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Energy demand prediction is an important problemwhose solution is evaluated by policy makers in order
to take key decisions affecting the economy of a country. A number of previous approaches to improve
the quality of this estimation have been proposed in the last decade, the majority of them applying dif-
ferent machine learning techniques. In this paper, the performance of a robust hybrid approach, com-
posed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme
Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining
the most relevant features among the set of initial ones, by including an exponential prediction model.
While previous approaches consider that the number of macroeconomic variables used for prediction
is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search
method optimizes both: the number of variables and the best ones. After this first step of feature selec-
tion, an Extreme Learning Machine network is applied to obtain the final energy demand prediction.
Experiments in a real case of energy demand estimation in Spain show the excellent performance of
the proposed approach. In particular, the whole method obtains an estimation of the energy demand with
an error lower than 2%, even when considering the crisis years, which are a real challenge.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Total energy demand forecasting in a country is an important
problem faced by decision makers every year [1]. In fact, energy
demand has increased sharply at a worldwide scale, mainly due
to an aggressive industrialization of developed and developing
countries in the last 3 decades. Just in this respect, industrialization
consumes over 50% of the total energy demand in developing
countries, alternatively, the rapid population growth and global-
ization also contribute to the high energy consumption all around
the world.

In this context it is well known that, as the economy grows, the
energy demand increases exponentially, what brings along impor-
tant environmental issues that may compromise the future of next
generations. Currently, 80% of the energy demand in the world is
covered by non-renewable energy sources such as coal or petro-
leum, with more dramatic values of this indicator foreseen at
developing countries. Consequently, countries with a growing
industrial activity happen to be more energy demanding than
others with economies based on alternative sectors. In this context,
predicting medium and long-term energy demand is a key problem
faced by policy makers, with impact in all countries’ economies
and nations’ development [2].

Different previous approaches have tackled this important
problem of energy demand estimation, from different perspectives.
Interestingly, many of the previous approaches have been focused
on estimating energy demand in emerging economies such as Tur-
key. The most important ones are described here: one of the first
works dealing with a problem of energy demand estimation in Tur-
key is [3], where a genetic algorithm to optimize the parameters of
an exponential prediction model has been proposed. Four socio-
economic variables such as Gross Domestic Product, population
and imports and exports figures were used to carry out this energy
demand prediction, with annual resolution, and future projection
for all the predictive variables and the energy demand in the
country. From that initial work, there have been very different
approaches focused on small variations of this problem, also
in case studies in Turkey. In [4] a problem of primary energy
demand is tackled, with a classical ARIMA forecasting approach
(box-jenkins methodology). The authors presented as well future
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Nomenclature

Acronyms
ACO Ant Colony Optimization
BVNS Basic Variable Neighborhood Search
ELM Extreme Learning Machine
FS Feature Selection
GA Genetic Algorithm
GDP Gross Domestic Product
GVNS Variable Neighborhood Search
HS Harmony Search
kTOE kilotonne of oil equivalent

LB Lower Bound
MAE Mean Average Error
MLP Multi-Layer Perceptron
PSO Particle Swarm Optimization
RVNS Reduced Variable Neighborhood Search
SVNS Skewed Variable Neighborhood Search
UB Upper Bound
VND Variable Neighborhood Descent
VNDS Variable Neighborhood Decomposition Search
VNS Variable Neighborhood Change
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scenarios for energy demand based on projections of the predictive
variables. The deep global crisis of 2008 made these projections
completely fail to reproduce the real behavior of energy demand.
In [5] an Ant Colony Optimization (ACO) approach was presented
in a similar problem of energy demand estimation in Turkey. In
this case the system had to optimize the parameters of a quadratic
estimation model for the energy demand prediction, and the pre-
dictive variables were the same as in [3]. A similar approach with
ACO algorithm has been presented in [6] for the estimation of elec-
tricity energy generation and demand in Turkey, also with a quad-
ratic prediction model and socio-economic predictive variables. In
[7] a Particle Swarm approach (PSO) is proposed for this problem,
including two prediction models, a linear and a quadratic one. Five
predictive variables are considered in that work, the ones in [3]
plus the country’s growth rate in the years of analysis. In [8] a
PSO algorithm is also applied, in this case to a problem of electric-
ity demand in Turkey, considering linear and quadratic models.
Soon later, the same authors proposed a prediction model based
on a hybrid PSO and ACO algorithms in [9], with similar predictive
variables and models. In [10] three different models for energy
consumption have been proposed: multiple-linear regression anal-
ysis, power regression analysis and artificial neural networks. The
predictive variables considered are socio-economic variables simi-
lar to the ones used in previous approaches, plus unemployment
rate. In [11] artificial neural networks are applied to study energy
dependence of Turkey. In this case a larger number of socio-
economic predictive variables are considered, and the effect of
the crisis is also taken into account to make future projections of
energy demand in the country.

