
Future Generation Computer Systems 88 (2018) 785–791

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Iterated Greedy algorithm for performing community detection in
social networks
Jesús Sánchez-Oro *, Abraham Duarte
Dept. Computer Sciences, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

h i g h l i g h t s

• We propose a new algorithm for detecting communities in social networks.
• The algorithm optimizes the modularity of the communities detected.
• The proposed method favorably compares with the best previous method.
• The results highlight the relevance of using modularity for detecting communities.

a r t i c l e i n f o

Article history:
Received 20 October 2017
Received in revised form 28 May 2018
Accepted 7 June 2018
Available online 20 June 2018

Keywords:
Social networks
Community detection
Iterated greedy
Metaheuristics

a b s t r a c t

The spreading of social networks in our society has aroused the interest of the scientific community
in hard optimization problems related to them. Community detection is becoming one of the most
challenging problems in social network analysis. The continuous growth of these networks makes exact
methods for detecting communities not suitable for being used, since they require large computing
times. In this paper, we propose a metaheuristic approach based on the Iterated Greedy methodology
for detecting communities in large social networks. The computational results presented in this work
show the relevance of the proposal when compared with traditional community detection algorithms in
terms of both quality and computing time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Social networks have become one of the main media all over
the world in the last years, as the number of users is in continu-
ous growth [1,2]. The rationale behind this exponential expansion
might be related to the immediacy of the information. Nowadays,
any new information is firstly published in social networks and,
after that, in traditionalmedia. Furthermore, users are getting used
to obtain information from social networks instead of considering
traditional media [3].

The transmission of information through social networks has
created new lines of research, like viral information detection [4],
analysis of the relevance of social network users [5], and commu-
nity detection [6], among others (see [7,8]). In this work, we focus
on the detection of communities in social networks, which is a
relevant problem not only in social network analysis, but also in
areas like natural disaster management [9], biology [10], semantic
web [11], or cybersecurity issues [12].

* Corresponding author.
E-mail address: jesus.sanchezoro@urjc.es (J. Sánchez-Oro).

The community detection problem consists in dividing a net-
work of users into an unknown number of groups, with the ob-
jective of optimizing the value of a function that determines the
quality of the division. Although this problem has been widely
studied from both, exact and heuristic perspectives [13–15], the
best objective function used to find the best partition of a network
in groups is still under discussion [16].

The quality of a community detection over a social graph has
been widely studied from both exact and heuristic perspectives.
The Louvain algorithm [13] is focused on maximizing the modu-
larity. It is a heuristic algorithm that follows a greedy criterion to
insert a node in a community. Specifically, a node will be added to
a community if and only if it leads to an increment in themodular-
ity value, stopping when no improvement is found. The Infomap
algorithm [17] focuses on finding the minimum information de-
scription of a randomwalk, using theMinimumDescription Length
objective function. Finally, the Label Propagation algorithm [14]
tries to find the best communities by iteratively assigning to each
node the community where most of its adjacent nodes belong to,
trying to maximize the modularity metric. These algorithms are
based on the structure of the network in order to improve the
community detection. However, some works include additional

https://doi.org/10.1016/j.future.2018.06.010
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.06.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.06.010&domain=pdf
mailto:jesus.sanchezoro@urjc.es
https://doi.org/10.1016/j.future.2018.06.010

786 J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791

information of the network in the community detection, like the
traffic between two nodes [18] or inwireless sensor networks [19].

As far as we know, the best heuristic method for finding high
quality communities in graphs derived from social network is a
bioinspired algorithm based on Ant Colony Optimization [6]. This
algorithm is focused on detecting communities in Ego Networks,
where a user (node) is selected as the center of the graph (Ego) and
then all the connected users (nodes) are added, together with the
relations (edges) between each pair of users. The main objective
in community detection over Ego Networks is to find the groups
connected to a certain user in a social network [20].

In this paper we propose a new Iterated Greedy algorithm [21]
for detecting communities in Ego Networks. This algorithm starts
from an initial solution, constructed by a heuristic procedure.
Then, it iteratively improves it by performing two well differenced
phases: destruction and reconstruction.

The remaining of the paper is structured as follows: Section 2
formally describes the problem under consideration, Section 3
presents the algorithmic description of the IteratedGreedymethod
proposed, Section 4 describes the computational experiments per-
formed for analyzing the quality of the proposal, and, finally, Sec-
tion 5 summarizes the conclusions derived from this research.

