Optim Lett (2017) 11:1069-1089 @ CrossMark
DOI 10.1007/511590-014-0793-2

ORIGINAL PAPER

General Variable Neighborhood Search for computing
graph separators

Jesas Sanchez-Oro - Nenad Mladenovié -
Abraham Duarte

Received: 17 February 2014 / Accepted: 2 September 2014 / Published online: 18 September 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Computing graph separators in networks has a wide range of real-world
applications. For instance, in telecommunication networks, a separator determines
the capacity and brittleness of the network. In the field of graph algorithms, the
computation of balanced small-sized separators is very useful, especially for divide-
and-conquer algorithms. In bioinformatics and computational biology, separators
are required in grid graphs providing a simplified representation of proteins. This
papers presents a new heuristic algorithm based on the Variable Neighborhood Search
methodology for computing vertex separators. We compare our procedure with the
state-of-the-art methods. Computational results show that our procedure obtains the
optimum solution in all of the small and medium instances, and high-quality results
in large instances.

Keywords Combinatorial optimization - Metaheuristics - VNS - Graph separators

1 Introduction

Let us consider an undirected connected graph G = (V, E), where V represents the
set of vertices (|V| = n) and E represents the set of edges (|E| = m). Let ¢, be

J. Sanchez-Oro - A. Duarte (<)
Dpto. de Ciencias de la Computacién, Universidad Rey Juan Carlos, Méstoles, Spain
e-mail: abraham.duarte @urjc.es

J. Sanchez-Oro

e-mail: jesus.sanchezoro@urjc.es

N. Mladenovi¢
LAMIH, Université de Valenciennes, Valenciennes, France
e-mail: nenad.mladenovic @brunel.ac.uk

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-014-0793-z&domain=pdf

1070 J. Sanchez-Oro et al.

the cost associated with each vertex v € V and let b be a positive integer such that
1 < b < n. The Vertex Separator (VS) problem consists of dividing V into three
non-empty subsets A,B, and C, such that there is not any edge between A and B, the
size of both sets are bounded by b, and the sum of the weight of the vertices in C is
minimized. In mathematical terms:

min Y ¢,
veC
s.t.

max {|A, [B]} < b
AUBUC=YV
Yuec AAYveB, (u,v) ¢ E

Notice that this formulation is equivalent to the maximization of the sum of the
weight of the vertices in A and B (see for instance [21]). A solution x = {A, B, C}
verifies that AUBUC = V andANB = ANC = BNC = {J. A separator C of G is then
defined as a subset of vertices that divides G into two disconnected subgraphs. Graph
separators have appeared under different names in the literature, including bifurcators,
balanced cuts, or partitions.

Figure 1a shows an illustrative example of a graph G with 11 vertices and 14 edges.
Figure 1b depicts a possible solution, where sets A, B, and C are represented as dashed
ellipses, and the size constraint b is set to 4. If we assume, for the sake of simplicity,
that each vertex v € V has an associated cost of ¢, = 1, the value of this solution is 6
since there are six vertices in the separator (4, 6,7, 8,9, 11).

This optimization problem was originally introduced [2] in the context of Very Large
Scale Integration (VLSI) design. However, finding balanced separators of small size
have become an important task in several contexts. For instance, in telecommunication
networks, a separator determines the capacity and brittleness of the network [10, 12].
In the field of graph algorithms, the computation of balanced small-sized separators
is very useful, especially for divide-and-conquer algorithms (see [14] for a larger
description). In bioinformatics and computational biology, separators are required in
grid graphs providing a simplified representation of proteins [8].

Fig. 1 a Example of a graph and b a possible VS solution

@ Springer

General VNS for computing graph separators 1071

Finding the minimum vertex separator of a general graph is a NP-hard problem
[4]. Therefore, exact approaches only solve instances of moderate size. In particu-
lar, de Souza and Balas [21] proposed a mixed integer programming formulation,
and investigated the VS polytope and the convex hull of incidence vectors of vertex
separators. This theoretical study was afterwards included in a branch-and-cut pro-
cedure. Computational results showed that the exact method was able to optimally
solve instances with size ranging from 50 to 150 vertices in moderate computing time.
Biha and Meurs [3] introduced new classes of valid inequalities and a simple lower
bound. Computational experiments showed that the new exact procedure was able to
solve to optimality all the instances introduced in de Souza and Balas [21], marginally
reducing the computing time. Therefore, this method emerges as the state-of-the-art
regarding exact procedures.

Much of the previous work on the VS problem is based on designing approx-
imation algorithms. Lipton and Tarjan [13] showed that an n-vertex planar graph
has a balanced separator of size O(,/n). However, most of the papers approximate
the VS problem by solving the Edge Separator (ES) problem. In particular, these
approaches first design an approximation algorithm for the ES problem and then adapt
this algorithm to the VS problem. See for instance, Leighton and Rao [11] or Arora
et al. [1] with an approximation ratio of O (logn) and O (4/log n), respectively. This
approach works well on graphs with bounded degree. However, for general graphs,
the situation is completely different [6]. The best approximation algorithm for the
VS problem was introduced in Feige et al. [7]. In particular, they proposed linear
and semidefinite program relaxations, and rounding algorithms for these programs.
They obtained an O (y/log(opt)) approximation, where opt is the size of the optimal
separator.

Despite the fact that this problem has been the subject of extensive research, it
has been mainly ignored in the heuristic and metaheuristic community. As far as we
know, there is only one heuristic method introduced in de Souza and Balas [21]. In
particular, the unique objective of this method is to generate feasible solutions for the
branch-and-cut procedure. The method first solves the linear relaxation of the original
problem. Then, starting from the fractional solution, it constructs an integer solution by
sequentially rounding up (when it is possible) the fractional variables using a greedy
function. After each rounding up, some variables are rounded down to O to fulfill the
constraints of the problem.

In this paper, we propose a Variable Neighborhood Search (VNS) approach [22]
for the Vertex Separator problem. This metaheuristic has been successfully applied to
a large number of optimization problems. See for instance [5,15,19,20]. The rest of
the paper is organized as follows: the Variable Neighborhood Search metaheuristic is
described in Sect. 2, where we mainly focus on the General Variable Neighborhood
Search variant. Sections 3 and 4 describe, respectively, the two constructive proce-
dures designed for this problem as well as the three neighborhood structures. All the
VNS strategies are experimentally tested in Sect. 5. Finally, the paper ends with the
associated conclusions (Sect. 6).

@ Springer

1072 J. Sanchez-Oro et al.

2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic for solving optimization prob-
lems based on systematic changes of neighborhood structures, without guaranteeing
the optimality of the solution. In recent years, a large variety of VNS strategies have
been proposed. We can highlight the Variable Neighborhood Descent (VND), Reduced
VNS (RVNS), Basic VNS (BVNS), Skewed VNS (SVNS), General VNS (GVNS),
Variable Neighborhood Decomposition Search (VNDS) and Reactive VNS, among
others. We refer the reader to [9] for a complete review of this methodology and its
different variants. In this paper, we focus on the General VNS variant (GVNS). See
[17] for additional details. Algorithm 1 shows the pseudocode for GVNS.