Alternative approaches have been also applied to energy
demand estimation in other countries. In [12] an approach based
on neural networks (multi-layer perceptrons) have been consid-
ered for South Korea, using same predictive variables that in [3].
A similar approach based on neural networks for the case of energy
demand estimation in Greece has been presented in [13]. A com-
parison with kernel methods has been carried out in that paper,
showing good results on the neural networks’ performance.
Recently, some works have been published on the application of
a hybrid PSO-GA algorithm in energy demand estimation problems
in China. Specifically, in [14] a PSO-GA has been applied to a prob-
lem of energy demand forecasting in China. Three different predic-
tion models, linear, exponential and quadratic are considered, and
the predictive variables are economic growth, population, eco-
nomic structure, urbanization rate, energy structure and energy
price. Two similar approaches with the same algorithm and differ-
ent objective variable has been subsequently published: [15],
where a problem of energy demand future projection has been
considered, and [16] where energy demand forecasting in the
primary section has been considered. In [17] several new models
based on logarithmic and alternative exponential functions are
used, optimized by a real-encoding evolutionary algorithm for
energy demand estimation for metal industry in Iran. More
recently, in [18], a Harmony Search (HS) approach with feature
selection has been proposed for a problem of energy demand esti-
mation in Spain. In that paper the HS algorithm looks for the best
set of features and the optimal weights for an exponential model,
in order to obtain a model for energy demand estimation in Spain.
An initial pool of 14 predictive variables is considered, and the
objective is to estimate the energy demand with an annual time
horizon prediction. A second prediction problem with CO2 as
objective variable is also explored in that paper. In [19] a problem
of electricity demand forecasting in Italy is considered. Linear
regression models have been applied in this case. A similar
approach for the case of New Zealand, with multiple linear regres-
sion algorithms, with socio-economic and demographic variables
has been tackled in [20].

This paper discusses a problem of one-year-ahead energy
demand estimation in Spain from socio-economic variables, using
a novel hybrid algorithmic approach for optimization and predic-
tion. First a Variable Neighborhood Search (VNS) approach is con-
sidered to find the most relevant features among the set of
available ones, with an exponential prediction model similar to
the one proposed in [3]. On the other hand, an Extreme Learning
Machine (ELM) neural network makes use of the feature selection
performed by the VNS to carry out the final energy demand predic-
tion. The paper details both algorithms, and the different adapta-
tions that are implemented, mainly in the VNS, to improve the
prediction capability of the proposed hybrid approach.
Experiments in a real case of energy demand prediction from
socio-economic predictive variables in Spain are carried out. It is
worth mentioning that previous approaches consider that the
number of features is set to a fixed value. In other words, if this
number is p, the corresponding optimization algorithm selects
the best p features among the whole set of features. However,
p should be also a parameter to be optimized since there is not a
priori information to determine it. The main contribution of this
paper is not assuming this starting hypothesis, considering p as
parameter to be also optimized. In particular, the proposed VNS
finds an undetermined number of features that minimizes the
difference between prediction and the actual energy demand. A
new methodological contribution to the VNS framework is also
proposed in this work: given a solution to an optimization prob-
lem, traditional VNS algorithms navigate over the search space
by means of perturbations (shake procedure) and improvements
(local search). These two operations are applied over the whole
solution. In this paper, a new mechanism where the perturbation
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only affects to a part of the solution (feature selection), while the
improvement stage is focused on the other part of the solution
(parameter adjustment), is explored for the prediction problem
at hand.