2. Problem definition

Before presenting the problem under consideration, it is neces-
sary to provide a formal definition of a network of users. Specifi-
cally, given a set of users connected in a social network, we define
the graph G = (V , E) where V is the set of n nodes (each user is
represented by a unique node) and E is the set ofm edges. An edge
(u, v) ∈ E, with u, v ∈ V represents that there is a connection
between users u and v. Notice that the meaning of the connection
(both users are friends, work in the same company, etc.) is totally
dependent of the nature of the social network.

It is important to remark that we are facing an unsupervised
clustering problem, since the optimal clustering is not usually
known in advance. Therefore, we need to focus on metrics that
are able to evaluate the quality of a partition without knowing the
optimal one. The most relevant metrics are based on maximizing
the density of edges that connect nodes in the same cluster (intra-
cluster edges) and, at the same time, minimizing the number of
edges that connect nodes located in different clusters (inter-cluster
edges).

In this context, there are three main metrics for evaluating the
quality of a given partition [22]: modularity, conductance, and
coverage. The three consideredmetrics are normalized in the range
0–1, where 1 is the optimal score for coverage andmodularity, an 0
for conductance. Notice that not all networks can reach the optimal
score due to their internal structure.

Before formally defining each metric, it is necessary to intro-
duce the solution structure for the Community Detection Problem
(CDP). A solution (or partition) for the CDP is represented as the
set of clusters K, where each node v ∈ V is assigned to a different
cluster Ki, with

⋃
1≤i≤|K|Ki = V and Ki∩Kj = ∅, with 1 ≤ i, j ≤ |K|.

Additionally, ϕ is a function defined as ϕ : V → {1, 2, . . . |K| that
represents the cluster to which it belongs a particular node. For
example, for a given node v ∈ V , ϕ(v) = 2 would indicate that v is
located at cluster K2.

Themost simplemetric is the coverage [23], which analyzes the
number of intra-cluster edges in a given solution with respect to
the total number of edges in the network. More formally,

Cv(G, ϕ) =
|(u, v) ∈ E : ϕ(u) = ϕ(v)|

|E|
Notice that the optimization of this metric can eventually lead

to the trivial clustering where all the nodes are in the same cluster.

Fig. 1. Example graph with a possible community detection (each community
corresponds to a different color). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The conductance of a cluster compares howmany inter-cluster
edges are in a particular cluster with respect to the total number of
edges with an endpoint in that cluster or those with no endpoint
in the cluster. In mathematical terms,

Cnk(G, ϕ) =
|(u, v) ∈ E : ϕ(u) ̸= ϕ(v)|

min
(
Ek, Ek

)
where Ek = |(u, v) ∈ E : ϕ(u) = k ∨ ϕ(v) = k| is the set of
edges with an endpoint in cluster k and Ek = |(u, v) ∈ E : ϕ(u) ̸=
k ∧ ϕ(v) ̸= k| is the set of edges with no endpoint in cluster k.
Then, the conductance of a solution ϕ for graph G is evaluated as
the average conductance among all clusters in the solution. More
formally,

Cn(G, ϕ) =
1
|K|

|K|∑
k=1

Cnk(G, ϕ)

where |ϕ| is computed as the number of clusters in solution ϕ.
The conductance can also be computed by considering intra-

cluster edges. The aforementioned definition based on inter-
cluster edges is focused on the inter-cluster sparsity, while the one
based on intra-cluster edges emphasizes intra-cluster density [24].

The last metric considered is the modularity of a solution,
which compares the actual intra-cluster edgeswith the probability
of finding that edge in a random graph [25,26]. This metric has
been widely used by the most relevant clustering algorithms in
the literature [27,28], although it presents some limitations when
considering large scale networks [29]. Modularity of a solution ϕ
for a graph G is formally defined as:

Md(G, ϕ) =
|K|∑
k=1

(
ekk − a2k

)
where

ekk = |(u, v) ∈ E : ϕ(u) = ϕ(v)| /|E|

represents the probability of intra-cluster edges in cluster k, while

ak = |(u, v) ∈ E : ϕ(u) = k ∨ ϕ(v) = k| /|E|

represents the probability of an edge with at least one endpoint in
cluster k.

