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Abstract Computing graph separators in networks has a wide range of real-world
applications. For instance, in telecommunication networks, a separator determines
the capacity and brittleness of the network. In the field of graph algorithms, the
computation of balanced small-sized separators is very useful, especially for divide-
and-conquer algorithms. In bioinformatics and computational biology, separators
are required in grid graphs providing a simplified representation of proteins. This
papers presents a new heuristic algorithm based on the Variable Neighborhood Search
methodology for computing vertex separators. We compare our procedure with the
state-of-the-art methods. Computational results show that our procedure obtains the
optimum solution in all of the small and medium instances, and high-quality results
in large instances.

Keywords Combinatorial optimization · Metaheuristics · VNS · Graph separators

1 Introduction

Let us consider an undirected connected graph G = (V, E), where V represents the
set of vertices (|V | = n) and E represents the set of edges (|E | = m). Let cv be
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1070 J. Sánchez-Oro et al.

the cost associated with each vertex v ∈ V and let b be a positive integer such that
1 ≤ b ≤ n. The Vertex Separator (VS) problem consists of dividing V into three
non-empty subsets A,B, and C, such that there is not any edge between A and B, the
size of both sets are bounded by b, and the sum of the weight of the vertices in C is
minimized. In mathematical terms:

min
∑

v∈C
cv

s.t.
max {|A|, |B|} ≤ b
A ∪ B ∪ C = V
∀u ∈ A ∧ ∀v ∈ B, (u, v) /∈ E

Notice that this formulation is equivalent to the maximization of the sum of the
weight of the vertices in A and B (see for instance [21]). A solution x = {A, B,C}
verifies thatA∪B∪C = V andA∩B = A∩C = B∩C = ∅. A separatorC ofG is then
defined as a subset of vertices that divides G into two disconnected subgraphs. Graph
separators have appeared under different names in the literature, including bifurcators,
balanced cuts, or partitions.

Figure 1a shows an illustrative example of a graphG with 11 vertices and 14 edges.
Figure 1b depicts a possible solution, where sets A, B, andC are represented as dashed
ellipses, and the size constraint b is set to 4. If we assume, for the sake of simplicity,
that each vertex v ∈ V has an associated cost of cv = 1, the value of this solution is 6
since there are six vertices in the separator (4, 6, 7, 8, 9, 11).

This optimizationproblemwasoriginally introduced [2] in the context ofVeryLarge
Scale Integration (VLSI) design. However, finding balanced separators of small size
have become an important task in several contexts. For instance, in telecommunication
networks, a separator determines the capacity and brittleness of the network [10,12].
In the field of graph algorithms, the computation of balanced small-sized separators
is very useful, especially for divide-and-conquer algorithms (see [14] for a larger
description). In bioinformatics and computational biology, separators are required in
grid graphs providing a simplified representation of proteins [8].
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Fig. 1 a Example of a graph and b a possible VS solution
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General VNS for computing graph separators 1071

Finding the minimum vertex separator of a general graph is a NP-hard problem
[4]. Therefore, exact approaches only solve instances of moderate size. In particu-
lar, de Souza and Balas [21] proposed a mixed integer programming formulation,
and investigated the VS polytope and the convex hull of incidence vectors of vertex
separators. This theoretical study was afterwards included in a branch-and-cut pro-
cedure. Computational results showed that the exact method was able to optimally
solve instances with size ranging from 50 to 150 vertices in moderate computing time.
Biha and Meurs [3] introduced new classes of valid inequalities and a simple lower
bound. Computational experiments showed that the new exact procedure was able to
solve to optimality all the instances introduced in de Souza and Balas [21], marginally
reducing the computing time. Therefore, this method emerges as the state-of-the-art
regarding exact procedures.

