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Abstract We tackle a combinatorial problem that consists of finding the optimal configura-
tion of a binary matrix. The configuration is determined by the ordering of the rows in the
matrix and the objective function value is associated with a value B, the so-called bandpass
number. In the basic version of the problem, the objective is to maximize the number of
non-overlapping blocks containing B consecutive cells with a value of one in each column
of the matrix. We explore variants of this basic problem and use them to test heuristic strate-
gies within the scatter search framework. An existing library of problem instances is used
to perform scientific testing of the proposed search procedures to gain insights that may be
valuable in other combinational optimization settings. We also conduct competitive testing
to compare outcomes with methods published in the literature and to improve upon previous
results.
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1 Introduction

The bandpass problem is associated with early-generation DWDM (DenseWavelength Divi-
sion Multiplexing) systems in fiber optic networks [8,16,27]. This technology used the band
concept to allow the transmission of several wavelengths in a single fiber-optic cable. Wave-
lengths enter or leave the fiber optic cables via a set of devices known as OADMs (Optical
Add/DropMultiplexers), which are installed along the fiber optic cable at origin and destina-
tion points [16,18]. OADMs contain special cards that control the wavelengths and identify
which wavelengths should pass through the device and which should be dropped. Typically,
several wavelengths pass through the same OADM. The wavelengths may be handled as a
block when they are consecutive. A block of wavelengths is known as a bandpass. With-
out this assembling of wavelengths, a card is needed for each wavelength. However, when
a bandpass is created, a single card can handle the entire block of wavelengths. The num-
ber of wavelengths in the block is referred to as the bandpass number (B). Therefore, the
process of creating a wavelength block results in a reduction of cards from B to 1 and hence
a cost reduction in the design and maintenance of the fiber optic network. The optimization
opportunity is to assign wavelengths in order to maximize the number of bandpasses with a
bandpass number of B.

This bandpass problem was first described by Bell and Babayev in the Annual INFORMS
Meeting held in Denver Colorado in October 2004 and the first publication appeared in
2009 [1]. Since then, newer generations of DWDM systems have been developed to add
more flexibility. This newer equipment employs reconfigurable optical ADMs (ROADMs)
for which the band concept does not apply. The ROADM is a dynamic wavelength arrange-
ment scheme enabled by wavelength selective switching. These new systems, however, are
much more expensive and therefore the older systems still have a market in small DWDM
deployments.

The bandpass problem consists of creating blocks of wavelengths that need to be sent
from a set of origins to a set of destinations. The goal of the blocks is to reduce the number
of devices needed for the transmission of the wavelengths, resulting in a decrease of both
installation and maintenance costs. The telecommunication network is modeled as a m × n
binary matrix A, where ai j is equal to 1 if wavelength i must be delivered to destination
j. In the basic version of the problem, the value of B (i.e., the bandpass number) is given.
A bandpass is formed by B consecutive 1s in the same column. Each value of 1 can only
be used for one bandpass and therefore two distinct bandpasses in the same column cannot
have a common element. Figure 1a shows a network with 6 wavelengths and 5 destinations.
The network shows that, for instance, wavelength 1 must be delivered to all but the third
destination. Assuming that B = 3, the matrix in Fig. 1a contains 3 bandpasses, as indicated
by the gray blocks, where O refers to the ordering of the wavelengths, that is, O (i) is the
index of the wavelength assigned to row i .

In Fig. 1a, the bandpass for column 1 is shown as rows 1, 2, and 3. However, the bandpass
for that column could also be formed by rows 2–4 or 3–5. Regardless of which one is chosen,
there can only be one bandpass in column 1. In order to increase the number of bandpasses,
the assignment of wavelengths to rows could be changed. This assignment could also be
thought of as a reordering of the rows in the matrix. For instance, Fig. 1b shows the matrix
that results by assigning wavelength 4 to row 5 and wavelength 5 to row 4. In other words,
wavelengths 4 and 5 have exchanged positions from the original lexicographical order shown
in Fig. 1a. The reassignment results in an increase of bandpasses from 3 to 4.
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Fig. 1 Bandpasses for two possible assignments of wavelengths to rows

For a given bandpass number B, the bandpass problem consists of finding an ordering
O∗ of the rows that maximizes the number of bandpasses. The upper bound on the number
of bandpasses in column j is given by:

b̄ j =
⌊∑

i ai j
B

⌋

Therefore, if f (O) is the number of bandpasses in solution O, then the objective function
value of an optimal solution O∗ is bounded as follows:

f
(
O∗) ≤

∑
j

b̄ j

For B = 3, the upper bound for the example in Fig. 1 is 5 bandpasses. It can be easily verified
that this upper bound is achieved by the optimal solution O = (5, 4, 1, 6, 3, 2).