Fig. 1 shows an example graph where three communities have
beendetected, each one highlightedwith a different color, together
with the value of each one of the considered metrics. Specifically,
the red community contains nodes 1, 2, 3, and 4; the green one
contains nodes 5, 6, and 7; and the last one (blue) contains nodes
8 and 9. The values for the aforementioned metrics are Cv(G, ϕ) =
0.82, Cn(G, ϕ) = 0.36, andMd(G, ϕ) = 0.42.

This work is focused on optimizing the modularity of the com-
munity detection, since it is considered the most robust metric
to evaluate the quality of the partition for several community
detection algorithms [30].

J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791 787

3. Iterated greedy

Metaheuristics are a set of widely recognized strategies whose
main objective is to generate high quality solutions for hard op-
timization problems requiring, in general, short computing times
[31]. Since they are approximate algorithms, metaheuristics can-
not guarantee the optimality of the obtained solutions, although
they have been proven to be effective and efficient in several recent
works [32,33].

Iterated Greedy (IG) is a metaheuristic framework originally
proposed in 2007 for solving a scheduling problem [21,34], but it
has evolved to become one of most used metaheuristics in the last
years [35,36].

The basis of IG resides in exploring the search space by alter-
nating intensification and diversification iteratively in two consec-
utive phases: destruction and reconstruction. Algorithm 1 shows
the pseudocode of this framework.

Algorithm 1 IteratedGreedy(G, ϕ, it, β)
1: ϕb ← ϕ

2: for i ∈ 1 . . . it do
3: ϕ′ ← Destruct(ϕ, β)
4: ϕ′′ ← Reconstruct(ϕ′)
5: ϕ← AcceptanceCriterion(ϕ, ϕ′′)
6: if Md(ϕ) > Md(ϕb) then ▷ Improve
7: ϕb ← ϕ

8: end if
9: end for

10: return ϕb

The method starts from an initial solution ϕ for a given net-
work G. The initial solution is generated using the constructive
method described in Section 3.1. The stopping criterion for IG is
usually either the number of iterations or the computing time.
The algorithm proposed in this work stops after performing it
iterations (steps 2–9). Each iteration starts with a destruction
phase (step 3), which is presented in Section 3.2. After that, the
solution obtained is subjected to a reconstruction process (step
4), described in Section 3.2. The reconstructed solution ϕ′′ is then
accepted if it surpasses the acceptance criterion selected (step 5).
In this work, we have not established any acceptance criterion,
so every solution is accepted after reconstruction. Finally, if the
reconstructed solution ϕ′′ outperforms, in terms ofmodularity, the
incumbent solution ϕb, it is updated (steps 6–8). The method ends
after performing it iterations, returning the best solution found
during the search, ϕb.

It is worth mentioning that due to the semi-random nature of
the constructive procedure described in Section 3.1, it is interest-
ing to consider not only one initial solution but several different
and diverse solutions. For this reason, we propose a Multi-Start
Iterated Greedy (MSIG) algorithmwhich executes the IG algorithm
described in Algorithm 1 over each solution generated by the
constructive procedure.

3.1. Constructive procedure

The method for generating the initial solution, called Greedy
Constructive Procedure (GCP), follows a traditional greedy ap-
proach, where each node is added to the best cluster according to
a greedy function value. Additionally, the method is randomized
in order to increase the diversity of the solutions generated. Algo-
rithm 2 presents the pseudocode of GCP.

The algorithm starts selecting at random the first node to be
added to a cluster among all nodes in V (step 1). The first cluster is

Algorithm 2 GCP(G = (V , E))
1: v← SelectRandom(V)
2: K0 ← {v}

3: add(ϕ, K0)
4: CL← V \ {v}
5: while CL ̸= ∅ do
6: v← SelectRandom(CL)
7: Mdb ← max

Ki∈ϕ
Md (ϕ : Ki ← Ki ∪ {v})

8: if Mdb > Md(ϕ) then
9: Ki ← argmax

Ki∈ϕ
Md (ϕ : Ki ← Ki ∪ {v})

10: Ki ← Ki ∪ {v}

11: else
12: K ′ ← {v}
13: add(ϕ, K ′)
14: end if
15: CL← CL \ {v}
16: end while
17: return ϕ

created containing the corresponding node and it is added to the
solution under construction ϕ (steps 2 and 3). The method then
creates a candidate list CL with all the nodes in V except the one
previously added (step 4).