Much of the previous work on the VS problem is based on designing approx-
imation algorithms. Lipton and Tarjan [13] showed that an n-vertex planar graph
has a balanced separator of size O(

√
n). However, most of the papers approximate

the VS problem by solving the Edge Separator (ES) problem. In particular, these
approaches first design an approximation algorithm for the ES problem and then adapt
this algorithm to the VS problem. See for instance, Leighton and Rao [11] or Arora
et al. [1] with an approximation ratio of O(log n) and O(

√
log n), respectively. This

approach works well on graphs with bounded degree. However, for general graphs,
the situation is completely different [6]. The best approximation algorithm for the
VS problem was introduced in Feige et al. [7]. In particular, they proposed linear
and semidefinite program relaxations, and rounding algorithms for these programs.
They obtained an O(

√
log(opt)) approximation, where opt is the size of the optimal

separator.
Despite the fact that this problem has been the subject of extensive research, it

has been mainly ignored in the heuristic and metaheuristic community. As far as we
know, there is only one heuristic method introduced in de Souza and Balas [21]. In
particular, the unique objective of this method is to generate feasible solutions for the
branch-and-cut procedure. The method first solves the linear relaxation of the original
problem. Then, starting from the fractional solution, it constructs an integer solution by
sequentially rounding up (when it is possible) the fractional variables using a greedy
function. After each rounding up, some variables are rounded down to 0 to fulfill the
constraints of the problem.

In this paper, we propose a Variable Neighborhood Search (VNS) approach [22]
for the Vertex Separator problem. This metaheuristic has been successfully applied to
a large number of optimization problems. See for instance [5,15,19,20]. The rest of
the paper is organized as follows: the Variable Neighborhood Search metaheuristic is
described in Sect. 2, where we mainly focus on the General Variable Neighborhood
Search variant. Sections 3 and 4 describe, respectively, the two constructive proce-
dures designed for this problem as well as the three neighborhood structures. All the
VNS strategies are experimentally tested in Sect. 5. Finally, the paper ends with the
associated conclusions (Sect. 6).
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1072 J. Sánchez-Oro et al.

2 Variable Neighborhood Search

VariableNeighborhoodSearch (VNS) is ametaheuristic for solving optimization prob-
lems based on systematic changes of neighborhood structures, without guaranteeing
the optimality of the solution. In recent years, a large variety of VNS strategies have
been proposed.We can highlight theVariableNeighborhoodDescent (VND), Reduced
VNS (RVNS), Basic VNS (BVNS), Skewed VNS (SVNS), General VNS (GVNS),
Variable Neighborhood Decomposition Search (VNDS) and Reactive VNS, among
others. We refer the reader to [9] for a complete review of this methodology and its
different variants. In this paper, we focus on the General VNS variant (GVNS). See
[17] for additional details. Algorithm 1 shows the pseudocode for GVNS.

Algorithm 1: GVNS(x, kmax , tmax )
1: repeat
2: k ← 1
3: repeat
4: x ′ ← Shake(x, k)
5: x ′′ ← VND(x ′)
6: NeighborhoodChange(x, x ′′, k)
7: until k = kmax
8: t ← CpuTime()
9: until t > tmax

The method has three input arguments: the initial solution (x), which can be a
random solution or a solution given by a constructive procedure, the maximum neigh-
borhood to be explored (kmax ), and the maximum execution time allowed for the
algorithm (tmax ). The algorithm mainly consists of executing three methods: shake,
VND, and neighborhood change. Firstly, given a solution x , the shake method gener-
ates a new solution, x ′, in the k neighborhood of the current solution (step 4). Then,
it is is improved using a VND method, producing a new improved solution x ′′ (step
5). Finally, the neighborhood change method decides whether the new solution x ′′
improves upon x or not (step 6). If so, the search returns to the first neighborhood
(k = 1) and updates the incumbent solution (x = x ′′); otherwise, the VNS meta-
heuristic tries to find a better solution in a different neighborhood (k = k + 1). We
describe in the following sections the strategies designed for solving the VS problem
based on GVNS approach.

In this paper we propose two constructive procedures (C1 and C2) for the VS
problem (see Sect. 3). Specifically, C1 favors the diversification of the search (it is
mainly a random procedure) while C2 focuses on the intensification of the search (by
means of an elaborated heuristic approach). We additionally investigate three different
neighborhoods for this problem, as well as two local searches and two VND methods
derived from them (see Sect. 4).

We propose a standard shake procedure based on a random perturbation of the
incumbent solution since its main objective is to diversify the search. However, a
straightforward implementation of a shake procedure, Shake(x, k) could produce
infeasible solutions. In particular, all moves that consist of changing one vertex from
A or B to C always produces a (worse) feasible solution. On the other hand, a move
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General VNS for computing graph separators 1073

from one vertex inC to A or B could produce (a better) infeasible solution. Therefore,
we propose to use in our shake procedure only moves from A or B to C since it is
expected that the improvement strategy produces a better solution in subsequent steps
of the VNS.

