
Variable neighborhood descent for the
incremental graph drawing

J. Sánchez-Oro a,1 A. Mart́ınez-Gavara b,2 M. Laguna c,3

A. Duarte a,4 R. Mart́ı b

a Department of Computer Science, Universidad Rey Juan Carlos,
Móstoles, Spain

b Departamento de Estad́ıstica e Investigación Operativa,
Universidad de Valencia, Madrid, Spain

c Leeds School of Business, University of Colorado at Boulder, USA

Abstract

Graphs are used to represent reality in several areas of knowledge. Drawings of
graphs have many applications, from project scheduling to software diagrams. The
main quality desired for drawings of graphs is readability, and crossing reduction is
a fundamental aesthetic criterion for a good representation of a graph. In this paper
we target the edge crossing reduction in the context of incremental graph drawing,
in which we want to preserve the layout of a graph over successive drawings. We
propose a hybrid method based on the GRASP (Greedy Randomized Adaptive
Search Procedure) and VND (Variable Neighborhood Descent) methodologies and
compare it with previous methods via simulation.

Keywords: Incremental graph drawing, variable neighborhood descent,
metaheuristics

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 58 (2017) 183–190

1571-0653/© 2017 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2017.03.024

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2017.03.024
http://dx.doi.org/10.1016/j.endm.2017.03.024
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2017.03.024&domain=pdf

1 Introduction

Most of the information systems nowadays are commonly represented by a
drawing, which makes the system easier to interpret and understand. Graphs
are the basic modeling unit in a wide variety of areas, like project and pro-
duction scheduling, line balancing, business plans or software visualization.
For this reason, graph drawing has become an important research area, with
a large number of publications related. We refer the reader to [2] for a thor-
oughly survey on graph drawing. The selection of an objective measure of the
quality of a graph is a controversial subject. However, the number of cross-
ing edges is a widely admitted criterion for evaluating the quality of a draw.
Specifically, the fewer of crossings, the better the drawing is [1]. The problem
of minimizing the number of crossings is NP-complete [5].

This paper focuses on finding the best drawing for hierarchical directed
acyclic graphs, HDAG, which are usually known as hierarchical graphs, layered
digraphs, or simply hierarchies. In order to represent a HDAG, we first need
to draw the vertices in equally spaced vertical lines (layers), in such a way
that every directed edge goes in the same direction. With this arrangement of
vertices, arc crossing minimization consists of finding the appropriate ordering
of the vertices in each layer. Fig. 1 shows a drawing of a HDAG with 8 vertices
and 10 edges. The HDAG is split into three layers (highlighted in gray). The
number of crossings between the first and second layer is 1, in the pair of
edges (3, 8) − (7, 2), while the number of crossings between the second and
third layer is 3, in the pairs (2, 1) − (8, 6), (2, 5) − (8, 6), and (2, 5) − (8, 1),
respectively.

2

8

3

7

4

6

1

5

Fig. 1. Example of a drawing of a HDAG with 8 vertices and 10 edges.

Considering hierarchical digraphs is not a loss of generality since there are

1 Email: jesus.sanchezoro@urjc.es
2 Email: gavara@uv.es
3 Email: laguna@colorado.edu
4 Email: abraham.duarte@urjc.es

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190184

several well-known algorithms to convert any directed acyclic graph (DAG)
into a HDAG. The simplest method consist of setting all the vertices in layers,
considering that all the edges present the same direction (from a lower to a
higher layer). The next step consists of removing those edges that connect
vertices located in non consecutive layers. This removal is performed by adding
artificial vertices in each layer traversed by the edge. For example, if an edge
connects a vertex located in layer 1 with a vertex located in layer 4, then two
new vertices are included, one in layer 2 and another one in layer 3, creating
a path from vertex in layer 1 to vertex in layer 4.

Incremental graph drawing constructions are motivated by the need to
support the interactive updates performed by the user. In this situation, it is
helpful to preserve a “mental picture” of the layout of the graph over successive
drawings. It can be distracting to make a slight modification on a drawing,
perform the graph drawing algorithm, and have the resulting drawing appear
very different from the previous one. In this paper, we consider the problem
of minimizing the number of arc crossings when new vertices and edges are
added to the hierarchical graph, while preserving the relative ordering in each
layer among the original vertices.