Algorithm 1: GUNS(x, kpax s tmax)
1: repeat
2: k<1
3: repeat
4 x' < Shake(x, k)
5: x" < VND(x')
6: NeighborhoodChange(x, x”, k)
7
8
9:

until £k = kyqx
t < CpuTime()
until > t,,4x

The method has three input arguments: the initial solution (x), which can be a
random solution or a solution given by a constructive procedure, the maximum neigh-
borhood to be explored (k). and the maximum execution time allowed for the
algorithm (#,,4,). The algorithm mainly consists of executing three methods: shake,
VND, and neighborhood change. Firstly, given a solution x, the shake method gener-
ates a new solution, x’, in the k neighborhood of the current solution (step 4). Then,
it is is improved using a VND method, producing a new improved solution x” (step
5). Finally, the neighborhood change method decides whether the new solution x”
improves upon x or not (step 6). If so, the search returns to the first neighborhood
(k = 1) and updates the incumbent solution (x = x”); otherwise, the VNS meta-
heuristic tries to find a better solution in a different neighborhood (k = k 4+ 1). We
describe in the following sections the strategies designed for solving the VS problem
based on GVNS approach.

In this paper we propose two constructive procedures (C1 and C2) for the VS
problem (see Sect. 3). Specifically, C1 favors the diversification of the search (it is
mainly a random procedure) while C2 focuses on the intensification of the search (by
means of an elaborated heuristic approach). We additionally investigate three different
neighborhoods for this problem, as well as two local searches and two VND methods
derived from them (see Sect. 4).

We propose a standard shake procedure based on a random perturbation of the
incumbent solution since its main objective is to diversify the search. However, a
straightforward implementation of a shake procedure, Shake(x, k) could produce
infeasible solutions. In particular, all moves that consist of changing one vertex from
A or B to C always produces a (worse) feasible solution. On the other hand, a move

@ Springer

General VNS for computing graph separators 1073

from one vertex in C to A or B could produce (a better) infeasible solution. Therefore,
we propose to use in our shake procedure only moves from A or B to C since it is
expected that the improvement strategy produces a better solution in subsequent steps
of the VNS.

The function neighborhood change basically compares the new value of x” with the
incumbent value of x obtained in the neighborhood k. If an improvement is obtained,
k is reset to its original value (usually k = 1). Otherwise, the next neighborhood is
considered for a further exploration (usually kK = k + 1). In this paper, we investigate
the effect on the search of the so-called jump neighborhood search. In this case, the
corresponding function considers two additional parameters, ky,;, and k., that con-
trol the change of the neighborhood. Specifically, when the GVNS method performs
an improving move it sets k = k;,i, instead of k = 1. Similarly, in non-improving
moves it sets k = k + kyep instead of k = k + 1. We will investigate the effect of
these two parameters in Sect. 5.

3 Constructive procedures

VNS is a trajectory-based metaheuristic which mainly focuses on the improving of
an available solution. Most of the VNS implementations consider a random solution
as the starting point of the search. In this paper, we will investigate the effect of
constructing a solution at random or using a more elaborated heuristic procedure.
The first constructive method, C1, basically constructs, as fast as possible, a feasible
solution. In particular, C1 starts by initializing A = B = C = (. Then, a vertex is
randomly selected from V and inserted, if it is possible, in either A or B. Otherwise,
the vertex in inserted in C. This process is repeated until all vertices in V are explored,
returning a feasible random solution.

The other procedure, C2, receives as input parameter a tree-level structure [5],
which is a partition of a graph in different sets L1, Lo, ..., L;, called levels. The first
level contains only one vertex, which will be the root of the level structure. The rest
of levels L; contain all the vertices adjacent to any vertex in the previous level, L;_1,
that are not present in any L, with 1 < j < [— 1. The number of levels will vary
depending of the graph and the vertex selected as root of the level structure. This level
structure guarantees that vertices in alternative levels are not adjacent. If we would
ignore the size constraint (i.e., |A| < band |B| < b) eachlevel L; would be a separator
(C = L;) of the graph, where A would contain the vertices in levels i, with 1 < i < [,
B would contain vertices in levels j, with/ < j < ¢, and finally C would contain the
vertices in the selected level /. When considering the size constraint, obviously not all
levels would become a separator by itself since the number of vertices in either A or
B may exceed b, producing an infeasible solution. In order to overcome this situation,
C2 selects as the separator the level which divides the vertices of the graph into two
sets of roughly equal size. Algorithm 2 shows the pseudocode of this constructive
procedure.

The method starts by including all the levels of the tree in the separator (step
1). Additionally, two scanning variables (i and j) are set to the first and last levels
respectively (see steps 2 and 3). These two variables allow the method to traverse the

@ Springer

1074 J. Sanchez-Oro et al.

tree in top-down (i) or bottom-up (j) directions. We also include a boolean variable
(finished) which verifies if the solution under construction is finished or not.

The algorithm performs iterations (steps 5—17) until the top-down index reaches
the bottom-up index plus one (since we need to reserve at least one level for the
separator) or the boolean variable is set to true. The while-loop basically inserts
one complete level in A (symmetrically B) if its size is smaller than B (symmet-
rically A). In addition, it is checked whether the inclusion of the corresponding
complete level (in A or B) produces a feasible solution or not. If not, the boolean
variable is set to true (step 15) and the method finishes returning the constructed
solution.

Algorithm 2: C2(Ly, ..., L;)

—_

:{A,B,C}e[@,@, f) Li]
i=1

i=

20«1

3 j <t

4: finished <— FALSE

5: while (i < j) and not finished do

6: if (JA| <|B|)and (AU L; < b) then
7: A<« AUL;

8: C«—C\L;

9: i<—i+1

10: elseif (|B| < |A]) and (BU L; < D) then
11: B <~ BU Lj

12 C<«C\Lj

13 j<—j—1

14: else

15: finished <— TRUE

16: endif

17: end while
18: return {A, B, C}

Considering the graph presented in Fig. la (with [V| =11, |E| = 19, and b = 4),
a possible tree-level is shown in Fig. 2a, where vertex 1 is selected as the root of the
tree. Notice that each vertex in a given level is adjacent to other vertices in the same
level or in consecutive levels (but never in alternative levels). Again, ¢, has been set
to 1 for all vertices.

Figure 2b shows the the first step of the algorithm, where all the levels are ini-
tially placed at the separator while sets A and B remain empty. C2 starts by including
the first level (root) in set A (Fig. 2¢) and then the last level is inserted in set B
(Fig. 2d). Considering that |B| > |A| we continue inserting levels in A (Fig. 2e, f).
In this situation, we have two levels in C that cannot be inserted in either A or
in B (since the addition of a level would violate the size constraint). Therefore,
the constructive procedure finishes by returning the associated solution. Finally, if
the last level contains more than b vertices, the solution would be infeasible. Then,
C2 assigns as much vertices as possible to B, and the remaining ones are assigned
to C.

