 0.6452 0.5357

P-n55-k15 1.0000 0.1818 0.3077

P-n60-k15 0.8333 0.8261 0.3000

P-n76-k5 0.5167 0.6232 0.5238

Mean 0.7227 0.5718 0.4875

# best 6 7 13
Lower is better

5.2.2 Comparison between NSGA-II and GVNS

According to the results obtained in the previous section, we have chosen the best
parameters that will be used in the NSGA-II (crossover probability of 0.6 andmutation
probability of 0.3) and the best variant that will be implemented in the considered
GVNS (the VND2 that includes all the neighborhoods to optimize the makespan and
then all the neighborhoods to optimize the total distance, with kstep = 0.01 and
nmax = 0.50).

Finally, both algorithms are compared on the complete set of instances under con-
sideration. Table 11 shows the quality of the efficient sets obtained for each algorithm
by applying all the indicators introduced in Sect. 5.1. Specifically, column 1 contains
the instance name, columns 2 and 3 show the number of efficient points obtained by the
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Table 9 Results of the
hypervolume metric for the
parameter tuning in GVNS

nmax = 0.10 nmax = 0.25 nmax = 0.50

A-n33-k5 0.9213 0.9218 0.9270

A-n37-k5 0.8732 0.8920 0.9025

A-n45-k7 0.9280 0.9242 0.9275

A-n55-k9 0.7871 0.8630 0.8289

A-n61-k9 0.7284 0.8135 0.7709

A-n65-k9 0.8623 0.8696 0.8566

B-n34-k5 0.6656 0.8600 0.8421

B-n38-k6 0.8137 0.8241 0.8123

B-n45-k6 0.8673 0.8852 0.8886

B-n56-k7 0.9718 0.9746 0.9734

B-n64-k9 0.9040 0.9215 0.9140

B-n67-k10 0.9291 0.9182 0.9404

E-n30-k3 0.7819 0.8693 0.8641

E-n76-k8 0.8772 0.8748 0.8817

E-n101-k8 0.8497 0.8538 0.8602

F-n45-k4 0.8409 0.9041 0.9074

M-n121-k7 0.9571 0.9582 0.9537

M-n151-k12 0.9146 0.9148 0.9100

M-n200-k17 0.9622 0.9601 0.9584

P-n20-k2 0.8375 0.8560 0.8604

P-n22-k8 0.6998 0.7667 0.8570

P-n45-k5 0.8188 0.8290 0.8260

P-n50-k10 0.8978 0.9078 0.9117

P-n55-k15 0.8979 0.9426 0.9456

P-n60-k15 0.9283 0.9358 0.9589

P-n76-k5 0.8768 0.8761 0.8784

Mean 0.8612 0.8891 0.8907

# best 2 11 13
Larger is better

GVNS and the NSGA-II, respectively. Columns 4 and 5 show the proportion of points
in the estimated efficient frontier of the GVNS and the NSGA-II that are dominated
by the estimated efficient frontier of the Reference set. Columns 6 and 7 show the
hypervolume of the GVNS and the NSGA-II, respectively. Columns 8 and 9 calculate
the epsilon indicator and finally, the last two columns indicate the computational time
(in seconds) spent running each algorithm.

Table 11 shows that in most of the cases, the GVNS algorithm obtains, on average,
a similar number of efficient points than the NSGA-II. If we focus on the coverage
metric, in all cases C(NSGA − I I,GV NS) < C(GV NS, NSGA − I I ) and in
most of the cases C(NSGA − I I,GV NS) = 0 which means that no solution of
the estimated efficient frontier of the GVNS is weakly dominated by the estimated
efficient frontier of the NSGA-II set. Then, the coverage metric gives performance
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Table 10 Results of the epsilon
metric for the parameter tuning
in GVNS