2 Previous methods

Sugiyama [12] proposed the so-called barycentric method for arc crossing min-
imization in hierarchical digraphs. This is probably the most established
method for crossing reduction. In their approach, a series of 2-layer subprob-
lems are solved starting from an initial permutation for the first layer (L1).
The procedure moves from “left” to “right” until the subproblem involves the
last two layers, and then from “right” to “left” until the first two layers are
once again considered. Each subproblem i in the left-to-right sweep consists
of finding the “best” permutation for layer Li considering that the permuta-
tion of layer Li−1 is fixed. Similarly, each subproblem i in the right-to-left
sweep consists of finding the “best” permutation for layer Li considering that
the permutation of layer Li+1 is fixed. Each subproblem is solved using the
barycentric method originally designed for the 2-layer problem (also known
as the relative degree algorithm or averaging). In this method, the position
of each vertex v in layer i is given by the arithmetic mean of the positions of
the vertices in layer Li+1 (in a left-to-right sweep) that are adjacent to vertex
v. Similarly, the average position of the adjacent vertices in layer Li−1 deter-
mines the barycenter of vertex v in a right-to-left sweep. The original order is
preserved when two vertices have the same barycenter, during the first phase
of the procedure. A second phase is used to switch the order of vertices with

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190 185

equal barycenters. With the orderings determined during the second phase,
the first phase is then re-applied.

After the seminal work by Sugiyama, many different algorithms have been
proposed to minimize the number of crossings. Since this is an NP-hard prob-
lem with practical applications, we can find both exact [7] and metaheuristic
algorithms [8,9] to solve it. In spite of its practical significance, very little
attention has been paid to the incremental variant of the graph drawing prob-
lem. We have only identified one previous contribution [10] which was limited
to the case with only two layers.

Mart́ı and Estruch [10] proposed both exact and heuristic approaches for
the incremental two layer problem. The exact algorithm is a Branch & Bound
method, while the heuristic one is based on the GRASP methodology, in which
they proposed a constructive procedure based on locating the vertices close
to their barycenter. As it is customary in GRASP, the local search post-
processing is intended to improve the results of the constructive phase by
moving each vertex to a position close to its barycenter. As far as we know,
this method is considered the state of the art in terms of the incremental graph
drawing problem. We will therefore compare the results of our proposal with
those obtained with this method.

3 Variable Neighborhood Descent

Variable Neighborhood Search (VNS) is a metaheuristic for solving optimiza-
tion problems based on systematic changes of neighborhood structures. In
recent years, a large variety of VNS strategies have been proposed: Basic
VNS, Reduced VNS, Variable Neighborhood Descent, Skewed VNS, and Gen-
eral VNS, among others. We refer the reader to [6] for a complete survey on
VNS.

This work is focused on Variable Neighborhood Descent, which typically
starts from a randomly generated solution, or using a heuristic constructive
procedure, which may help the method by starting the search exploring a
promising area of the solution space. Previous proposals have shown that
using an initial solution of relatively high quality leads the VND algorithm to
better results [3,11]. In line with that, we propose a constructive procedure
to generate the initial solutions with good quality to launch the VND search.
In particular we hybridize GRASP, which generates good and disperse initial
solutions, with VND, which improves the constructed solutions searching on
different neighborhoods.

Our constructive method considers that all the original vertices V are

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190186

initially included in the incremental drawing ID following the same order as
in the original drawing D. Then, the candidate vertices to be inserted in ID is
CL ← IV \V . The method evaluates the degree of each vertex with respect to
those vertices already included in ID (initially V), constructing the restricted
candidate list (RCL) with those vertices with a degree larger than or equal
to a predefined threshold. The threshold is computed as gmax − α · (gmax −
gmin), where gmax and gmin are the highest and lowest degree found in the
candidate list, respectively. This constructive method is based on the GRASP
methodology [4], where α is a parameter of the method which determines its
level of greedyness/randomness. Specifically, if α = 0, the method is a pure
random method, while setting α = 1 makes it totally greedy.