GCP iterates until the candidate list is empty, adding a new
node to a cluster in each iteration as follows (steps 5–16). The next
node is selected at random from the CL (step 6) and GCP evaluates
the resulting modularity when inserting it in each cluster (step
7). If the best modularity obtained in the evaluation is larger than
the current modularity of the solution (improvement), the node is
inserted in the cluster that produces the best modularity (steps 8–
10). Otherwise, a new cluster is created and the selected node is
inserted in it (steps 11–13). Finally, the node is removed from the
candidate list (step 15). Themethod returns a feasible solutionwith
every node assigned to a cluster.

3.2. Destruction and reconstruction phase

The destruction phase of the IG algorithm starts from a feasible
solution generatedwith the constructivemethod described in Sec-
tion 3.1. This phase is devoted to perturb the incumbent solution
and requires from a parameter β that controls the perturbation
size (best β values are discussed in Section 4). Specifically, the
destruction phase consist of randomly removing β · n nodes from
their corresponding clusters, which will be later reassigned in the
reconstruction phase.

Notice that it is interesting to explore solutions with different
number of clusters, in order to explore a wider portion of the solu-
tion space. This is mainly because community detection belongs to
the family of unsupervised clustering problems, where the optimal
number of clusters is not known a priori. In order to do so, the
proposed destructionmethod considers that, if a node v is removed
from a cluster Ki with |Ki| = 1 (i.e., v is the only node in Ki), then
the cluster is also removed from the solution, reducing the number
of clusters in the incumbent solution.

After performing the destruction method, the reconstruction
phase is responsible for assigning the previously removed nodes
to a new cluster. This method selects, for each node, the cluster
that produces the solution with the largest modularity value. Fur-
thermore, to maintain the diversity in the number of clusters, the
method also considers the creation of a newclusterwhere the node
under evaluation is added. The goal is to test if the best modu-
larity value is produced when creating a new cluster instead of
inserting the node in one of the available ones. The reconstruction

788 J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791

Fig. 2. Example of the destruction and reconstruction phase performed over an
initial solution with three clusters. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

phase ends when all the nodes have been reassigned to a new
cluster.

Fig. 2 shows an example of performing the destruction and
reconstruction phase over an initial solution. Fig. 2a depicts again
the examplewith three clusters represented in red, blue, and green
colors. The results of the destruction phase is presented in Fig. 2b,
where nodes 1, 5, 7, and 9 have been selected and removed from
their corresponding clusters. After that, the reconstruction phase
must assign a cluster to these nodes, resulting in solution depicted
in Fig. 2c, where a new cluster has been added in order to increase
modularity.

4. Computational experiments

This section is devoted to provide a complete analysis of the
computational experiments performed to evaluate the results ob-
tained by the proposed MSIG algorithm. All the algorithms have
been developed in Java SE 8 and they have been tested in an Intel
Core i7 CPU 920 (2.67 GHz) and 8 GB RAM.

The set of instances considered have been derived from two of
the most used social networks: Facebook and Twitter. Specifically,
we have considered 10 ego networks from Facebook and 973 from
Twitter, with the number of nodes ranging from 10 to 1045 and
the number of edges from 5 to 60050. All the datasets have been
obtained from the Stanford Network Analysis Project,1 specifically
from the Facebook and Twitter Ego datasets [37]. Additionally, we
have made publicly available2 the instance files used in this work

1 http://snap.stanford.edu/snappy/index.html.
2 http://www.optsicom.es/sna/sna_instances.zip.

and the individual results obtained for each instance3 in order to
ease further comparisons.

The computational experiments are divided into two different
stages: preliminary and final experimentation. The former is de-
voted to perform a deeper analysis on the configuration of the
parameters of the MSIG algorithm, while the latter is intended
to compare the best configuration of IG with the best previous
method found in the state of the art. Specifically, the results are
compared with the ones obtained by the Ant Colony Optimization
(ACO) algorithm presented in [6].

4.1. Preliminary experimentation

Preliminary experiments are performed over a subset of 84 out
of 983 representative instances in order to avoid overtraining in
the MSIG algorithm. The first experiment is intended to select the
best β parameter for the algorithm (i.e., the percentage of nodes
removed from the solution in the destruction phase). Specifically,
we compare the results of the constructive procedure (GCP) iso-
lated with the results obtained by executing the MSIG with β =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. We have generated 100
different solutions for both, the constructive and MSIG algorithm.
Considering that MSIG requires more computing time, we execute
10 independent iterations. Fig. 3 depicts the results in terms of the
deviation (in percentage) with respect to the best solution found in
the experiment, for each instance, Dev(%), and the number of times
that each method matches the best solution in the experiment,
for each instance, #Best. Regarding the computing time, GCP is
the fastest method, requiring less than a second on average per
instance, while all the MSIG variants require about 15 s on average
per instance.