nmax = 0.10 nmax = 0.25 nmax = 0.50

A-n33-k5 0.0372 0.0337 0.0260

A-n37-k5 0.0666 0.0394 0.0241

A-n45-k7 0.0783 0.0682 0.0259

A-n55-k9 0.1200 0.0132 0.0866

A-n61-k9 0.1537 0.0892 0.0657

A-n65-k9 0.0798 0.0411 0.0997

B-n34-k5 0.3396 0.0176 0.1115

B-n38-k6 0.0798 0.0463 0.0456

B-n45-k6 0.0674 0.0297 0.0394

B-n56-k7 0.0540 0.0440 0.0278

B-n64-k9 0.0000 0.0646 0.1069

B-n67-k10 0.0192 0.0475 0.0289

E-n30-k3 0.0362 0.0272 0.0344

E-n76-k8 0.0311 0.0311 0.0343

E-n101-k8 0.0242 0.0348 0.0166

F-n45-k4 0.0429 0.0059 0.0261

M-n121-k7 0.0427 0.0181 0.0408

M-n151-k12 0.0162 0.0474 0.0474

M-n200-k17 0.0144 0.0187 0.0183

P-n20-k2 0.0504 0.0213 0.0291

P-n22-k8 0.1245 0.0848 0.0386

P-n45-k5 0.0426 0.0203 0.0251

P-n50-k10 0.0899 0.0505 0.0712

P-n55-k15 0.1004 0.0192 0.0282

P-n60-k15 0.0713 0.0508 0.0343

P-n76-k5 0.0147 0.0188 0.0193

Mean 0.0691 0.0378 0.0443

# best 6 12 9
Lower is better

advantage to GVNS over NSGA-II. It is important to note that in this case, as we
are only comparing two procedures, C(NSGA − I I,GV NS) = C(R,GV NS) and
C(GV NS, NSGA − I I ) = C(R, NSGA − I I ). The hypervolume also gives the
advantage to GVNS over NSGA-II except in 4 out of the 92 instances since the space
covered is greater in most of the instances. Finally, the epsilon indicator validates the
conjecture that GVNS outperforms NSGA-II since GVNS is smaller than NSGA-II in
most of the cases except in 4 out of the 92 instances. In terms of computational effort,
it is worth mentioning that the CPU time of the GVNS is almost three times faster
than the NSGA-II.
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6 Conclusions and future works

In this paper a general variable neighborhood search (GVNS) algorithm is proposed
to deal with the Multi-Objective Open Vehicle Routing Problem (MO-OVRP), a com-
bination of the OVRP and the BOVRP that calls for the minimization of the number
of vehicles, the total cost and the makespan. The relevance of this problem relies on
its practical interest having into account the company’s perspective as well as the
customer or the workers’ satisfaction.

More precisely, we propose a constructive procedure and different neighborhood
sequences, which optimize the objective functions following different orders. The
considered strategieswere embedded in aGVNSalgorithm.An extensive experimental
comparisonwas provided to decided the best strategy. Furthermore, the performance of
the proposed GVNS algorithm is compared against the NSGA-II procedure, which is a
well-known and competitive algorithm used to solve a high variety of multi-objective
problems and whose efficiency has been more than proved in the literature.

Computational results show the superiority of the GVNS over the competitive
NSGA-II. Our results establish the first benchmarks for this problem that can be used
for future developments and improvements.

As follow up to this research, we are planning to apply the proposed procedure to a
real-world problem with a larger size. Furthermore, it could be interesting to include
or consider other objective functions. For instance, in a company, all salesmen should
have the same quantity of product to sale (that can be seeing as vehicle capacity) since
usually they receive commissions. Another objective appears in humanitarian logistic
activities where an important objective is to minimize the maximum latency instead of
the classical latency, that is, the waiting time of the last served customer. The classical
latency is often considered in competitive environments of rival companies.

Besides, we will try to improve the performance of the algorithms by working on
their implementation. We will study new codification schemes for the solutions in
the NSGA-II algorithm as well as modifications like the parallelization of the GVNS
algorithm.
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