The remainder of the paper is structured as follows: Section 2
describes the problem of energy demand estimation tackled in this
work. Section 3 presents the proposed approach, by describing the
main characteristics of the VNS and ELM algorithms. Section 4
describes the experimental evaluation of the proposed algorithms,
where the performance of the proposed approach is compared to
that of alternative algorithms for prediction of energy demand.
Finally, Section 5 closes the paper with some ending conclusions
and remarks.
2. Problem definition

Let us consider a time series E , fEðtÞgnt¼1 of past energy
demands for a given country, with n discrete values corresponding
to different years; and a set of m predictive variables
X ¼ fX1ðtÞ; . . . ;XmðtÞg, with t ¼ 1; . . . ;n. A model M provides an

estimation Ê for E. The problem tackled in this paper consists of
finding both: the best subset X0#X of m0 6 m features out of the
m possible variables in X; and the values W for the parameters
of the modelM, where W ¼ f�;a1; . . . ;am0 ; b1; . . . ; bm0 g; � is a bias,
which is not related to any feature selected, and the pair ai; bi

represents the coefficients of feature X0i with 1 6 i 6 m0. For this
problem, the modelM used to estimate the energy demand is an
exponential model as was previously suggested in [3,18]. More
formally,

Êðt þ 1Þ ¼ �þ
Xm0
i¼1

aiX
0
iðtÞbi ð1Þ

The quality of a solution S ¼ ðX0;WÞ is evaluated using a given
objective function, usually related to the similarity of the model
output to the real energy demand values. In this case, it is consid-
ered that the mean squared error between the observed values and
the predicted ones, which is to be minimized. In mathematical
terms:

f ðSÞ ¼ 1
nH

XnH
j¼1
ðEðjÞ � ÊðjÞÞ2; ð2Þ

where nH is the size of a reduced training sample (nH < n).
For the sake of clarity, a solution S of this model is repre-

sented by using two different parts, X’ and W. The first one refers
to the subset of selected features in M (as it was previously
introduced). For instance, X0 ¼ fX1;X3;X4;X5g represents a solu-
tion where features X01 ¼ X1;X

0
2 ¼ X3;X

0
3 ¼ X4, and X 04 ¼ X5, are

selected from the whole set X of m features. Notice that the
remaining m� jX0j features are discarded in this particular solu-
tion. Once the subset of selected features in M have been
selected, we need to provide the values for the coefficients of
the model.

An example will illustrate how to evaluate a solution by using
the aforementioned representation. Let us consider the solution
S ¼ ðX0;WÞ, where X0 ¼ fX1;X3;X4;X5g, and W ¼ f3:4;0:1;�0:05;
0:3;0:01;�0:2;�0:1;0:05;0:33g. As it can seen, for each feature
X 0i, a pair of coefficients, ai and bi, plus the first bias coefficient, �,
are provided. If the values of the selected features for a given year
are X1 ¼ �0:2;X3 ¼ 0:1;X4 ¼ 0:7;X5 ¼ �0:4, then they can be used
in the model to predict the energy demand for the next year (t + 1)
as follows:
Êðt þ 1Þ ¼ �þ a1 � X01ðtÞb1 þ a2 � X 02ðtÞb2 þ a3 � X03ðtÞb3 þ a4 � X04ðtÞb4
¼ �þ a1 � X1ðtÞb1 þ a2 � X3ðtÞb2 þ a3 � X4ðtÞb3 þ a4 � X5ðtÞb4
¼ 3:4þ 0:1 � ð�0:2Þ�0:05 þ 0:3 � 0:10:01 � 0:2 � 0:7�0:1

þ 0:05 � ð�0:4Þ0:33
¼ 3:34

It is important to remark that each feature is normalized in the
range ½�1;1� (as it is customary in this context). Additionally, and
to avoid scale problems, each parameter of the model takes on a
value in the interval ½�1;1�. Finally, the bias parameter � considers
a larger range of values, ½�5;5�, in order to increase the margin of
the model to obtain a better fit.