The variant with the smallest deviation (blue bars) and the
largest number of best solutions reached (orange line) isMSIGwith
β = 0.5, followed by β = 0.4 with a smaller number of best
solutions found and β = 0.6 with slightly larger deviation. It is
important to remark that these results are in line with the idea of
selecting small values for β in Iterated Greedy. The rationale be-
hind this is that selecting large β valueswill results in a completely
different solution and, in that case, it is recommended to construct
a new solution from scratch.

4.2. Ground truth

The instances used in this work are available together with the
ground truth of the communities given by the ego user (i.e., the
central user of the ego network). It is important to remark that
these communities have been defined by the user, without taking
into account any objectivemetric and they are based on the subjec-
tive judgment of the ego user (close friends, coworkers, etc.). How-
ever, this ground truth may not be the best partition when con-
sidering objective metrics based on the network structure, since
the ego user does not have a global perspective of the network
when defining the communities. In order to test this hypothesis,
we compare the coverage and conductance of the communities
given by the ground truth with those obtained by the best variant
of the proposed algorithm,MSIG(0.5), considering the complete set
of instances. Table 1 presents the results derived from comparing
the user partition (Ego user) with the MSIG(0.5).

Analyzing the results over Facebook networks, MSIG obtains
consistently better results in both metrics. Attending to these re-
sults, we observe that the perception that an ego user has about the
communities depends on the specific social network. In particular,
the modularity values are close in Facebook while they are consid-
erably different in Twitter. This result can be partially explained by

3 http://www.optsicom.es/sna/results.xlsx.

http://snap.stanford.edu/snappy/index.html
http://www.optsicom.es/sna/sna%5Finstances.zip
http://www.optsicom.es/sna/results.xlsx

J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791 789

Fig. 3. Comparison among GCP and MSIG with different β values (between parenthesis).

Table 1
Comparison of the modularity obtained with the best MSIG variant versus the
ground truth given by the ego user.

Metric Facebook Twitter

Ego user Coverage 0.5986 0.6028
Conductance 0.6744 0.5416

MSIG(0.5) Coverage 0.9431 0.8062
Conductance 0.2802 0.5284

the fact that, on the one hand, Facebook is a social network often
used to share media information with personal friends. Then, the
ego user usually knows the complete network structure. On the
other hand, Twitter is intended to share short messages with a
larger audience in which the ego user does not necessarily know
all the people. Furthermore, in order to be Facebook friends is
strictly necessary that both users accept a friendship request, while
in Twitter a user can follow or be followed by another without
permissions. Therefore, it is easier to know people which we are
connected with in Facebook than in Twitter. Then, it eases the
division into communities by the ego user.

4.3. Final experiment

The last experiment is devoted to compare the results obtained
by MSIG with the best previous method found in the state of the
art [6], which is an Ant Colony Optimization (ACO) algorithm. It is
important to remark that this algorithm is designed for optimizing
the Omega Index value, which can be used when the ground truth
of the network is known a priori. However, the objective of the al-
gorithmproposed in thiswork is to provide a community detection
which optimizes the modularity value. It is worth mentioning that
following this approach, we provide two objective metrics useful
when the ground truth is not available.

Each algorithm have been evaluated considering the conduc-
tance and coverage metrics described in Section 2 in order to
evaluate the quality of the community detectionwith ametric that
has not been optimized, proving the robustness of the algorithm.

We have included three variants of the ACO algorithm: ACO-
T, which uses the topological information of the network; ACO-P,
which is focused on the profile information; and ACO-M, which
combines both topological and profile information. Table 2 shows,
for each method, the corresponding metric value (coverage and
conductance) averaged over the instances in each benchmark
(Facebook and Twitter). In order to show the robustness of the
method, we also report the standard deviation of each metric.

Table 2
Comparison of the modularity obtained by the best MSIG variant versus the best
previous method (ACO) with topological (ACO-T), profile (ACO-P), and combined
(ACO-M) information used.