The function neighborhood change basically compares the new value of x ′ with the
incumbent value of x obtained in the neighborhood k. If an improvement is obtained,
k is reset to its original value (usually k = 1). Otherwise, the next neighborhood is
considered for a further exploration (usually k = k + 1). In this paper, we investigate
the effect on the search of the so-called jump neighborhood search. In this case, the
corresponding function considers two additional parameters, kmin and kstep, that con-
trol the change of the neighborhood. Specifically, when the GVNS method performs
an improving move it sets k = kmin instead of k = 1. Similarly, in non-improving
moves it sets k = k + kstep instead of k = k + 1. We will investigate the effect of
these two parameters in Sect. 5.

3 Constructive procedures

VNS is a trajectory-based metaheuristic which mainly focuses on the improving of
an available solution. Most of the VNS implementations consider a random solution
as the starting point of the search. In this paper, we will investigate the effect of
constructing a solution at random or using a more elaborated heuristic procedure.
The first constructive method, C1, basically constructs, as fast as possible, a feasible
solution. In particular, C1 starts by initializing A = B = C = ∅. Then, a vertex is
randomly selected from V and inserted, if it is possible, in either A or B. Otherwise,
the vertex in inserted inC . This process is repeated until all vertices in V are explored,
returning a feasible random solution.

The other procedure, C2, receives as input parameter a tree-level structure [5],
which is a partition of a graph in different sets L1, L2, . . . , Lt , called levels. The first
level contains only one vertex, which will be the root of the level structure. The rest
of levels Ll contain all the vertices adjacent to any vertex in the previous level, Ll−1,
that are not present in any L j , with 1 ≤ j < l − 1. The number of levels will vary
depending of the graph and the vertex selected as root of the level structure. This level
structure guarantees that vertices in alternative levels are not adjacent. If we would
ignore the size constraint (i.e., |A| ≤ b and |B| ≤ b) each level Ll would be a separator
(C = Ll ) of the graph, where A would contain the vertices in levels i , with 1 ≤ i < l,
B would contain vertices in levels j , with l < j ≤ t , and finally C would contain the
vertices in the selected level l. When considering the size constraint, obviously not all
levels would become a separator by itself since the number of vertices in either A or
B may exceed b, producing an infeasible solution. In order to overcome this situation,
C2 selects as the separator the level which divides the vertices of the graph into two
sets of roughly equal size. Algorithm 2 shows the pseudocode of this constructive
procedure.

The method starts by including all the levels of the tree in the separator (step
1). Additionally, two scanning variables (i and j) are set to the first and last levels
respectively (see steps 2 and 3). These two variables allow the method to traverse the
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tree in top-down (i) or bottom-up ( j) directions. We also include a boolean variable
( f inished) which verifies if the solution under construction is finished or not.

The algorithm performs iterations (steps 5–17) until the top-down index reaches
the bottom-up index plus one (since we need to reserve at least one level for the
separator) or the boolean variable is set to true. The while-loop basically inserts
one complete level in A (symmetrically B) if its size is smaller than B (symmet-
rically A). In addition, it is checked whether the inclusion of the corresponding
complete level (in A or B) produces a feasible solution or not. If not, the boolean
variable is set to true (step 15) and the method finishes returning the constructed
solution.

Algorithm 2: C2(L1, . . . , Lt )

1: {A, B,C} ←
{

∅, ∅,
t⋃

i=1
Li

}

2: i ← 1
3: j ← t
4: finished ← FALSE
5: while (i < j) and not finished do
6: if (|A| ≤ |B|) and (A ∪ Li ≤ b) then
7: A ← A ∪ Li
8: C ← C \ Li
9: i ← i + 1
10: else if (|B| < |A|) and (B ∪ L j ≤ b) then
11: B ← B ∪ L j
12: C ← C \ L j
13: j ← j − 1
14: else
15: finished ← TRUE
16: end if
17: end while
18: return {A, B,C}

Considering the graph presented in Fig. 1a (with |V | = 11, |E | = 19, and b = 4),
a possible tree-level is shown in Fig. 2a, where vertex 1 is selected as the root of the
tree. Notice that each vertex in a given level is adjacent to other vertices in the same
level or in consecutive levels (but never in alternative levels). Again, cv has been set
to 1 for all vertices.