After generating a solution using the aforementioned constructive proce-
dure, it is improved with the VND method, which is presented in Algorithm 1.
The method starts from the initial solution ID, by exploring the first neighbor-
hood (step 3), identifying its best solution ID� (step 4), which eventually, can
improve the current solution ID. This is tested in steps 5 to 10 where if ID�

does not improve upon ID, the method resorts to the next neighborhood by
incrementing the value of k. Otherwise, the method updates ID and restarts
the search from the first neighborhood (step 7). The algorithm finishes when
none of the neighborhoods contain a solution better than the current one.

Algorithm 1 VND(ID , kmax)
1: k ← 1
2: repeat
3: Explore the neighborhood Nk(ID)
4: Let ID� be the best solution in Nk(ID)
5: if Crossings(ID�) < Crossings(ID) then
6: ID ← ID�

7: k ← 1
8: else
9: k ← k + 1

10: end if
11: until k = kmax

We have considered five neighborhood structures, all of them based on
insert a given node in a different position in the same layer. Given a vertex v
in position p of layer Li, the insertion move Insert(v, s) is defined as inserting
vertex v in position p+ s. Note that s can take positive and negative values.
Specifically, the move Insert(v, s) can only be applied if 1 ≤ p + s ≤ |Li|.
Therefore, when the vertex v is the first one (p = 1), or the last one (p = |Li|)
in the layer, only one of these two moves can be considered. Neighborhood Nk

contains the two solutions that can be obtained by applying either Insert(v, k)

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190 187

or Insert(v,−k), or both if possible. As shown in Algorithm 1, when Nk does
not include a solution better than the current one, the method considers the
solutions in Nk+1, until Nkmax is reached.

Both the constructive and VND methods are embedded in a Greedy Ran-
domized Adaptive Search Procedure (GRASP) algorithm [4]. GRASP is a
multi-start methodology where each iteration consists of two stages. The first
one is a greedy, randomized and adaptive construction of a solution. The
second stage applies an improvement method to guide the constructed solu-
tion to a local optimum. These two steps are repeated until a termination
criterion is met. The construction phase is performed using the constructive
procedure described above while the improvement stage is performed with the
VND algorithm. In this work we have selected the number of iterations as a
termination criterion, totalizing 100 constructions and VND improvements.

4 Experimental results

This section presents the experimental analysis of the proposed algorithms.
All the algorithms have been coded in Java 8, and the experiments have been
performed in an Intel Core i7 920 (2.67 GHz) with 8 GB RAM. We have
generated a set of instances based on the method proposed in [8], using 2,
6, 13, and 20 as the number of layers, and varying the graph density in the
range {6.5%, 17.5%, 30%}. The vertices of these original instances have been
set applying the barycenter algorithm until no reduction on the number of
crossings is achieved. After that, a set of new vertices and edges are added,
obtaining the incremental graph, which conforms the complete instance to be
tested with the proposed algorithm. Specifically, the number of vertices and
edges added to the original graph is computed as a 20% of the vertices and
edges in the original graph respectively. In a similar way we created instances
incremented in a 60%.

In order to generate diverse instances, we randomly generated the number
of vertices in each layer in the range [5, 30]. An instance has been generated for
each possible parameter combination (number of layers, density, percentage
of new vertices and edges), totalizing a set of 24 instances. Table 1 shows the
results of the proposed algorithm compared with the best previous method
found in the literature. As stated before, the best previous method (BestPrev
in the table) is a GRASP algorithm which consist of a constructive method and
a local search, both based in the barycenter algorithm. Following the authors
instructions, the previous algorithm has been executed for 100 iterations. In
the case of VND, we present the results when considering different values

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190188

for the maximum neighborhood explored, kmax (which is specified between
parenthesis in the name of the algorithm).

BestPrev VND(1) VND(2) VND(3) VND(4) VND(5)

Avg. Crossings 14101.13 12963.33 12668.50 12596.08 12546.71 12529.46

Time (s) 16.09 0.36 7.86 10.05 11.54 13.35

Dev (%) 58.47 8.65 1.43 0.69 0.20 0.00

#Best 0 1 4 7 9 24

Table 1
Comparison among the proposed method and the best previous state-of-the-art

method.