@ Springer

General VNS for computing graph separators 1075

Fig. 2 Example of a solution constructed with the greedy procedure C2

4 Local search methods

Solutions to the VS problem are typically represented as three different disjoint sets
(i.e., x = {A, B, C}). In this section we define three different neighborhood struc-
tures based on three different moves. In particular, the neighborhood N; contains the
neighbor solutions obtained by removing one vertex v from A or B and inserting it in
C. We denote this move as Move; and it is formally described as follows:

A <~ A\{v}
C <~ CU{v}
B <« B\{v}
C <~ CU{v}

ifveA
Move|(v,{A, B,C}) =
ifveB

Figure 3 illustrates this type of move. In particular, Fig. 3a shows the original graph
where the vertex involved in the move is highlighted (vertex 8). Figure 3b shows the

@ Springer

1076 J. Sanchez-Oro et al.

Fig. 3 Example of the Move;. a Original solution, b resulting solution

resulting solution. It is easy to see that this move always produces feasible solutions
(except the case of |A| = 1, since it is mandatory to have at least one element in A).

The second neighborhood N> contains all solutions produced by removing one
vertex from A (symmetrically from B) and inserting it in B (symmetrically in A). In
this case, we could obtain an infeasible solution. In order to overcome this situation,
if we move a vertex v € A to B we additionally move the adjacent vertices (in the
corresponding set) to the separator. This move, denoted as Move,, is mathematically
described as follows:

A < A\{v}\Na(v)

B <~ BU {v} ifveA
C < CUNy((v)

B < B\[v}\Ns(v)

A <~ AU {v} ifveB
C <~ CUN3p(v)

Moves (v, {A, B, C}) =

where N4 (v) (simmetrically Np(x)) contains the adjacent vertices of v contained in
A (ie., Nao(v) = {u € A : (u,v) € E}). Figure 4 illustrates this type of move.
Specifically, Fig. 4a shows the original graph where the vertex involved in the move
is highlighted (vertex 8). Figure 4b shows the resulting solution which is infeasible,
since there exists an edge between A and B (edge (5, 8)). In order to make this solution
feasible, the adjacents of vertex 8 in A (i.e., N4(8) = {5}) must be moved from A to
C. After that, the resulting solution is feasible (see Fig. 4c).

The third neighborhood N3 contains the set of solutions produced by removing one
vertex from the separator C and inserting it in either A or B. This move is denoted
as Moves. In order to maintain the feasibility of the solutions, we follow a similar
strategy than the one in N,. Therefore, we formally define this move as follows:

A <~ AU {v}
B < B\Np(v) if v is inserted in A
C <~ C\{v}UNp(v
Moves(v, {A, B,C}) = A<—A§§Vi(v) 5 (V)
B <~ B U {v} if v is inserted in B

C < C\{v}UN4(v)

@ Springer

General VNS for computing graph separators 1077

Fig. 4 Example of the Move,. a Original solution, b intermediate solution, ¢ resulting solution

Figure 5 shows an example of this type of move. The first figure highlights the
involved vertex in the move (vertex 9). Figure 5b shows the resulting intermediate
infeasible solution after removing vertex 9 from C and inserting it in A. In order to
ensure the feasibility of all solutions in N3 [see edge (9, 10) in Fig. 5b], all the vertices
adjacent to 9 in set B (i.e., Np(9) = {10}) must be included in the separator (Fig. 5¢).

The effectiveness of a move directly depends on how it changes the value of the
objective function. In particular, the VS problem is a minimization problem so any
move which reduces the number of vertices in the separator is an improving move.
Given a solution {A, B, C}, we can predict the change of the objective function if
we move vertex v with any of the three different moves defined above. In order to
simplify the MoveValue description, the vertex weights are assumed to be 1. This
prediction is denoted as MoveValue; (v, {A, B, C}) where the value of i indicates
the type of move performed (with 1 < i < 3). Considering Move;, the associated
move value is 1 since one vertex is removed from either A or B and inserted in
C. Therefore, it always deteriorates the value of the objective function in one unit
(MoveValuey(v,{A,B,C}) =1,Yv e V).

M ove, considers moves of vertices between A and B. Then, the variation produced
in the objective function is:

INA(U)| ifv e A

MoveValuey(v, {A, B,C}) = INg()| if v € B

This value depends on |[N4 (v)| or |[Np(v)|, which are always larger than or equal
to zero. Therefore, the new solution can only be equal or worse than the original one.

@ Springer

1078 J. Sanchez-Oro et al.

Fig. 5 Example of the Moves. a Original solution, b intermediate solution, ¢ resulting solution

Finally, M oves considers moves between the separator and A or B. In this situation,
the associated move value is defined as:

INg()| — 1ifveA

MoveValues(v, {A, B,C}) = INA()| — 1ifv e B

The quality of the new solution again depends on the value of |[N4(v)| or |[Np(v)|.
Therefore, the best possible move is able to improve the current solution by only one
unit (this implies that [N4(v)| = 0 or |[Np(v)| = 0).

Taking into account the definition of move values given above, we will not be
able to find better solutions by exploring Nj or N3 in isolation. For that reason, we
proposed two local search strategies LS and LS, based on a nested exploration
strategy of composed neighborhoods. In particular, LS considers N1 and N3, while
LS, considers N and N3. Algorithm 3 shows the pseudo-code of LS;. We do not
include the pseudocode of LS, since it is similar when Mowve is replaced by Move,
(step 6). The algorithm first identifies the set of candidate vertices, set S, to be moved
in Np (step 3). Then, the corresponding neighborhood is explored (steps 4—16), where
the vertex to be moved is selected at random (step 5). Notice that we have tested other
strategies to select vertices with insignificant influence in the outcomes. The move is
performed in step 6, producing a new solution {A’, B/, C'} in N;. After that, the local
search intensively explores N3 (steps 7—12), updating the best solution found (step 9).
If we find a better solution in N3, the incumbent solution is updated (step 14) and the
algorithm performs a new iteration. Otherwise, the local search tries to move the next
vertex in set S. The algorithm ends when no improvement is found.

@ Springer

General VNS for computing graph separators 1079

Algorithm 3: L.S1({A, B, C})

1: improved < FALSE
2: while not improved do
3: S« AUB

4: while not improved and S # ¢ do

5: v <« Select(S)

6: {A/,B',C’} <~ Movey (v, {A, B,C})

7: forallu € C’ do

8: if MoveValuez(u, {A’, B, C'}) < 0 then
9: {A",B',C"} < Move3(u,{A’,B’,C'})
10: improved <— TRUE

11: end if

12: end for

13: if improved then

14: {A,B.C} < {A", B, C'}

15: end if

16: end while
17: end while

We further investigate the exploration of the three neighborhoods by using a Variable
Neighborhood Descent (VND) procedure. As it was described above, given a solution,
it is not possible to find a better one in neither N1 nor N;. Therefore, the VND uses the
composed neighborhoods described above. VND obtains a local optimum with respect
to the first composed neighborhood. Then, instead of abandoning the search (as a local
search procedure), VND resorts to the other composed neighborhood searching for
an improvement. If we find an improving move, we again start exploring the first
composed neighborhood. At the end of the search VND ensures that the returned
solution is a local optimum with respect to both composed neighborhoods.