The above formulation corresponds to a class of the so-called
Feature Selection (FS) problem. It is an important task in super-
vised classification and regression problems because irrelevant
features, used as part of the training procedure can unnecessarily
increase the cost and running time of a prediction system, as well
as degrade its generalization performance [21].
3. Materials and methods

This paper proposes the use of two different artificial intelli-
gence approaches in order to perform the one-year-ahead energy
demand prediction. The first one is a meta-heuristic named Vari-
able Neighborhood Search (VNS), which consists of a systematic
exploration of different predefined neighborhoods. The second
one is a Extreme Learning Machine (ELM), a neural network char-
acterized by a fast training stage. Each of the proposed methods
focuses on different goals. On one hand, VNS is used to find the
most relevant features among the set of available ones. On the
other hand, ELM makes use of the feature selection performed by
VNS to perform the energy demand prediction. In the next subsec-
tions, detailed description of the VSN and ELM approaches are
given, and how they have been applied to this specific problem
of energy demand prediction.
3.1. Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic origi-
nally proposed [22] as a general framework for solving hard opti-
mization problems. VNS is based on performing systematic
changes of neighborhood during the search space exploration, in
order to escape from local optima. This methodology is in constant
evolution, which has resulted in a large variety of strategies, where
the most relevant are Reduced VNS (RVNS), Variable Neighborhood
Descent (VND), Basic VNS (BVNS), Skewed VNS (SVNS), General
VNS (GVNS) or Variable Neighborhood Decomposition Search
(VNDS). A complete survey on VNS has been recently presented
in [23]. Some recent successful applications of VNS to solve hard
optimization problems are [24], where the Cutwidth Minimization
Problem is tackled, [25], where the VNS is applied to compute opti-
mal graph separators or [26], which describes an application of the
VNS to the Vertex Separation Problem.

In the problem tackled in this work, the quality of a selected
subset of features, X0, cannot be evaluated without adjusting the
parameters of the model, W. Therefore, there is not a priori infor-
mation available about which features are suitable to be included
in the solution. Furthermore, the features are not independent,
since the result of including a feature in a solution depends on
which other features have been already included on it. Thus it is
not easy to design a local search method that operates over the
whole solution, but only on part of it. This paper focuses on the
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Basic VNS (BVNS) variant, but applying the local search method
only to a part of the solution. Algorithm 1 presents the pseudo-
code of the proposed algorithm.

Algorithm 1. Basic Variable Neighborhood Search (S; kmax)

1: while not StoppingCriterion do
2: k ¼ 1
3: while k 6 kmax do
4: Ss  ShakeðS; kÞ
5: Sls  LocalSearchðSsÞ
6: if f ðSlsÞ < f ðSsÞ then
7: S Sls
8: k 1
9: else
10: k kþ 1
11: end if
12: end while
13: end while

The method needs two different parameters: S and kmax. The
former represents the initial solution, while the latter refers to
the maximum neighborhood to be explored. The initial solution
considered is constructed by randomly selecting a subset of fea-
tures. Starting from the first neighborhood (step 2), the algorithm
iterates until reaching the largest neighborhood allowed (steps
3–12). In each iteration, BVNS randomly perturbs the incumbent
solution to obtain a new solution Ss in the current neighborhood.
After that, the local search procedure is applied to the perturbed
solution, generating an improved solution Sls. Finally, if Sls outper-
forms the incumbent one, the search starts again from the first
neighborhood (k ¼ 1, updating the best solution found). Otherwise,
the search continues with the next neighborhood (k ¼ kþ 1) until
reaching the largest neighborhood kmax. The algorithm stops when
reaching the stopping criterion (steps 1–13). There are different
criteria available to stop a stochastic optimization algorithm [27].
Tolerance, number of function evaluations, and maximum number
of iterations are some examples. In this case, the number of itera-
tions has been selected as stopping criterion. It is important to
remark that the perturbation is performed in the selected features,
X0, while the local search method is applied over the parameters of
the model, W.

The perturbation performed is described in Algorithm 2. Given
the perturbation size (k), the methodmodifies k features at random
(steps 1–8). Then, for each randomly selected feature (step 2), the
method either adds it to the solution if it is not included (step 4), or
removes it otherwise (step 6).