Figure 2b shows the the first step of the algorithm, where all the levels are ini-
tially placed at the separator while sets A and B remain empty. C2 starts by including
the first level (root) in set A (Fig. 2c) and then the last level is inserted in set B
(Fig. 2d). Considering that |B| > |A| we continue inserting levels in A (Fig. 2e, f).
In this situation, we have two levels in C that cannot be inserted in either A or
in B (since the addition of a level would violate the size constraint). Therefore,
the constructive procedure finishes by returning the associated solution. Finally, if
the last level contains more than b vertices, the solution would be infeasible. Then,
C2 assigns as much vertices as possible to B, and the remaining ones are assigned
to C .
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Fig. 2 Example of a solution constructed with the greedy procedure C2

4 Local search methods

Solutions to the VS problem are typically represented as three different disjoint sets
(i.e., x = {A, B,C}). In this section we define three different neighborhood struc-
tures based on three different moves. In particular, the neighborhood N1 contains the
neighbor solutions obtained by removing one vertex v from A or B and inserting it in
C . We denote this move as Move1 and it is formally described as follows:

Move1(v, {A, B,C}) =

⎧
⎪⎪⎨

⎪⎪⎩

A ← A\{v}
C ← C ∪ {v} if v ∈ A

B ← B\{v}
C ← C ∪ {v} if v ∈ B

Figure 3 illustrates this type of move. In particular, Fig. 3a shows the original graph
where the vertex involved in the move is highlighted (vertex 8). Figure 3b shows the
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Fig. 3 Example of the Move1. a Original solution, b resulting solution

resulting solution. It is easy to see that this move always produces feasible solutions
(except the case of |A| = 1, since it is mandatory to have at least one element in A).

The second neighborhood N2 contains all solutions produced by removing one
vertex from A (symmetrically from B) and inserting it in B (symmetrically in A). In
this case, we could obtain an infeasible solution. In order to overcome this situation,
if we move a vertex v ∈ A to B we additionally move the adjacent vertices (in the
corresponding set) to the separator. This move, denoted as Move2, is mathematically
described as follows:

Move2(v, {A, B,C}) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A ← A\{v}\NA(v)

B ← B ∪ {v}
C ← C ∪ NA(v)

if v ∈ A

B ← B\{v}\NB(v)

A ← A ∪ {v}
C ← C ∪ NB(v)

if v ∈ B

where NA(v) (simmetrically NB(x)) contains the adjacent vertices of v contained in
A (i.e., NA(v) = {u ∈ A : (u, v) ∈ E}). Figure 4 illustrates this type of move.
Specifically, Fig. 4a shows the original graph where the vertex involved in the move
is highlighted (vertex 8). Figure 4b shows the resulting solution which is infeasible,
since there exists an edge between A and B (edge (5, 8)). In order tomake this solution
feasible, the adjacents of vertex 8 in A (i.e., NA(8) = {5}) must be moved from A to
C . After that, the resulting solution is feasible (see Fig. 4c).

The third neighborhood N3 contains the set of solutions produced by removing one
vertex from the separator C and inserting it in either A or B. This move is denoted
as Move3. In order to maintain the feasibility of the solutions, we follow a similar
strategy than the one in N2. Therefore, we formally define this move as follows:

Move3(v, {A, B,C}) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A ← A ∪ {v}
B ← B\NB(v)

C ← C\{v} ∪ NB(v)

if v is inserted in A

A ← A\NA(v)

B ← B ∪ {v}
C ← C\{v} ∪ NA(v)

if v is inserted in B
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Fig. 4 Example of the Move2. a Original solution, b intermediate solution, c resulting solution

Figure 5 shows an example of this type of move. The first figure highlights the
involved vertex in the move (vertex 9). Figure 5b shows the resulting intermediate
infeasible solution after removing vertex 9 from C and inserting it in A. In order to
ensure the feasibility of all solutions in N3 [see edge (9, 10) in Fig. 5b], all the vertices
adjacent to 9 in set B (i.e., NB(9) = {10}) must be included in the separator (Fig. 5c).