The process iterates over each neighborhood while improvements are found, per-
forming local search until a local optimum is found at each neighborhood. Only strictly
better solutions are accepted after each neighborhood search.

5 Computational experiments

This section reports the computational experiments that we performed for testing the
effectiveness and efficiency of the proposed VNS for solving the VS problem. The
algorithm was implemented in Java SE 7 and the experimentation was conducted on
an Intel Core 17 2600 CPU (3.4 GHz) and 4 GB RAM. The proposed algorithm was
tested over the current VS benchmark which consists on 104 instances (with size
ranging from 11 to 191) with known optimum. These instances are adapted [21] from
the well-known Matrix Market benchmark,! in order to produce difficult instances for
the VS problem. De Souza and Balas [21] confirm that the hardness of the instances
increases with the number of vertices and density. Additionally, a relevant parameter
that also affects to the difficulty is the value of the size constraint b. Specifically, they

1 http://math.nist.gov/MatrixMarket/.

@ Springer

http://math.nist.gov/MatrixMarket/

1080 J. Sanchez-Oro et al.

suggest to set this factor to 2n/3. A detailed description of these instances can be
found in de Souza and Balas [21].

The experiments are divided into two stages. In the first stage we use a subset of
25 representative instances of the current VS benchmark to test our algorithms and
tune their parameters (kgep and k;qx). In the second stage, once our best algorithm
is identified, we compare it with the best previous methods, proposed in [3,21]. Both
previous algorithms are exact methods, so we test the time needed by our approach to
obtain the optimum value and compared with the time needed by the exact methods.
Tables 1, 2, 3, 4, 5 and 6 report the average quality over all instances, Avg.; the CPU
time in seconds, Time (s); the average percent deviation with respect to the optimum
value, Dev. (%); and the number of optimum values found, #Opt.

In the first experiment we compare the performance of the proposed constructive
procedures (C1 and C2) described in Sect. 3. We generate one solution for each instance
of the preliminary testbed with each constructive procedure. The root for tree-based
structure for C2 is selected at random. Table 1 shows that C1 is able to obtain a lower
deviation than C2. However, C2 obtains one more optimum solution than C1. The
time needed by both methods to construct a solution is neglectable (less than 0.01 s).
We then select both constructive methods to analyze their performance coupled with
the local search methods, since it is not possible to identify the best algorithm.

In the next experiment we test the performance of the two constructive procedures
coupled with the local search methods proposed, LS1 and LS2 (see Sect. 4). For each
instance, we have constructed one solution and improved it with the corresponding
local search. Table 2 shows that C2 coupled with LS1 obtains the best average quality,
as well as largest number optimum solutions found. The time needed to improve a solu-

Table 1 Comparison of the

proposed constructive Ave. Time (s) Dev. (%) #Opt
procedures ci 26.88 0.00 72.02 8
C2 31.12 0.00 92.01 9
fgr?:;fctisg g]r%izzz?ezfcifpled Ave. Time (s) Dev. (%) #Opt
with the local search methods Cl4LS1 23.08 0.01 2258 1
C1+LS2 22.60 0.01 14.90 13
C2+LS1 22.44 0.00 21.66 16
C2+LS2 22.52 0.00 12.36 13
best loal search method (LS1) Avg Tme() Dev.(%) #Op
with different number of C24LS1 (1) 244 001 21.66 16
terations
C2+LS1 (25) 20.80 0.07 1.08 21
C2+LS1 (50) 20.76 0.11 0.41 22
C2+LS1 (100) 20.72 0.24 0.30 23

@ Springer

General VNS for computing graph separators 1081

Table 4 Performance of the

two VND algorithms proposed Avg. Time (s) Dev. (%) #Best
and the best local search C2+L.S1 20.72 0.24 0.30 23
C2+VNDI1 20.68 0.53 0.12 24
C2+VND2 20.68 0.55 0.20 24

I:lil;l; dsi ﬁzfgi‘t’?;‘ﬁl‘;‘?o‘fki:;m kmar ksep Avg. Time(s) Dev.(%) #Best
and kinax 015 001 2068 453 0.12 2
0.02 20.68 4.50 0.12 24
0.05 20.68 4.49 0.12 24
0.25 0.01 20.72 4.54 0.24 24
0.02 20.68 4.52 0.12 24
0.05 20.68 4.51 0.12 24
0.50 0.01 20.68 4.65 0.12 24
0.02 20.64 4.56 0.00 25
0.05 20.68 4.52 0.12 24

Table 6 Performance of GVNS
compared with the best previous
algorithms

Avg. Time (s) Dev. (%) #Opt

GVNS 20.89 4.78 0.00 104
Souza and Balas [21] 20.92 213.52 0.08 103
Biha and Meurs [3] 20.89 171.22 0.00 104
CPLEX 20.90 9.35 0.03 103

tion is again neglectable. We identify C2+LS1 as the best combination of constructive
plus local search.

The third experiment studies the influence of performing several independent exe-
cutions instead of constructing only one solution. This strategy is usually denoted as
Multi-Start methods (see [16]). The constructive procedures proposed in this paper
are not deterministic, so each construction will find a different solution. Specifically,
C2 is able to obtain | V| different solutions, depending on the vertex used as the root of
the level tree. Table 3 shows the performance of C2+LS1 when considering 1, 25, 50,
and 100 independent iterations. As expected, the CPU time increases with the number
of iterations. However, this experiment shows that the computing time linearly grows
with the number of iterations. What it is even more important, the deviation and the
number of optima are significantly improved (without expending large running times).
Then, we consider a multi-start strategy with 100 independent iterations for the rest
of the experimentation.

In the fourth preliminary experiment, we compare the performance of the VND
with the best local search in isolation (LS1). We additionally compare the order of
exploration of the corresponding neighborhoods. In particular VNDI firstly explores

@ Springer

1082 J. Sanchez-Oro et al.

the composed neighborhood N1—N> and then N>—N3, while VND?2 performs the sym-
metric exploration. Results in Table 4 confirm that both VND procedures compare
favorably with the simple local search method. Additionally, considering the results
of each VND variant, we conclude that VND2 emerges as the best procedure since it
presents the best deviation with similar CPU time.

The next experiment consists of selecting the best GVNS variant by running a single
full-factorial experiment. In particular, we consider Ky, = {0.01n, 0.021, 0.05n} and
kmax = {0.15n, 0.25n, 0.50n} where n identifies the number of vertices of the instance.
Notice that each GVNS variant considers C2, VND2 and a multi-start strategy as
concluded above. Results in Table 5 show that the difference among the variants are
relatively small. We select kyep = 0.02n and ke = 0.50n since the associated GVNS
variant reaches all the optima in the considered set of instances. We therefore select
this procedure to be used in further comparisons

In the second part of this section, we compare our best GVNS procedure with the cur-
rent state of the art in the VS problem. In particular, with the exact methods presented
in [3,21], using the set of 104 instances reported in these papers. The results obtained
by these two methods have been directly taken from the original source (where max-
imum computing time was set to 1,800 s). We have also included the in this Table the
results obtained by CPLEX 12 (executing the mathematical model introduced in [21]),
using the same time limit. If an exact method does not finish the exploration within
the time limit, it returns the best solution found without guaranteeing the optimality.