Facebook

Coverage Conductance

ACO-M 0.5178± 0.1603 0.8821± 0.1179
ACO-P 0.5091± 0.1247 0.8919± 0.1194
ACO-T 0.4978± 0.1580 0.8861± 0.1129
MSIG(0.5) 0.9431± 0.0343 0.1938± 0.1088

Twitter

Coverage Conductance

ACO-M 0.2182± 0.1682 0.9440± 0.0653
ACO-P 0.2216± 0.1743 0.9440± 0.0648
ACO-T 0.2190± 0.1677 0.9445± 0.0651
MSIG(0.5) 0.7198± 0.1226 0.5284± 0.2673

Considering the ACO variants, there are only slight differ-
ences in the average objective function values obtained with each
method. Specifically, ACO-M is the best ACO variant in the two
metrics when considering the Facebook dataset, while ACO-P is
the best variant for the Twitter benchmark in all the metrics.
However, the proposed MSIG algorithm clearly outperforms every
ACO variantwhen considering the twometrics. Again, these results
confirm the hypothesis that it easier to find partitions with larger
modularity values in Facebook that in Twitter.

With the aim of providing a fair comparison among the ana-
lyzed algorithms, the Iterated Greedy algorithm has been executed
during a similar number of iterations than the previous ones.
Specifically, ACO variants, as stated in the original work [6], were
configured with 10 ants, 50 steps and 10 repetitions, resulting
in 5000 iterations. Iterated Greedy performs 100 constructions,
applying the combination of destruction and reconstruction 10
times for each constructed solution, resulting in 1000 iterations.

The computing time required by the MSIG algorithm is, on
average, 15 s per instance, resulting in not only a state-of-the-art
method for detecting communities in terms of performance, but
also in terms of required computing time. Therefore, our proposed
method can be used in real-time applications.

5. Conclusions

This paper presented a Multi-start Iterated Greedy algorithm
for detecting communities in social networks. In particular, it is
focused on the optimization of the modularity value, which is a

790 J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791

metric traditionally used in unsupervised community detection,
where the optimal solution is not known a priori. TheMSIGmethod
is conformed by a new procedure for generating initial solutions
that follows a greedy criterion maximizing the modularity value.
Additionally, new destructive and constructive phases for escaping
from local optima are proposed to increase the diversification
component of the algorithm, resulting in awider exploration of the
search space.

The results obtained were compared with the best previous
methods found in the literature, emerging MSIG as the best per-
forming procedure. Furthermore, we highlighted the problems
derived from getting a ground truth directly from the user, with-
out considering any objective metrics. Specifically, in those social
networks where the ego user has not the complete information,
subjective judgments usually drive to confusing partitions.

There are several avenues to continue this research. In particu-
lar, the study of the combination of two or more objective metrics
in order to find even better partitions. Finally, this approach could
be easily adapted to include specific information of the social
network by assigning weight to the nodes and/or edges of the ego
network.

Acknowledgments

This work has been partially founded by Ministerio de
Economía y Competitividad, Spain with grants refs. TIN2015-
65460-C2-2-P and S2013/ICE-2894, respectively.

References

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large
social networks: Membership, growth, and evolution, in: Proceedings of the
12thACMSIGKDD International Conference onKnowledgeDiscovery andData
Mining, in: KDD ’06, ACM, New York, NY, USA, 2006, pp. 44–54.

[2] F.Y. Wang, D. Zeng, J.A. Hendler, Q. Zhang, Z. Feng, Y. Gao, H. Wang, G. Lai, A
study of the human flesh search engine: Crowd-powered expansion of online
knowledge, Computer 43 (8) (2010) 45–53.

[3] M. Bruhn, V. Schoenmueller, D. Schäfer, Are social media replacing traditional
media in terms of brand equity creation? Manag. Res. Rev. 35 (9) (2012) 770–
790.

[4] W. Chen, C. Wang, Y. Wang, Scalable influence maximization for prevalent
viralmarketing in large-scale social networks, in: Proceedings of the 16thACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
in: KDD ’10, ACM, New York, NY, USA, 2010, pp. 1029–1038.

[5] L.C. Freeman, Centrality in social networks conceptual clarification, Soc. Net-
works 1 (3) (1978) 215–239.

[6] A. Gonzalez Pardo, J.J. Jung, D. Camacho, ACO-based clustering for EgoNetwork
analysis, Future Gener. Comput. Syst. 66 (Supplement C) (2017) 160–170.

[7] M. Hong, J.J. Jung, D. Camacho, GRSAT: A novel method on group recommen-
dation by social affinity and trustworthiness, Cybern. Syst. 48 (3) (2017) 140–
161.