The effectiveness of a move directly depends on how it changes the value of the
objective function. In particular, the VS problem is a minimization problem so any
move which reduces the number of vertices in the separator is an improving move.
Given a solution {A, B,C}, we can predict the change of the objective function if
we move vertex v with any of the three different moves defined above. In order to
simplify the MoveValue description, the vertex weights are assumed to be 1. This
prediction is denoted as MoveValuei (v, {A, B,C}) where the value of i indicates
the type of move performed (with 1 ≤ i ≤ 3). Considering Move1, the associated
move value is 1 since one vertex is removed from either A or B and inserted in
C . Therefore, it always deteriorates the value of the objective function in one unit
(MoveValue1(v, {A, B,C}) = 1, ∀v ∈ V ).

Move2 considers moves of vertices between A and B. Then, the variation produced
in the objective function is:

MoveValue2(v, {A, B,C}) =
{ |NA(v)| if v ∈ A

|NB(v)| if v ∈ B

This value depends on |NA(v)| or |NB(v)|, which are always larger than or equal
to zero. Therefore, the new solution can only be equal or worse than the original one.
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Fig. 5 Example of the Move3. a Original solution, b intermediate solution, c resulting solution

Finally,Move3 considersmoves between the separator and A or B. In this situation,
the associated move value is defined as:

MoveValue3(v, {A, B,C}) =
{ |NB(v)| − 1 if v ∈ A

|NA(v)| − 1 if v ∈ B

The quality of the new solution again depends on the value of |NA(v)| or |NB(v)|.
Therefore, the best possible move is able to improve the current solution by only one
unit (this implies that |NA(v)| = 0 or |NB(v)| = 0).

Taking into account the definition of move values given above, we will not be
able to find better solutions by exploring N1 or N2 in isolation. For that reason, we
proposed two local search strategies LS1 and LS2 based on a nested exploration
strategy of composed neighborhoods. In particular, LS1 considers N1 and N3, while
LS2 considers N2 and N3. Algorithm 3 shows the pseudo-code of LS1. We do not
include the pseudocode of LS2 since it is similar when Move1 is replaced by Move2
(step 6). The algorithm first identifies the set of candidate vertices, set S, to be moved
in N1 (step 3). Then, the corresponding neighborhood is explored (steps 4–16), where
the vertex to be moved is selected at random (step 5). Notice that we have tested other
strategies to select vertices with insignificant influence in the outcomes. The move is
performed in step 6, producing a new solution {A′, B ′,C ′} in N1. After that, the local
search intensively explores N3 (steps 7–12), updating the best solution found (step 9).
If we find a better solution in N3, the incumbent solution is updated (step 14) and the
algorithm performs a new iteration. Otherwise, the local search tries to move the next
vertex in set S. The algorithm ends when no improvement is found.
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Algorithm 3: LS1({A, B,C})
1: improved ← FALSE
2: while not improved do
3: S ← A ∪ B
4: while not improved and S �= ∅ do
5: v ← Select(S)
6:

{
A′, B′,C ′} ← Move1(v, {A, B,C})

7: for all u ∈ C ′ do
8: if MoveValue3(u,

{
A′, B′,C ′}) < 0 then

9:
{
A′, B′,C ′} ← Move3(u,

{
A′, B′,C ′})

10: improved ← TRUE
11: end if
12: end for
13: if improved then
14: {A, B,C} ← {

A′, B′,C ′}

15: end if
16: end while
17: end while

Wefurther investigate the explorationof the three neighborhoods byusing aVariable
Neighborhood Descent (VND) procedure. As it was described above, given a solution,
it is not possible to find a better one in neither N1 nor N2. Therefore, the VND uses the
composed neighborhoods described above. VNDobtains a local optimumwith respect
to the first composed neighborhood. Then, instead of abandoning the search (as a local
search procedure), VND resorts to the other composed neighborhood searching for
an improvement. If we find an improving move, we again start exploring the first
composed neighborhood. At the end of the search VND ensures that the returned
solution is a local optimum with respect to both composed neighborhoods.

The process iterates over each neighborhood while improvements are found, per-
forming local search until a local optimum is found at each neighborhood. Only strictly
better solutions are accepted after each neighborhood search.

5 Computational experiments

This section reports the computational experiments that we performed for testing the
effectiveness and efficiency of the proposed VNS for solving the VS problem. The
algorithm was implemented in Java SE 7 and the experimentation was conducted on
an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB RAM. The proposed algorithm was
tested over the current VS benchmark which consists on 104 instances (with size
ranging from 11 to 191) with known optimum. These instances are adapted [21] from
the well-knownMatrix Market benchmark,1 in order to produce difficult instances for
the VS problem. De Souza and Balas [21] confirm that the hardness of the instances
increases with the number of vertices and density. Additionally, a relevant parameter
that also affects to the difficulty is the value of the size constraint b. Specifically, they

1 http://math.nist.gov/MatrixMarket/.
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suggest to set this factor to 2n/3. A detailed description of these instances can be
found in de Souza and Balas [21].