Algorithm 2. Shake(S ¼ ðX0;WÞ; k)

1: for i 2 1 . . . k do
2: j randomð1;mÞ
3: if Xj 2 X0 then
4: X0  X0 n Xj

5: else
6: X0  X0 [ Xj

7: end if
8: end for

The local search proposed in this work, called Line Search, is
intended to fit the parameters of the model. These parameters
belong to the real numbers domain (i.e., f�;ai; big;2 R 8i 2 m0).
Therefore, the parameter adjustment is suitable to be solved by
global optimization strategies. Line Search is one of the most
commonly used strategies for improving solutions in global opti-
mization, which has lead to several successful research [28]. Given
a solution S ¼ ðX0;WÞ and a parameter pi 2 f�;ai; bi8i 2 jX0jg of the
model, the Line Search for S in the pi direction is represented as
lsðS;h; piÞ, where h is the width of the uniform grid of the
discretized search space. Therefore, it is possible to reach all the
feasible solutions belonging to the h-grid by modifying parameter
pi in S. Algorithm 3 presents the pseudo-code of the line search
method proposed.
Algorithm 3. LineSearch(S; h)
1: C f1;2; . . . ;2m0 þ 1g
2: while jCj > 0 do
3: j randomðCÞ
4: C C n fjg
5: w LBj

6: while w 6 UBj do
7: S0  UpdateSolutionðS; j;wÞ
8: if f ðS0Þ < f ðSÞ then
9: S S0

10: C f1;2; . . . ;2m0 þ 1g
11: end if
12: w wþ ðUBj � LBjÞ=h
13: end while
14: end while

The method starts by creating a list with all the parameters
involved in the search (step 1). Then, it iterates over the parameter
list until there is not available parameters to improve (steps 2–14).
In each iteration, the method selects a parameter at random from
the list of available parameters (step 3), removing it from the list
(step 4). Then, given the lower (LBi) and upper (UBi) bounds of
the parameter (given by the model), the method traverses the grid
for this parameter, starting in the lower bound (step 5), and per-
forming a total of h evaluations in the grid of the parameter, where
h is a parameter of the algorithm. For each iteration, the method
evaluates the quality of the solution when setting the new value
of pi (step 7). If an improvement is found, the solution is updated
and the list of parameters to be explored is reset to the initial set
to restart the search (steps 9–10).
3.2. Extreme Learning Machines

The second part of the prediction is performed by an Extreme
Learning Machine (ELM), which is based on the structure of
Multi-Layer Perceptrons (MLP) but with a extremely fast training
stage. ELM was recently proposed in [29], and it has been success-
fully applied to a wide variety of classification and regression prob-
lems [30–32]. The structure of the ELM used in this problem is
similar to the one given in Fig. 1. The ELM consist of three main lay-
ers: the input layer, which is intended to receive the set of inputs
to be used; the hidden layer, where the inputs are evaluated using
a given activation function and calculating the weights associated
to them; and, finally, the output layer, where the ELM returns the
value obtained for a given input.

The most relevant feature of ELM is the reduced computing
time needed for the training stage. This is mainly because the
training mostly consists of randomly setting the network weights
and then computing the inverse of the hidden layer output matrix.
Furthermore, this faster training stage does not affect to the perfor-
mance of the ELM when comparing it with traditional neural



Fig. 1. Outline of the Extreme Learning Machine structure.
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networks, resulting in better outcomes than classical MLPs or Sup-
port Vector Machines, see [33] for a deeper analysis in ELM theory.

In mathematical terms, the ELM consists of a training set
N , fðxi; tiÞjxi; ti 2 Rn; i ¼ 1; . . . ;NTg (where NT represents the
number of samples selected for the training set), an activation

function gðxÞ and a number of hidden nodes eN . The training stage
of the ELM can be divided in three steps. In the first one, it assigns

at random input weights wi and bias bi for each i 2 eN . The second
step consists of calculating the output matrix H for the hidden
layer, using the activation function and the weights of the first
step. Specifically, the element ði; jÞ of h is given by gðwixj þ biÞ.
Finally, the third step calculates the output weight vector c as
the Moore-Penrose inverse of H [29] multiplied by the training out-
put vector.