[8] R. Lara-Cabrera, A. González-Pardo, K. Benouaret, N. Faci, D. Benslimane, D.
Camacho, Measuring the radicalisation risk in social networks, IEEE Access 5
(2017) 10892–10900.

[9] T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users: Real-time
event detection by social sensors, in: Proceedings of the 19th International
Conference on World Wide Web, in: WWW ’10, ACM, New York, NY, USA,
2010, pp. 851–860.

[10] E. Boros, P.L. Hammer, Pseudo-Boolean optimization, Discrete Appl. Math.
123 (1) (2002) 155–225.

[11] Y.Matsuo, J.Mori,M.Hamasaki, T. Nishimura, H. Takeda, K. Hasida,M. Ishizuka,
POLYPHONET: An advanced social network extraction system from the Web,
Web Semant. Sci. Serv. Agents World Wide Web 5 (4) (2007) 262–278.

[12] H. Yu, P.B. Gibbons, M. Kaminsky, F. Xiao, Sybillimit: A near-optimal social
network defense against sybil attacks, in: 2008 IEEE Symposium on Security
and Privacy (Sp 2008), 2008, pp. 3–17.

[13] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of com-
munities in large networks, J. Stat.Mech. Theory Exp. 2008 (10) (2008) P10008.

[14] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect
community structures in large-scale networks, Phys. Rev. E 76 (3) (2007)
036106.

[15] G. Tibély, J. Kertész, On the equivalence of the label propagation method of
community detection and a Potts model approach, Physica A 387 (19) (2008)
4982–4984.

[16] A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative
analysis, Phys. Rev. E 80 (5) (2009) 056117.

[17] M. Rosvall, C.T. Bergstrom,Maps of randomwalks on complex networks reveal
community structure, Proc. Nat. Acad. Sci. 105 (4) (2008) 1118–1123.

[18] M. Naldi, S. Salcedo-Sanz, L. Carro-Calvo, L. Laura, A. Portilla-Figueras, G.F.
Italiano, A traffic-based evolutionary algorithm for network clustering, Appl.
Soft Comput. 13 (11) (2013) 4303–4319.

[19] B.A. Attea, E.A. Khalil, A new evolutionary based routing protocol for clustered
heterogeneous wireless sensor networks, Appl. Soft Comput. 12 (7) (2012)
1950–1957.

[20] J. Xie, S. Kelley, B.K. Szymanski, Overlapping community detection in net-
works: The state-of-the-art and comparative study, ACM Comput. Surv. 45 (4)
(2013) 1–35.

[21] R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem, Eur. J. Oper. Res. 177 (3) (2007)
2033–2049.

[22] S. Emmons, S. Kobourov, M. Gallant, K. Börner, Analysis of network cluster-
ing algorithms and cluster quality metrics at scale, PloS One 11 (7) (2016)
e0159161.

[23] S. Kobourov, S. Pupyrev, P. Simonetto, Visualizing graphs as maps with con-
tiguous regions, in: N. Elmqvist, M. Hlawitschka, J. Kennedy (Eds.), EuroVis -
Short Papers, The Eurographics Association, 2014.

[24] H. Almeida, D. Guedes, W. Meira, M.J. Zaki, Is there a best quality metric for
graph clusters? in: D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis
(Eds.), Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceed-
ings, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 44–59.

[25] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E 69 (2) (2004) 026113.

[26] M.E.J. Newman, Fast algorithm for detecting community structure in networks,
Phys. Rev. E 69 (6) (2004) 066133.

[27] V. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communi-
ties in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008) P10008.

[28] L. Waltman, N. van Eck, A smart local moving algorithm for large-scale
modularity-based community detection, Eur. Phys. J. B 86 (11) (2013) 471.

[29] S. Fortunato, M. Barthélemy, Resolution limit in community detection, Proc.
Natl. Acad. Sci. 104 (1) (2007) 36–41.

[30] Z. Yang, R. Algesheimer, C.J. Tessone, A comparative analysis of community
detection algorithms on artificial networks, Sci. Rep. 6 (2016) 30750 EP–.

[31] R. Martí, P. Pardalos, M. Resende (Eds.), Handbook of Heuristics, Springer
International Publishing, 2018.

[32] J. Sánchez Oro, A. Martínez Gavara, M. Laguna, R. Martí, A. Duarte, Variable
neighborhood scatter search for the incremental graph drawing problem,
Comput. Optim. Appl. (2017).