The experiments are divided into two stages. In the first stage we use a subset of
25 representative instances of the current VS benchmark to test our algorithms and
tune their parameters (kstep and kmax ). In the second stage, once our best algorithm
is identified, we compare it with the best previous methods, proposed in [3,21]. Both
previous algorithms are exact methods, so we test the time needed by our approach to
obtain the optimum value and compared with the time needed by the exact methods.
Tables 1, 2, 3, 4, 5 and 6 report the average quality over all instances, Avg.; the CPU
time in seconds, Time (s); the average percent deviation with respect to the optimum
value, Dev. (%); and the number of optimum values found, #Opt.

In the first experiment we compare the performance of the proposed constructive
procedures (C1 andC2) described inSect. 3.Wegenerate one solution for each instance
of the preliminary testbed with each constructive procedure. The root for tree-based
structure for C2 is selected at random. Table 1 shows that C1 is able to obtain a lower
deviation than C2. However, C2 obtains one more optimum solution than C1. The
time needed by both methods to construct a solution is neglectable (less than 0.01 s).
We then select both constructive methods to analyze their performance coupled with
the local search methods, since it is not possible to identify the best algorithm.

In the next experiment we test the performance of the two constructive procedures
coupled with the local search methods proposed, LS1 and LS2 (see Sect. 4). For each
instance, we have constructed one solution and improved it with the corresponding
local search. Table 2 shows that C2 coupled with LS1 obtains the best average quality,
aswell as largest number optimum solutions found. The time needed to improve a solu-

Table 1 Comparison of the
proposed constructive
procedures

Avg. Time (s) Dev. (%) #Opt

C1 26.88 0.00 72.02 8

C2 31.12 0.00 92.01 9

Table 2 Comparison of the
constructive procedures coupled
with the local search methods

Avg. Time (s) Dev. (%) #Opt

C1+LS1 23.08 0.01 22.58 11

C1+LS2 22.60 0.01 14.90 13

C2+LS1 22.44 0.00 21.66 16

C2+LS2 22.52 0.00 12.36 13

Table 3 Performance of the
best local search method (LS1)
with different number of
iterations

Avg. Time (s) Dev. (%) #Opt

C2+LS1 (1) 22.44 0.01 21.66 16

C2+LS1 (25) 20.80 0.07 1.08 21

C2+LS1 (50) 20.76 0.11 0.41 22

C2+LS1 (100) 20.72 0.24 0.30 23
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Table 4 Performance of the
two VND algorithms proposed
and the best local search

Avg. Time (s) Dev. (%) #Best

C2+LS1 20.72 0.24 0.30 23

C2+VND1 20.68 0.53 0.12 24

C2+VND2 20.68 0.55 0.20 24

Table 5 Performance of GVNS
using different values of kstep
and kmax

kmax kstep Avg. Time (s) Dev. (%) #Best

0.15 0.01 20.68 4.53 0.12 24

0.02 20.68 4.50 0.12 24

0.05 20.68 4.49 0.12 24

0.25 0.01 20.72 4.54 0.24 24

0.02 20.68 4.52 0.12 24

0.05 20.68 4.51 0.12 24

0.50 0.01 20.68 4.65 0.12 24

0.02 20.64 4.56 0.00 25

0.05 20.68 4.52 0.12 24

Table 6 Performance of GVNS
compared with the best previous
algorithms

Avg. Time (s) Dev. (%) #Opt

GVNS 20.89 4.78 0.00 104

Souza and Balas [21] 20.92 213.52 0.08 103

Biha and Meurs [3] 20.89 171.22 0.00 104

CPLEX 20.90 9.35 0.03 103

tion is again neglectable. We identify C2+LS1 as the best combination of constructive
plus local search.