Table 1 reports, for each method, the average number of crossings ob-
tained, Avg. Crossings; the computing time in seconds, Time (s); the average
percentage deviation with respect to the best known value, Dev (%); and the
number of best solutions found, #Best. The results show the superiority of
the proposal, even when considering the smallest neighborhood, VND(1). As
expected, the computing time also increases when considering larger neigh-
borhoods, since they explore a larger region of the solution space. However,
even when considering the slowest method, VND(5), the associated computing
time is reasonably small. The best results in terms of quality are achieved by
VND(5).

We have additionally performed non-parametric statistical test in order to
confirm the conclusions above. Specifically, we have performed the Friedman
test for k samples, resulting in a p-value lower than 0.0001, which supports the
comments above. Finally, we have performed the Wilcoxon sign test between
the best presented method, VND(5), and the best previous method, BestPrev.
The resulting p-value lower than 0.0001 confirms that there exist statistical
differences between the results obtained with both methods.

5 Conclusions

In this work we have tackled the Incremental Graph Drawing Problem, which
seeks to reduce the number of crossings due to new edges added to a pre-
viously drawn graph. We have proposed a Variable Neighborhood Descent
algorithm, combined with the GRASP methodology to obtain high quality
solutions in small computing times. Specifically, we have proposed a con-
structive method to generate initial solutions of a relatively high quality, as

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190 189

well as five neighborhood structures embedded in the VND method. Experi-
mental results, supported with statistical tests, have shown that the proposed
algorithm outperforms the best previous method.

Acknowledgments

This work has been partially founded by Ministerio de Economa y Compet-
itividad with grants ref. TIN2015-65460-C2-1-P and TIN2015-65460-C2-2-P
(MINECO / FEDER) and by Comunidad Autnoma de Madrid with grant ref.
S2013ICE-2894.

References

[1] Carpano, M. J., Automatic Display of Hierarchized Graphs for Computer-Aided
Decision Analysis, IEEE Transactions on Systems, Man, and Cybernetics 10
(1980), pp. 705–715.

[2] Di Battista, G., P. Eades, R. Tamassia and I. G. Tollis, “Graph Drawing:
Algorithms for the Visualization of Graphs,” Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998, 1st edition.

[3] Duarte, A., J. J. Pantrigo, E. G. Pardo and J. Sánchez Oro, Parallel variable
neighbourhood search strategies for the cutwidth minimization problem, IMA
Journal of Management Mathematics 27 (2016), pp. 55–73.

[4] Feo, T. A., M. G. C. Resende and S. H. Smith, A Greedy Randomized
Adaptive Search Procedure for Maximum Independent Set, Operations Research
42 (1994), pp. 860–878.

[5] Garey, M. R. and D. S. Johnson, Crossing Number is NP-Complete, SIAM
Journal on Algebraic Discrete Methods 4 (1983), pp. 312–316.

[6] Hansen, P., N. Mladenović and J. A. Moreno Pérez, Variable neighbourhood
search: methods and applications, 4OR 6 (2008), pp. 319–360.

[7] Jünger, M., E. K. Lee, P. Mutzel and T. Odenthal, A polyhedral approach to
the multi-layer crossing minimization problem, in: G. Di Battista, editor, Proc.
of 5th International Symposium on Graph Drawing (1997), pp. 13–24.

[8] Laguna, M., R. Mart́ı and V. Valls, Arc crossing minimization in hierarchical
digraphs with tabu search, Computers & Operations Research 24 (1997),
pp. 1175–1186.

[9] Mart́ı, R., A tabu search algorithm for the bipartite drawing problem, European
Journal of Operational Research 106 (1998), pp. 558–569.

[10] Mart́ı, R. and V. Estruch, Incremental bipartite drawing problem, Computers
& Operations Research 28 (2001), pp. 1287–1298.

[11] Sánchez Oro, J., N. Mladenović and A. Duarte, General Variable Neighborhood
Search for computing graph separators, Optimization Letters (2014), pp. 1–21.

[12] Sugiyama, K., S. Tagawa and M. Toda, Methods for Visual Understanding
of Hierarchical System Structures, IEEE Transactions on Systems, Man, and
Cybernetics 11 (1981), pp. 109–125.

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 58 (2017) 183–190190

	Introduction
	Previous methods
	Variable Neighborhood Descent
	Experimental results
	Conclusions
	References