Table 6 shows the results obtained in this experiment. As we can see, our method
is able to find all optima in less than 5 s (notice that the GVNS does not guarantee the
optimality of the solution). On the other hand, de Souza and Balas does not find the
optimal solution in one instance. Additionally, it does not guarantee the optimality in
five more instances. It is important to remark that the method is almost 50 times slower
than our GVNS. The algorithm of Biha and Meurs presents better performance since
it is able to find all the optima in the considered instances. However, the computing
time is considerably larger (35 times) than time needed by th GVNS. CPLEX is able
to optimally solve 100 out of 104 instances. Analyzing the remaining four instances,
CPLEX finds the optimal solution in three of them, but it is not able to certify it. It is
important to remark that in these four instances CPLEX finishes its execution since
the exploration tree does not fit in memory. Finally, notice that the computing time of
CPLEX is really competitive, requiring only 9 s on average to reach the optimal value.

We would like to highlight that is is really difficult to compare running times of
algorithm executed in different computers, implemented by different programmers and
even different programming language. Therefore, the time analysis must be considered
as a qualitative comparison.

In sight of the results obtained in the previous experiment, we can conclude that this
set of instances is easily solved by our method and even by CPLEX. In our opinion,
these instances should no longer be considered for future studies since they do not
allow us to evaluate the actual performance of the compared methods. We therefore
propose to use two new set of instances well-studied in the optimization literature:

— Barabasi—Albert (BA): this set of is instances is constructed with an algorithm for
generating random scale-free networks using a preferential attachment mechanism.

@ Springer

General VNS for computing graph separators 1083

These networkds are widely observed in natural and human-made systems, includ-
ing the Internet, the world wide web, citation networks, and some social networks.
We construct 95 instances where the number of vertices is 100 < n < 1, 000 and
the node degree is randomly selected from [1, n].

— Erdos—Renyi (ER): this set contains instances (graphs) where the corresponding
vertices are randomly connected. Each graph is usually denoted as G (n, p), where
n indicates the number of vertices and p represents the probability of connecting
a pair of vertices (independent from every other edge). Obviously, the larger the
value of p, the denser the associated graph. We construct 95 instances where
the number of vertices ranges from 100 to 1,000 and the probability is randomly
selected from [0.2, 1.0] (ensuring that the resulting graph is connected).

We refer the reader to http://www.optsicom.es/vs where these instances are publicly
available as well as other relevant information (best known solution, execution time,
etc.). As it is recommended by [21], the maximum size of the separator is set to
b = 2n/3. These instance are actually a real challenge for modern heuristic methods.

In the last experiment we compare our best GVNS variant with CPLEX (executed
again for a maximum computing time of 1,800 s). We do not provide the results of
the two branch-and-bound procedures, since we do not have the executable code.
However, as it is shown in the previous experiment, the results of CPLEX and the two
branch-and-bound procedure are comparable. Therefore, it is expected that both exact
procedure would have a performance similar to CPLEX.

Table 7 reports a summary of the results obtained by both procedures. Tables 8
and 9 in the Appendix present the individual results for each instance of Barabasi—
Albert and Erdos—Renyi sets, respectively. We consider an additional column (#Best)
to indicate the number of times that either GVNS or CPLEX match the best solution
since the optimal value is not known for the majority of these instances. Notice that
CPLEX does not guarantee the optimality when (1) the maximum computing time is
exceeded or (2) the exploration tree does not fit in memory.

Attending to these results, we can concluded that GVNS consistently produces
better results than CPLEX in both sets. In particular, in Barabasi—Albert set, GVNS
reaches the same number of optimal solutions (10 out of 95) than CPLEX. In the
remaining 85 instances, our procedure only misses 13 best solutions (obtaining the
best solution in 72 out of 85 instances). The average deviation (0.16 %) and average
objective function (279.25) also compares favorably with those obtained by CPLEX
(1.15 % and 283.16). Finally, GVNS is almost 30 faster. The results in the Erdos—Renyi
confirm the superiority of our method. Specifically, when the optimum is known (5

Table 7 Comparison of GVNS with CPLEX 12 in all set of instances

Algorithm Avg. Time (s) Dev. (%) #Best #Opt
Barabasi-Albert CPLEX 283.16 1,064.13 1.15 46 10

GVNS 279.25 36.56 0.16 72 10
Erdos-Renyi CPLEX 296.57 885.52 1.23 53

GVNS 292.02 33.89 0.10 86

@ Springer

http://www.optsicom.es/vs

1084 J. Sanchez-Oro et al.

instances), GVNS finds it. In the remaining instances, GVNS obtains the best result
in 86 (out of 90) instances, achieving lower average deviation (0.16 vs. 1.15 %) and
average objective function (292.02 vs. 296.57). Again the computing time of the
propose procedure is considerably shorter (33.89 vs. 885.52 s).

6 Conclusions

In this paper we have proposed a General Variable Neighborhood Search (GVNS) for
the Vertex Separator (VS) problem. As far as we know, it is the first heuristic procedure
for general graphs. Specifically, we have introduced two constructive procedures, the
first one basically constructs a feasible random solution, while the other constructs a
tree-level structure. We also propose three different neighborhoods based on feasible
moves. Considering the structure of a VS solution, we conclude that the exploration
of those neighborhood in isolation does not drive to high quality solutions. There-
fore, we present an exploration of the neighborhood in pairs using two different local
search algorithms. We also investigate a deeper exploration of those composed neigh-
borhoods by means of using a Variable Neighborhood Descendant (VND) approach.
We embed the most promising strategies in GVNS, when we study the effect of using
a jump neighborhood change function. The proposed methods have been tested on
a large benchmark consisting of 104 well-known instances in the existing literature.
Specifically, the GVNS has been able to find the optima in all of them. We finally pro-
pose two new sets of harder and challenging 190 instances to be the new benchmark
for future comparisons of modern heuristics in solving the VS problem.

Acknowledgements This research has been partially supported by the Spanish Ministry of “Economia y
Competitividad”, Grant Ref. TIN2012-35632-C02-02.

7 Appendix

Tables 8 and 9 report the individual result obtained by the GVNS method. Each
column shows, respectively, the vertex separator value (VS), computing time (Time) in
seconds, number of vertices (n), number of edges (m), value of b and the construction
parameter of the instance: node degree parameter used in the construction of the
instance (N. deg.) for the Barabasi—Albert instances and the link probability parameter
used in the construction of the instance (prob.) for the Erdos—Renyi instances. The
maximum computing time in both sets is limited to 0.05 - n s. The optimum values are
highlighted in bold font.