The third experiment studies the influence of performing several independent exe-
cutions instead of constructing only one solution. This strategy is usually denoted as
Multi-Start methods (see [16]). The constructive procedures proposed in this paper
are not deterministic, so each construction will find a different solution. Specifically,
C2 is able to obtain |V | different solutions, depending on the vertex used as the root of
the level tree. Table 3 shows the performance of C2+LS1 when considering 1, 25, 50,
and 100 independent iterations. As expected, the CPU time increases with the number
of iterations. However, this experiment shows that the computing time linearly grows
with the number of iterations. What it is even more important, the deviation and the
number of optima are significantly improved (without expending large running times).
Then, we consider a multi-start strategy with 100 independent iterations for the rest
of the experimentation.

In the fourth preliminary experiment, we compare the performance of the VND
with the best local search in isolation (LS1). We additionally compare the order of
exploration of the corresponding neighborhoods. In particular VND1 firstly explores
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the composed neighborhood N1–N2 and then N2–N3, while VND2 performs the sym-
metric exploration. Results in Table 4 confirm that both VND procedures compare
favorably with the simple local search method. Additionally, considering the results
of each VND variant, we conclude that VND2 emerges as the best procedure since it
presents the best deviation with similar CPU time.

The next experiment consists of selecting the best GVNSvariant by running a single
full-factorial experiment. In particular, we consider kstep = {0.01n, 0.02n, 0.05n} and
kmax = {0.15n, 0.25n, 0.50n}where n identifies the number of vertices of the instance.
Notice that each GVNS variant considers C2, VND2 and a multi-start strategy as
concluded above. Results in Table 5 show that the difference among the variants are
relatively small.We select kstep = 0.02n and kmax = 0.50n since the associatedGVNS
variant reaches all the optima in the considered set of instances. We therefore select
this procedure to be used in further comparisons

In the secondpart of this section,we compare our bestGVNSprocedurewith the cur-
rent state of the art in the VS problem. In particular, with the exact methods presented
in [3,21], using the set of 104 instances reported in these papers. The results obtained
by these two methods have been directly taken from the original source (where max-
imum computing time was set to 1,800 s). We have also included the in this Table the
results obtained by CPLEX 12 (executing the mathematical model introduced in [21]),
using the same time limit. If an exact method does not finish the exploration within
the time limit, it returns the best solution found without guaranteeing the optimality.

Table 6 shows the results obtained in this experiment. As we can see, our method
is able to find all optima in less than 5 s (notice that the GVNS does not guarantee the
optimality of the solution). On the other hand, de Souza and Balas does not find the
optimal solution in one instance. Additionally, it does not guarantee the optimality in
fivemore instances. It is important to remark that the method is almost 50 times slower
than our GVNS. The algorithm of Biha and Meurs presents better performance since
it is able to find all the optima in the considered instances. However, the computing
time is considerably larger (35 times) than time needed by th GVNS. CPLEX is able
to optimally solve 100 out of 104 instances. Analyzing the remaining four instances,
CPLEX finds the optimal solution in three of them, but it is not able to certify it. It is
important to remark that in these four instances CPLEX finishes its execution since
the exploration tree does not fit in memory. Finally, notice that the computing time of
CPLEX is really competitive, requiring only 9 s on average to reach the optimal value.

We would like to highlight that is is really difficult to compare running times of
algorithm executed in different computers, implemented by different programmers and
even different programming language. Therefore, the time analysismust be considered
as a qualitative comparison.

In sight of the results obtained in the previous experiment, we can conclude that this
set of instances is easily solved by our method and even by CPLEX. In our opinion,
these instances should no longer be considered for future studies since they do not
allow us to evaluate the actual performance of the compared methods. We therefore
propose to use two new set of instances well-studied in the optimization literature:

– Barabasi–Albert (BA): this set of is instances is constructed with an algorithm for
generating randomscale-free networks using apreferential attachmentmechanism.

123



General VNS for computing graph separators 1083

These networkds are widely observed in natural and human-made systems, includ-
ing the Internet, the world wide web, citation networks, and some social networks.
We construct 95 instances where the number of vertices is 100 ≤ n ≤ 1, 000 and
the node degree is randomly selected from [1, n].

– Erdos–Renyi (ER): this set contains instances (graphs) where the corresponding
vertices are randomly connected. Each graph is usually denoted asG(n, p), where
n indicates the number of vertices and p represents the probability of connecting
a pair of vertices (independent from every other edge). Obviously, the larger the
value of p, the denser the associated graph. We construct 95 instances where
the number of vertices ranges from 100 to 1,000 and the probability is randomly
selected from [0.2, 1.0] (ensuring that the resulting graph is connected).