The ELM needs two additional parameters to work: the number
of hidden nodes and the activation function. While the former is a
free parameter and needs to be adjusted in order to obtain good
results (normally it is performed by scanning a range of integer
values), the latter is more limited, to a number of well-known acti-
vation functions: sigmoidal, sine, hardlim, etc. Then, it is necessary
to perform a preliminary test to select the best number of hidden
nodes and the best activation function according to the problem
under consideration.
1 This data can be downloaded at http://www.optsicom.es/edpp/eddp.zip.
3.3. Hybrid approach

The algorithm proposed consists of a hybrid approach which
combines the Basic Variable Neighborhood Search with an Extreme
Learning Machine in order to perform the energy prediction. The
algorithm uses BVNS to select the best macroeconomic features
from the set of available ones, while the aim of ELM is to perform
the energy demand prediction based on the selected features.

Fig. 2 represents the flowchart of the BVNS+ELM algorithm. It
starts by executing the BVNS method during a maximum number
of iterations. The initial solution for BVNS is a random selection
of features with their associated weights also randomly selected,

fXrnd;Wrndg. Then, BVNS is executed a fixed number of iterations,
starting each of them from the best solution found during the

search, fXbvns;Wbvnsg. BVNS finishes when the maximum number
of iterations is reached. ELM then performs the training phase
using the features selected by BVNS, Xbvns, being able to perform

an estimation of the energy demand Ê with the parameters
adjusted for the previously selected features.

4. Experimental part

The test case considered for the experimentation1 is a real prob-
lem of energy demand estimation in Spain, previously addressed in
[18]. The available data have been collected in the year range 1980
to 2011. For each year, a set of m ¼ 14 variables have been recov-
ered. Specifically,

1. Gross Domestic Product (GDP).
2. Population.
3. Exports (amount of money traded in exporting goods in

Euros).
4. Imports (amount of money traded in importing goods in

Euros).
5. Energy production (kTOE).
6. Electricity power transport (kW/h).
7. Electricity production (kW/h).
8. GDP per unit of energy use.
9. Energy imports net (% of use).

10. Fossil fuel consumption (kW/h).
11. Electric power consumption (kW/h).
12. CO2 emissions total (Mtons).
13. Unemployment rate.
14. Diesel consumption in road (kTOE).

The data has been split into training and test sets. The former
consist of data obtained in 15 different years, while the latter con-
tains the data of the remaining 16 years. Training and test sets
have been generated at random, but keeping years 2010 and
2011 in the test set in order to check the behavior of the model
when considering years of crisis.

The main goal of the proposed algorithm is to become a useful
tool to facilitate the work of a decision maker. Considering that the
BVNS (devoted to select the best subset of features) and the ELM
training (devoted to optimize the energy prediction demand) are

http://www.optsicom.es/edpp/eddp.zip


Table 1
Performance of BVNS with different values of kmax. Common features selected in all
cases are highlighted in bold font.

kmax MAE (%) Selected variables

2 3.40 {4, 7, 9, 11, 13, 14}
4 2.10 {3, 4, 8, 9, 11, 13}
6 2.59 {1, 3, 4, 5, 8, 9, 11}

10 2.86 {2, 3, 4, 6, 7, 9, 11, 12}
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Fig. 2. Flowchart of the hybrid BVNS+ELM algorithm.
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executed off-line (i.e., they are run only once), computing time is
not a relevant result to be analyzed. In other words, a decision
maker only needs to feed the BVNS+ELM algorithm (already opti-
mized) with a given subset of features and it returns almost imme-
diately the corresponding energy demand prediction. However, for
the sake of completeness, note that the computing time for the
BVNS is set to 10 s per iteration, yielding to maximum of 5 min,
while the ELM requires about 5 s to optimize the prediction.