@ Springer

1085

General VNS for computing graph separators

129 99% SIEvCT 00L (1INS% S6¢ (129°00L)Y V' d SET 991 8EL6T 0S¢ 0S°TT Ly1 (SET0SNT V' 4
ges (%37 LO'€8T 059 60'9¢ Ly (SES°0S9)Y V™ d 191 €el ¥€0°LT 002 L1°01) (191°000)T V' d
S0g 00 6vS01T 009 So'IE 9Tt (S0€°009)7 V™ d 6 001 LSO ‘8 0S1 99°L S9 (F6'0ST V- 4
LvE 99¢ 0Th'80l 0SS €r'ie S¥e (e 0SSy v d 968 999 61 9%y 000°1 8T°001 96¢ (968°0001)T V4
9% €g€ I€0'%CI 008 8L'9C o€ (96%°009)% vV d 69 99 T6L€ 001 S0'S St (69°00DTV 4
6CC 00€ LET'T 0S¥ S0'9C So1 (6TTOSH)Y V' d 929 €€9 9T0'vEE 0S6 €8'LS iy (929°0$6)1" V"4
0S¢ 99T 9S¥TL 00% T6'CC Y44 (oscoor)y v d L1 009 SL6'OLE 006 TL6S LTS (L18°006)1" V"4
6T €€ 8T8'eS 0S¢ €S°LT 881 (F6T0s)Y vV d 619 996 68C°L8C 0S8 9T9L 811 6197081V d
S0z 00T SELvE 00€ 80°LT 6€1 (S0T°008)Y V' d L29 €es TI8'L9T 008 LO'6S 81¥ (L29'008)1 V' 4
€€l 991 788°61 0ST €Tel 86 (€cr'osoy v d wy 00S 121°981 0SL ¥L6S €0€ (TTrosL v d
L6l €€ 66961 002 1101 LT L6100y V' d 619 991 12S'1€C 00L 9L 0% Siy (6v9°00L)1" V™ d
11 001 €56°8 0S1 SS'L 1L (rrosny v d Sov cey 1€8°691 0S9 ¥8'St oce (S9r°0s91" V' d
60S 999 L69°L0E 000°1 1T'8L 16 (60S°0001)F V 4 IS 00v 1€9°991 009 ¥L'TE 6¥¢ (175009 1" V"9
L8 99 wshy 001 or's Is 800Dy V 4 66y 99¢ 8¢S'O¥I 0SS Iree 1403 (66¥°0S9)1" V™4
(399 €€9 0T9°S0E 0S6 6029 10 (€ss°056)E vV d LLT €ee 70818 00S 91'ST 0T (LLT009)T" V" d
158 009 I7€°88€ 006 TTYS Ses (158°006)€ V4 9ze 00¢ $60°08 0S¥ SY€T 81¢ 9zeosnT v d
€69 99§ 66TTIE 0S8 §9°69 8St (€69°058)€ vV 4 9LE 99C €TE9L 00% 98°0C 474 9Le00nT vV d
S6S €es G81°8SC 008 0T'6S 60t (S65°008)¢ VA (1743 €€ 0TT'LS 0S¢ 86'LT 861 (ozg0sO)T vV d
€19 00S TS1°IST 0SL 0v'8€)84 (€r9'0sL)E vV d Y4 00T 668°6€ 00€ 1091 091 (§sT°009) 1 V' d
8L9 9% S06°8€C 00L S9'LE 81¥ (8L9°00L)E V™ d ovl 991 €LI'IT 0S¢ 10°€1 66 Orrosorvd
w9 (%57 800°60C 059 0 1Y L8E (Tr9°0s9)E V' d SLI gel 0£0 ‘81 00¢ 11°01 41! (SLT°00D1" V' d
Ser 00F TS9THL 009 10°6¢ €6 (Se¥'009)E V™ d LET 001 8SH0I 0ST 12 98 (Ler'osDI v 4
6T 99¢ €1t°'96 0SS L8'S¢E LIT (F6T°059)E vV d 8.8 999 Y¥ETHSF 000°1 LS'€6 ¥9S (8180001 V 4
S9 99 619c 001 €IS (52 (S9°00DT V 4

39p ‘N q w u (s) owy, SA doue)suy ‘3op ‘N q w u (s) awty, SA Qoue)suy

SQ0UB)ISUT 1IAQ[y—ISeqeIeg Uo sINsay § J[qEL,

pringer

as

J. Sanchez-Oro et al.

1086

818 £€9 LTV Y0y 0S6 6t'€s ¥ES (818°0S6)S V' d €LT €ee £88°08 008 TSt 002 (€LT°009)E V' d
799 009 861'FPCE 006 G588 TSY (299°006)S V™ d €T 00¢ €10°69 0St 98T 6LI (evT'osr)e v d
€9 996 TIS'T6T 0S8 0L'1L cey (S€9°0S8)S V™ d ¥8C 99 10%°C9 001 06T €61 (F8T°00V)E V' d
€99 €65 0068LT 008 996y CEY (€99°008)S V™ d ST €ET 666°LY 0S¢ 86'L1 991 (1sz'ose)e v d
YL 00S 1€T°6LT OSL 8TEr €SP (FrLosLS vV d 09T 00C Sovor 00€ 96°61 681 (09T°009)€ V' d
10S 99% $LTT6T 00L 0LSE ove (T0s‘00L)S vV d 161 991 £€€9°6T 0S¢ 9T€el vTl (161°0s0)€ vV d
vey g €SL°LST 059 8Ly Y0€ (PEF0S9)S V™ d 8! eel 660°€1 002 99°01 I8 (I11°000)¢ V' 4
SLy 00% L6L'IST 009 L6°0€ 91¢ (SLY*009)S V™ d 621 001 8€0°01 0ST WL €8 (6TT°0SDE V 4
S6v 99¢ LL6'6ET 0SS oL'1€ LI€ (S6¥°0S9)S V™ d 109 999 8L69¥€ 000°1 viee oer (109°000DEV 4
80 €¢€¢ 169°L01 00S 8¥'LT OLT (80%°009)S V™ d 9 99 19s‘¢ 00T or's (94 F9‘00DE V d
¥ 00€ LSL96 0S¥ L1'ST 0LT (Fer'osy)s v d YL €69 988°LLE 0S6 9816 S0S (PrL'0S6)T V' d
€€C 99T OEI'¥S 00 e 09l (€€T00n)S vV d 9LS 009 €5€°€6C 006 0T 6% 8% (9L5°006)T V' d
61T €€C 0TL'LY 0S¢ 10°81 891 (6¥C°0SE)S vV d 66L 996 SSL'GTE 0S8 TLES 8LY (6€L°0S8)T V™ 4
112 00T 18L'%¢ 00€ 1191 6¢€1 (I12°009)S v d L19 €€s 18069 008 9aI¥S 61¥ (L19°008)T V™ 4
43 991 9TL'61 0S¢ LOET 76 (Te1'0s0s v d S6€ 00S 6IE'LLT OSL S8'19 €6C (s6c0sL)T vV d
661 €€ £€8°61 002 ST'0T €T (661000 V 4 SPS 9% 08€'Y0T 00L oLy 89¢ (S¥S'00L)T V™ d
€01 001 €18 0S1 oL L9 (€or'osns v d S8y cey 9SL'0LT 0S9 S aY Lee (S8%°0S9)T V™ d
8LS 999 #96°9¢€ 0001 YovL €Iy (8LS°0001)S V' d 0cs 00F LI6'I9T 009 98°G¢ See (0T8°009)T V' d
68 99 LSy 001 S0'S ss (68°001)S V 4 993 99¢ YOIl 0SS 61'1¢ L¥T (sse'0s9)T v d
8GL €69 6L8°C8E 0S6 15768 LOS (85L°0S6)Y V' d 88C €ee TTIY8 00S L6'9€ S0c (882°009)T V' d
89L 009 ¥SP09€ 006 LL89 OIS (89L°006)7 V™ d e 00€ CTIV'I6 0St WSt TSt (ToE'0sh)T v d
99 995 9T1'96T 0S8 vSTL o e 9r9°0S8)Y V™ d LT 99T 61T'ES 001 8L'€T S91 (Lzgoor)T v d
0SL €€s €L6V0E 008 06'6S LLY (0SL°008)¥ V' d 81 €€ 0ST'8¢ 0S¢ 6T1T 6l (T81°089)T V' d
TTL 00S OLI'€LT OSL 6L'TY (84 (TeLosLy v d 0ZC 00T 9¥8'Se 00€ 11°61 81 (0zT009)T V' d
‘3op °N q w u (s) auy, SA Qouejsuy ‘39p 'N q w u (s) auuiy, SA oue)sul