We refer the reader to http://www.optsicom.es/vswhere these instances are publicly
available as well as other relevant information (best known solution, execution time,
etc.). As it is recommended by [21], the maximum size of the separator is set to
b = 2n/3. These instance are actually a real challenge for modern heuristic methods.

In the last experiment we compare our best GVNS variant with CPLEX (executed
again for a maximum computing time of 1,800 s). We do not provide the results of
the two branch-and-bound procedures, since we do not have the executable code.
However, as it is shown in the previous experiment, the results of CPLEX and the two
branch-and-bound procedure are comparable. Therefore, it is expected that both exact
procedure would have a performance similar to CPLEX.

Table 7 reports a summary of the results obtained by both procedures. Tables 8
and 9 in the Appendix present the individual results for each instance of Barabasi–
Albert and Erdos–Renyi sets, respectively. We consider an additional column (#Best)
to indicate the number of times that either GVNS or CPLEX match the best solution
since the optimal value is not known for the majority of these instances. Notice that
CPLEX does not guarantee the optimality when (1) the maximum computing time is
exceeded or (2) the exploration tree does not fit in memory.

Attending to these results, we can concluded that GVNS consistently produces
better results than CPLEX in both sets. In particular, in Barabasi–Albert set, GVNS
reaches the same number of optimal solutions (10 out of 95) than CPLEX. In the
remaining 85 instances, our procedure only misses 13 best solutions (obtaining the
best solution in 72 out of 85 instances). The average deviation (0.16 %) and average
objective function (279.25) also compares favorably with those obtained by CPLEX
(1.15% and 283.16). Finally, GVNS is almost 30 faster. The results in the Erdos–Renyi
confirm the superiority of our method. Specifically, when the optimum is known (5

Table 7 Comparison of GVNS with CPLEX 12 in all set of instances

Algorithm Avg. Time (s) Dev. (%) #Best #Opt

Barabasi-Albert CPLEX 283.16 1,064.13 1.15 46 10

GVNS 279.25 36.56 0.16 72 10

Erdos-Renyi CPLEX 296.57 885.52 1.23 53 5

GVNS 292.02 33.89 0.10 86 5
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instances), GVNS finds it. In the remaining instances, GVNS obtains the best result
in 86 (out of 90) instances, achieving lower average deviation (0.16 vs. 1.15 %) and
average objective function (292.02 vs. 296.57). Again the computing time of the
propose procedure is considerably shorter (33.89 vs. 885.52 s).

6 Conclusions

In this paper we have proposed a General Variable Neighborhood Search (GVNS) for
the Vertex Separator (VS) problem. As far as we know, it is the first heuristic procedure
for general graphs. Specifically, we have introduced two constructive procedures, the
first one basically constructs a feasible random solution, while the other constructs a
tree-level structure. We also propose three different neighborhoods based on feasible
moves. Considering the structure of a VS solution, we conclude that the exploration
of those neighborhood in isolation does not drive to high quality solutions. There-
fore, we present an exploration of the neighborhood in pairs using two different local
search algorithms. We also investigate a deeper exploration of those composed neigh-
borhoods by means of using a Variable Neighborhood Descendant (VND) approach.
We embed the most promising strategies in GVNS, when we study the effect of using
a jump neighborhood change function. The proposed methods have been tested on
a large benchmark consisting of 104 well-known instances in the existing literature.
Specifically, the GVNS has been able to find the optima in all of them. We finally pro-
pose two new sets of harder and challenging 190 instances to be the new benchmark
for future comparisons of modern heuristics in solving the VS problem.

Acknowledgements This research has been partially supported by the Spanish Ministry of “Economía y
Competitividad”, Grant Ref. TIN2012-35632-C02-02.

7 Appendix

Tables 8 and 9 report the individual result obtained by the GVNS method. Each
column shows, respectively, the vertex separator value (VS), computing time (Time) in
seconds, number of vertices (n), number of edges (m), value of b and the construction
parameter of the instance: node degree parameter used in the construction of the
instance (N. deg.) for the Barabasi–Albert instances and the link probability parameter
used in the construction of the instance (prob.) for the Erdos–Renyi instances. The
maximum computing time in both sets is limited to 0.05 ·n s. The optimum values are
highlighted in bold font.
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