The first experiment is intended to select the best parameters
for the BVNS algorithm. A value of 1000 has been experimentally
set for the Line Search parameter h in all variants. In this case,
the number of iterations has been set to 25 (in order to maintain
a reasonable computing time) and different values for kmax has
been tested (specifically, kmax ¼ f2;4;6;10g). Table 1 shows the
performance of each variant, reporting the relative mean absolute
error (MAE, in %) obtained in the test set once the exponential
parameters have been fixed.

The results presented in Table 1 show that kmax ¼ 4 is the best
variant, resulting in a MAE of 2.10%. It is important to remark that
the MAE increases together with the size of the largest neighbor-
hood. However, the smallest neighborhood (kmax ¼ 2) presents
the worst results with respect to MAE, which may indicates that
kmax ¼ 2 is a relatively small neighborhood to be used in this prob-
lem. These results agree with the observation made in [23], where
authors recommend to use small values of kmax. Therefore, it has
been decided to use kmax ¼ 4 in the BVNS algorithm.

Fig. 3 shows the comparison between the energy demand pre-
diction obtained with BVNS and the real values. As it can be seen,
the prediction is really accurate, even in the years of the economic
crisis, starting in 2008. Regarding the selected variables, it is
important to remark that macroeconomic variables import (4),
energy imports net (9), and electric power consumption (11), have
been selected in the four variants. The best one has additionally
selected GDP per unit of energy use (8) and unemployment rate
(13), resulting in a subset of six different variables selected.

The main objective of the next experiment is to select the best
activation function and number of neurons in the hidden layer for
the proposed ELM. A set of traditional activation functions has
been selected: sigmoid (sig), sine (sin), hard limit (hardlim), trian-
gular basis (tribas), and radial basis (radbas). The number of neu-
rons in the hidden layer, # Neurons, is selected by scanning the
integer range ½5;10�. Table 2 presents the performance of the
ELM with all the possible combinations of the selected parameters.
Specifically, for each pair of activation function and number of neu-
rons (# Neurons), the minimum (min) and the average (avg) MAE
obtained in 10 runs over the training set have been reported.

These results allow us extracting relevant information about the
ELM configuration. In this case, the most remarkable idea that can
be derived is that the results obtained by the hard limit function
are not competitive with the remaining results. This can be par-
tially explained by the binary nature of the function, with no
smoothness in the weight evaluation. In the case of triangular
basis, the results, although better than hard limit, are not good
enough to be considered on average when compared with radial
basis, sine or sigmoid.
If the sine function is analyzed, it can be seen that it maintains
an average good performance in all the cases, but it is not able to
outperform the results of the sigmoid or sine function, which are
able to obtain the best results when considering all possible num-
ber of neurons in the hidden layer. Both sigmoid and radial basis
present a comparable performance, but in this case, sigmoid has
been selected as activation function, and 7 neurons in the hidden
layer for the final experiment, since this configuration presents
the lowest value in both minimum and average MAE.

The final experiment consists of analyzing the performance of
the ELM once the BVNS has already selected the best features for
the exponential model. Therefore, the ELM has been trained with
the features selected by BVNS presented in Table 1: {3, 4, 8, 9,
11, 13}. Since the ELM is not deterministic, it has been executed
10 times, storing the best MAE obtained. The obtained results are
compared with the ELM when no feature selection has been per-
formed (i.e., it uses all the available features). In order to better sit-
uate the contribution of the proposed procedure, it has been also
compared with the current state of the art. Specifically, the results
obtained by a Harmony Search (HS) approach (that uses the same
exponential model), and an ELM which uses the features previ-
ously selected by the HS, have been included. The reader is referred
to [18] for thorough description of these approaches.

Table 3 shows the results obtained. The first and second rows
report the performance of the heuristic procedures to select fea-
tures. The proposed BVNS achieves a remarkable MAE (2.10%)



1985 1990 1995 2000 2005 2010

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Year

E
ne

rg
y 

D
em

an
d 

(k
TO

E
) *

10
5 Method

Actual energy demand
BVNS
ELM
BVNS+ELM

Fig. 4. Real energy demand versus BVNS, ELM and BVNS+ELM prediction in the test
set considered.

Table 2
Performance of ELM with different activation functions and number of neurons in the hidden layer.