panunuod g I[qe],

pringer

as

1087

General VNS for computing graph separators

90 99 S66°0ST 00L 18°6¢ L6E (To0'00Ly ¥ d 18°0 991 ovl‘se 0S¢ 18C1 €81 (1g'0'0s)T ¥ d
650 (957 891°¥Cl 059 90°€€ 8¢ (65°0°0S97 ¥ A €20 €el eSSy 002 £8°01 9 (€z0'0000T 4 9
9L°0 00 Sov'LET 009 SIse (Y44 (9L°0°009)7 ¥ 4 150 001 L69°S 0ST LS'L 09 (asoosnz a4 4
€80 99¢ €69°6TI 0SS S¥'6T (437 (€8°0°0sS)7 A d €0 999 16L°0ST 000°1 1769 cee (0g0'000DTd A
SL'O €ee ¥92°€6 00S 60°LT %3 (SL0°009)7 ¥ d 1o 99 879 001 or's 8¢ (zrooonNz ¥ d
760 00€ 91€°S6 0S¥ 89'CC LOY F60'0sHY A d 18°0 €€9 116°99¢ 056 €875 €eL (18°0°056)1 4 9
98°0 99¢ ¥L9°89 00¥ 81°0C LOE (98°0'00nY A d LEO 009 1L8°6¥1 006 6€'SS 66¢ (LE0'006)1 M d
o €€T 90S°¢1 0S¢ LL'ST 911 (TTo'osor ¥ d 160 99¢ TLT'8TE 0S8 ov'iy ovL (16'0°0s8)1 ¥ d
Se0 002 9€9°61 00€¢ 6591 66 (S€0°009)Y ¥ d 1€°0 €€s £€9°66 008 69°9L 99¢ (1€°0'008)17 4 9
690 991 LEV'IT 0S¢ 9L'TI €61 (69°0°0sOV ¥ d LSO 00S SIL'09T 0SL S9vS 101 (Lsoospr a4
19°0 €€l 91Tt 002 wol 201 (19°0°000)% ¥ 4 170 991 LTE00T 00L €9°'LS ¥ST (o001 4 4
690 001 99L°L 0S1 09°L 68 (69°0°0SDY ¥ 4 ¥T0 (%94 e 059 01'8¢ 91¢ FT0'0s91T I 4
SS'0 999 YTLOLT 000 ‘T LO'LY IS (§S°0°000DY ¥ A 650 00v €51°901 009 £9°6€ 81¢ (65°0°009)1 ¥ 9
€0 99 1281 001 10°G €€ (Teo'ooDy ¥ d ¥9°0 99¢ 99896 0SS 16°9¢ 91¢ (F9°0°0s9)17 4 9
80 €69 ¥9L°T9€ 0S6 SI'sS 9CL (08°0°0s6) 4 d S6°0 €ee 00S‘811 00§ 01°6¢T St (S6'0°009)1 4 d
1870 009 6€L8TE 006 v9'LYy 989 (18°0°006)€ ¥ d ST0 00€ 96L°ST 0S¥ 06'CC 6l (Szo'osy1 d d
LTO 99¢ €76'96 0S8 6T18 €8¢ (Lz0'0s8)E M d 6L°0 99¢ STL'TY 00 50T 06¢ (6L0'00V)1 ¥ d
190 €€s 16v'¥61 008 08'S9 LEY (190°008)€ ¥ 9 €0 €€C 69761 0S¢ 61°0C 911 (zeoosor d d
¥6°0 00S IvE'€9T 0SL 60'8¢ 9L9 (F60'0sL)E T 9 ¥€0 002 €9%°S1 00¢ 8L°91 66 (F€'0'009)1 4 9
70 99 €¥8°LOT 00L 16°SS 8LC FroooLe d A 680 991 099°LT 0S¢ 8G°CI S0c (68°0°0sO1 I 4
S40) (957 LEL'V6 059 P19 9T (S'0°059)€ I A 780 €€l 8691 002 0701 L1 (T8'0°000)T A A
ST0 00% 91T ¥t 009 16°0€ 661 (ST°0°009) ¥ 4 98°0 00T 6796 0ST €S°L 81T (98 0°0sDT A A
L8°0 99¢ PPL'IEL 0SS ¥8°LT 454 (L800s9)E d d LTO 999 169°€El 000°1 £6'99 gee (LzoooonT M d
68°0 99 €Thy 001 00'S 43 (68°0°00DT A A