[33] B. Menéndez, E.G. Pardo, J. Sánchez-Oro, A. Duarte, Parallel variable neighbor-
hood search for the minmax order batching problem, Int. Trans. Oper. Res.
24 (3) (2017) 635–662.

[34] R. Ruiz, T. Stützle, An Iterated Greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness objec-
tives, European J. Oper. Res. 187 (3) (2008) 1143–1159.

[35] J. Dubois Lacoste, F. Pagnozzi, T. Stützle, An iterated greedy algorithm with
optimization of partial solutions for the makespan permutation flowshop
problem, Comput. Oper. Res. 81 (Supplement C) (2017) 160–166.

[36] Z. Yuan, A. Fügenschuh, H. Homfeld, P. Balaprakash, T. Stützle, M. Schoch,
Iterated greedy algorithms for a real-world cyclic train scheduling problem,
in: M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, A. Roli, M. Sampels
(Eds.), HybridMetaheuristics: 5th InternationalWorkshop, HM 2008, MáLaga,
Spain, October 8-9, 2008. Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 102–116.

[37] J. McAuley, J. Leskovec, Learning to discover social circles in ego networks,
in: Proceedings of the 25th International Conference on Neural Information
Processing Systems, in: NIPS’12, Curran Associates Inc., USA, 2012, pp. 539–
547.

http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb1
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb2
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb2
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb2
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb2
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb2
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb3
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb3
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb3
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb3
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb3
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb4
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb5
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb5
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb5
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb6
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb6
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb6
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb7
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb7
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb7
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb7
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb7
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb8
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb8
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb8
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb8
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb8
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb9
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb10
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb10
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb10
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb11
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb11
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb11
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb11
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb11
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb12
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb12
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb12
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb12
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb12
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb13
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb13
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb13
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb14
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb14
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb14
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb14
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb14
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb15
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb15
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb15
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb15
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb15
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb16
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb16
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb16
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb17
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb17
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb17
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb18
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb18
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb18
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb18
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb18
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb19
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb19
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb19
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb19
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb19
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb20
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb20
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb20
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb20
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb20
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb21
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb21
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb21
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb21
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb21
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb22
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb22
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb22
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb22
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb22
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb23
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb23
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb23
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb23
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb23
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb24
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb25
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb25
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb25
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb26
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb26
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb26
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb27
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb27
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb27
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb28
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb28
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb28
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb29
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb29
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb29
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb30
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb30
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb30
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb31
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb31
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb31
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb32
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb32
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb32
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb32
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb32
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb33
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb33
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb33
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb33
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb33
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb34
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb34
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb34
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb34
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb34
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb35
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb35
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb35
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb35
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb35
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb36
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37
http://refhub.elsevier.com/S0167-739X(17)32393-2/sb37

J. Sánchez-Oro, A. Duarte / Future Generation Computer Systems 88 (2018) 785–791 791

Jesús Sánchez-Oro was born in Madrid (Spain) on De-
cember 31, 1987. He holds a degree in Computer Science
from the Universidad Rey Juan Carlos (2010), his Mas-
ter’s degree in Computer Vision from the Universidad Rey
Juan Carlos in 2011, and his Ph.D. in Computer Science in
2016 from the Universidad Rey Juan Carlos. He is visiting
professor at the Computer Science Department, and he
is a member of the Group for Research on Algorithms
For Optimization (GRAFO). His main research interests
focus on Artificial Intelligence and Operations Research,
specially in heuristics and metaheuristics for solving hard

optimization problems.

Abraham Duarte was born in Hervás (Cáceres, Spain)
on October 24, 1975. He received his M.S. degree in
Physics Sciences (Electronic Speciality) from the Universi-
dad Complutense de Madrid (UCM) in 1998 and his Ph.D.
in Computer Science in 2004 from the Universidad Rey
Juan Carlos (URJC). He is Associate Professor at the Com-
puter ScienceDepartmentwhere is the leader of theGroup
for Research on Algorithms For Optimization (GRAFO).
His main research interests focus on the interface among
Computer Science, Artificial Intelligence and Operations
Research. Most of his publications deal with the develop-

ment of metaheuristics procedures for optimization problems.

	Iterated Greedy algorithm for performing community detection in social networks
	Introduction
	Problem definition
	Iterated greedy
	Constructive procedure
	Destruction and reconstruction phase

	Computational experiments
	Preliminary experimentation
	Ground truth
	Final experiment

	Conclusions
	Acknowledgments
	References