Activation function

sig sin hardlim tribas radbas

min avg min avg min avg min avg min avg

# Neurons 5 2.21 4.56 2.07 3.41 10.36 20.11 3.41 9.54 1.66 3.40
6 1.44 2.91 1.18 2.31 15.70 20.59 1.80 6.18 1.50 2.15
7 0.36 0.90 1.02 1.76 11.38 21.37 2.00 9.63 0.94 1.62
8 1.04 1.42 0.90 1.32 6.08 18.44 1.73 2.77 0.95 1.58
9 0.76 1.16 0.56 0.97 9.93 16.86 0.86 2.53 0.38 0.96

10 0.48 0.92 0.51 0.94 9.58 14.85 0.69 1.40 0.63 0.91

Bold values stand for the best case found in the experiments.

Table 3
Performance of BVNS with different values of kmax.

kmax Best MAE (%) Average MAE (%) Selected variables

HS 2.36 4.05 [1, 2, 3, 7, 8, 9, 12]
BVNS 2.10 – [3, 4, 8, 9, 11, 13]
ELM 2.22 4.16 All
HS+ELM 2.16 3.72 [1,2,3,7,8,9,12]
BVNS+ELM 1.66 3.90 [3, 4, 8, 9, 11, 13]

Bold value stands for the best case found in the experiments.
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while the HS obtains a 2.36% (in the best case) and 4.05 % (in aver-
age). Notice that BVNS is a deterministic algorithm, so the best and
average results are exactly the same. The best solution obtained
with the BVNS algorithm is the following:

Ê ¼ 0:69þ 0:28 � X0:08
3 � 0:026 � X�0:9964 � 0:142 � x0:448

þ 0:004 � X�0:719 þ � � � þ 0:778 � X0:872
11 þ 0:02 � X�0:69213 ð3Þ

The selected features can be used by an alternative regression
method to further improve the results. Specifically, an ELM has
been chosen, which has shown an excellent performance in previ-
ous regression problems [29]. The performance of the ELM that
considers the whole set of features has been set as the baseline
approach to be beaten. It obtains a best and average MAE of
2.22% and 4.16%, respectively. The proposed BVNS+ELM is able to
outperform the best procedure in the related literature (HS
+ELM), when considering the best MAE (1.66% vs. 2.16%). Notice
that the HS+ELM presents a slightly better behavior in terms of
average MAE. This fact can be partially explained by the stochastic
nature of the ELM.

Fig. 4 represents the prediction performed by BVNS, ELM and
ELM with BVNS feature selection (BVNS+ELM) when compared
with the actual energy demand for each year selected in the test
set. As it can be seen, the three proposed algorithms fits good with
the actual values. However, the combination of BVNS with ELM is
able to obtain a better fit in the conflictive years related to the cri-
sis, and a special case, 1994, where there was a decrement in the
energy demand. For that reasons, the combined method emerges
as the best algorithm to predict the energy demand.
5. Conclusions

This paper presents a novel hybrid meta-heuristic approach
formed by a Variable Neighborhood Search (VNS) and an Extreme
Learning Machine (ELM) neural network for tackling a problem of
total energy demand estimation in Spain. VNS is a meta-heuristic
that has shown a great potential to explore difficult search spaces.
It results as an excellent global search approach in this problem of
energy demand estimation, where it is used to obtain a reduced set
of features for tackling the prediction of the energy demand. On the
other hand, the ELM is an extremely fast training neural network,
recently proposed, and applied to a large variety of different pre-
diction problems. The hybridization of both techniques leads to a
robust approach to tackle the prediction of the total energy
demand from socio-economic variables. Experiments in a real case
in Spain have shown the good performance of the proposed hybrid
approach, by obtaining better results than previous approaches for
this problem. The final prediction system designed is able to obtain
accurate one-year-ahead energy demand estimation, which works
even in the crisis years (from 2008 and years after). This system
could be of help for policy makers and practitioners who must deal
with energy demand estimation at nation level.
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[23] Hansen P, Mladenović N, Moreno-Pérez J. Variable neighborhood search:
methods and applications. Ann. Oper. Res. 2010;175(1):367–407.
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