‘qoxd q w u (s) auury, SA Qdue)suy| ‘qoxd q w u (s) auuiy, SA ddue)suy

SQOUBISUI TAUDY—SOPIF UO SINSAY ¢ AqBL

pringer

as

J. Sanchez-Oro et al.

1088

670 €69 8V 0El 056 1$°6S 91¢ (6T°0°056)S 4 d S0 €ee TL0T9 00S 009¢ €7C (05°0°009)€ 4 d
o 009 6L5°68 006 06'LY 66¢ (TT0'006)S 4 d SLO 00€ L6T9L 0S¥ 86'CC 60¢ (SLoosved d
€€°0 99¢ 961°'611 0S8 80 ¥ €8¢ (€€°0°058)S 4 d 110 99¢C SEL'6 00% 06'CC o€l (aroooned d
8€°0 €€s 698°1C1 008 18T 99¢C (8€°0°008)S ¥ d Ss0 €€T 181°¢€ 0S¢ ST81 191 (ss0'0s)e d d
L0 00S ¥EF96T 0SL €T cLY oLo0sLs 4 ST0 002 08711 00€ €€°GT 66 (sTo'009)e a4
760 99 9¥0°0€C 00L 6T'S¢E €€9 (F6°0°00L)S I A LEO 991 TLSTI 0ST 0T %1 €8 (Leoosoe a4
S9'0 £ey 8SH'OET 059 9T’ 1V 06€ ($9°0°0§9)s 4 d SE0 eel 0869 00T SLOT 99 (se0'000)€ ¥ d
20 001 €89°¢ct 009 0L0€ 661 (#T0°009)s 4 9 8€°0 001 8SE'Y 0S1 88'L 61 (8co'osnNeE A d
90 99¢ 78106 0SS 8% 1€ 06¢ (09°0°059)s 4 d 060 999 16865 000°1 91°CS 168 (26'0°000DE ¥ d
120 €ee 00092 00S £5°0¢ S91 (17°0°009)s ¥ d 8L0 99 958°c 00T 10°s 19 8L0%00DE d A
ST0 00€ 629°ST 0S¥ ¥6°CC 4! (STo'osys ™ d €8°0 €€9 STEWLE 0S6 S9N SSL (€8°0'0s6)T 4 d
8€°0 99¢C T0T°0¢ 00¥ 81'ST €€el (8€°0'001)S ¥ d 190 009 TLI'6YT 006 6S°6L s (19°0°006)C ¥4 4
Ss0 €€T 865 ‘€€ 0S¢ 0T TLl (6S0'0s6)s 4 d ¥9°0 99¢ SYO'IEC 0S8 90'19 s (#9°0°0s8)T 4 4
9¢°0 002 STT91 00€ LLOT 66 (9€°0°009)S™ ¥ A 9¢'0 €€s 969°91T 008 Se'Ty 99T (9¢€°0°008)C 4 4
89°0 991 T 0ST 66'C1 61 (89°0°0S0)S ¥ A ¥6°0 00S ¥8LT9CT 0SL 7E'8¢ 8.9 weo'osT I d
P70 €€l ¥8L°8 00T 7801 69 (F7'0°000)s 4 d 670 991 IST'61T 00L LTS 00€ (6°0'00L)C 4 d
LO0 001 58 0S1 ST'8 w (Lo0'osDS ™M d 9¢€°0 %37 19L°9L 0S9 6v'91 91¢ (9€°0°0s9)T 4 9
98°0 999 6€€°LTy 000 °1 €0°LS 128 (98°0°000D)S ¥ 9 120 00 0€€°8¢ 009 Sy 661 (1770°009)C 4 d
L0 99 €6¥€ 00T 00°S 8s (ILo‘oons d A €€°0 99¢ G816V 0SS 91'9¢ €81 (€co'oss)cd d
S¥0 €69 ¥01°20C 0S6 88°L9 ILE (Sr0'0s6)r I d S0°0 €ee 0ve'9 00S €67 SS1 (S0'0°009)T ¥ d
Se0 009 88C6El 006 1€°LS 66¢ (S€°0'006)7 ¥ d 10 00€ ¥€0°01 0S¥ 6£°6C Pl (oro'osv)c a4
¥L0 99¢ 9TI1's9T 0S8 ¥6'CS 68 (FLO°0SY ¥ A 70 99T 6¥T'TE 00% 19°6T €€l (or0'00n)T a4
86'0 €€S ¥ST'TIE 008 SToY SoL (86°0°008)% ¥ A 61°0 €€T 129°11 0S¢ TL0T SIT (61°0°0s9)T d 4
LSO 00S 06£°09T 0SL SIS 08¢ (LsoosLy ¥ 4 750 002 961°€T 00€ PI°GT 43 (zs0'009)T a4 4
‘qoxd q w u (s) iy, SA Qdue)suy ‘qoxd q w u (s) auiy, SA due)sul

panunuod g Iqel,

pringer

as

General VNS for computing graph separators 1089

References

10.

11.

13.

14.

15.

16.

17.

18.

20.

21.

22.

. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph partitionings. In:

36th Annual Symposium on the Theory of Computing, pp. 222-231 (2004)

. Bhatt, S.N., Leighton, ET.: A framework for solving VLSI graph layout problems. J. Comput. Syst.

Sci. 28, 300-343 (1984)

. Biha M.D., Meurs, M.J.: An exact algorithm for solving the vertex separator problem. J. Glob. Optim.

49, 425-434 (2011)

. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process.

Lett. 42, 153-159 (1992)

. Duarte, A., Escudero, L.F., Marti, R., Mladenovi¢, N., Pantrigo, J.J., Sdnchez-Oro, J.: Variable neigh-

borhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247-3255 (2012)

. Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite subgraph problem.

Technical report MCS04-04, Department of Computer Science and Applied Math., The Weizmann
Institute of Science (2004)

. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex

separators. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
pp. 563-572 (2005)

. Fu, B., Chen, Z.: Sublinear time width-bounded separators and their application to the protein side-

chain packing problem. In: Algorithmic Aspects in Information and Management, LNCS, vol. 4041,
pp. 149-160 (2006)

. Hansen, P., Mladenovi¢, N., Moreno, J.A.: Variable neighborhood search: methods and applications.

Ann. Oper. Res. 175(1), 367-407 (2010)

Leighton, F.T.: Complexity Issues in VLSI: Optimal Layout for the Shuffle-Exchange Graph and Other
Networks. MIT Press, Cambridge (1983)

Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approx-
imation algorithms. J. ACM 46, 787-832 (1999)

. Leiserson, C.: Area-efficient graph layouts (for VLSI). In: 21th Annual Symposium on Foundations

of Computer Science. IEEE Computer Soc., Los Alamitos, pp. 270-280 (1980)

Lipton, R.J., Tarjan, R.J.: A separator theorem for planar graphs. SIAM J. Appl. Math 36, 177-189
(1979)

Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615-627
(1980)

Lozano, M., Duarte, A., Gortédzar, F., Marti, R.: Variable neighborhood search with ejection chains for
the antibandwidth problem. J. Heuristics 18, 919-938 (2012)

Marti, R., Moreno-Vega, .M., Duarte, A.: Advanced multi-start methods. In: Gendreau, M., Potvin,
J-Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 265-281. Springer (2010)

Mladenovié, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097-1100 (1997)
Montemayor, A.S., Duarte, A., Pantrigo, J.J., Cabido, R.: High-performance VNS for the Max-cut
problem using commodity graphics hardware. In: Mini-Euro Conference on VNS (MECVNS 05),
Tenerife (Spain), pp. 1-11 (2005)

. Pardo, E.G., Mladenovi¢, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth

minimization problem. Appl. Soft Comput. 13, 2242-2252 (2013)

Sanchez-Oro, J., Pantrigo, J.J., Duarte, A.: Balancing intensification and diversification strategies
in VNS. An application to the Vertex Separation Problem. Technical Report. Dept. Ciencias de la
Computacion. Universidad Rey Juan Carlos (2013)

de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Progr. 103,
609-631 (2005)

Hansen, P., Mladenovi¢, N.: Variable neighborhood search. Int. Ser. Oper. Res. Manag. Sci. 57, 145-184
(2003)

@ Springer

	General Variable Neighborhood Search for computing graph separators
	Abstract
	1 Introduction
	2 Variable Neighborhood Search
	3 Constructive procedures
	4 Local search methods
	5 Computational experiments
	6 Conclusions
	Acknowledgements
	7 Appendix
	References