Babayev, Bell, and Nuriyev [1] refer to the problem described above as BP1. They also
suggest an alternative version of the problem, denoted by BP2, which reflects some specific
network technologies. In this second version, a total of up toG+1 groups of rows are created,
where the first G groups have B rows. That is, the first group consists of rows 1 to B, the
second group consist of rows B + 1 to 2B, and so on. If the remainder of the m/B quotient is
greater than zero, then an additional group with the last m − GB rows is created. The value
of G is determined by:

G =
⌊m
B

⌋

A bandpass in BP2 is defined as a column within a group for which all its elements are
nonzero. If the group is one of the first G, then the bandpass contains B nonzero elements.
For group G + 1, if it exists, the bandpass contains m − GB elements with nonzero values.
As mentioned in [1], this model reflects some specific equipment constraints. In contrast
with BP1, the group of rows that can form bandpasses are all the same across columns.
Figure 2 shows an optimal solution to BP2 for the example matrix shown in Fig. 1. This
solution corresponds to the row ordering O = (2, 3, 6, 1, 4, 5) . Note that because m = 6
and B = 3 then G = 2 and the remainder of m/B is zero. Therefore, there are only 2 groups,
one consisting of the first three rows in the matrix and the second one consisting of rows 4
to 6.
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Fig. 2 Optimal solution to BP2 for matrix in Fig. 1

For BP2, the order of the rows within each group is not relevant and thus, for instance,
O = (2, 3, 6, 1, 4, 5) is the same solution as O = (6, 3, 2, 5, 4, 1) or as any ordering where
the first three rows contain the wavelengths 2, 3, and 6. A permutation vector clearly is not an
effective solution representation for BP2 given that it creates a search space withm! solutions
while the number of unique solutions for a BP2 instance with G groups of size B is given
by:

m!
(B!)G G!

In the example of Fig. 2, there are 720 permutations of the rows but only 10 unique ways of
creating two groups of 3 rows. A more direct representation is given by S for which S (i) is
the index of the group to which wavelength i is assigned.

Both BP1 and BP2 assume that the value of B is given. Kurt et al. [19] argue that fixing
the value of B may not be optimal and therefore they suggest an optimization model in which
B becomes a decision variable. However, since the range of relevant values for B is expected
to be somewhat limited, the optimization process to determine the best value for B can be
achieved by simply solving BP1 multiple times. We do not address this variant as a separate
version of the problem.

The third version that we include in our study is the one introduced by Nuriyev et al.
[25] and for which Gürsoy and Nnuriyev [17] developed a genetic algorithm. This is the
so-called multi bandpass problem (MBP). In this version, instead of a single B value across
the entire network, each destination j has its own Bj value. The assumption is that ADMs
may be programmed independently from each other with different bandpass numbers. In
the MBP, the input data include the Bj values for j = 1, . . . , n. An extension of the MBP,
suggested by Kurt et al. [19], turns the Bj values into variables. This extension is referred to
as the “Optimization of Lengths in the Multi-Bandpass Problem”. The optimization problem
involves not only finding the best ordering of the rows in the matrix but also the best bandpass
number for each destination. The literature does not include any experimentation on this
problem and it is not clear whether the extension corresponds to an actual technology for
which the Bj values can be optimized within a given range. We do not address this variant
here.

The literature on the bandpass problem is limited to seven articles [1,2,17,19,21,22,25].
Mathematical models for BP1 and BP2 are presented in [1] along with a NP-hard proof of
BP1. Babayev, Bell, andNuriyev [1] developed two solution procedures: an exact polynomial
algorithm for BP1 with n = 2 and a heuristic for the general case. The authors also report
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optimal solutions for BP1 problem instances with m ≤ 32 and n ≤ 8, found by solving
a mathematical programming model. A description of a generator of problem instances is
provided and used to produce 90 instances with m = 64 and 96 and n = 8, 12, 16, and 25.
These instances are divided into two groups of 45 instances each, one for which the optimal
solutions are known (OS instances) and one for which the optimal solutions are not known
(BKS instances). Collectively, these problems are referred to as the Library of Bandpass
Problems (BPLIB).1 No experiments are performed for BP2 in [1]. Additional mathematical
proofs for special cases of BP1 are provided in [21,22].

Berberler and Gürsoy [2] developed four variants of a genetic algorithm and applied
them to the 45 OS instances in BPLIB. Optimality gaps are reported for all variants in all
problem instances. Several GA variants are also developed and tested in [19]. This article
introduces a new set of problems for the MBP. The data include both the Bj values and the
binary A matrix.2 Finally, some of the same authors in [1,19] are co-authors of [25] where
mathematical models for BP1, BP2, and MBP are presented. Some of these models already
appeared in [1,19] and some are new. No additional experimentation or results are included
in [25].

Our current investigation into this problem class includes BP1, BP2, and MBP. We use
these problems as a platform to test heuristic strategies within the scatter search (SS) frame-
work. An existing library of problem instances is used to perform scientific testing to identify
the contributions of several search strategies. In particular, we develop and test:

• Two diversification generation methods.
• Four improvement methods.
• Two combination methods.
• A scatter search method, SS1, for which solutions are represented by an ordering O of

the wavelengths and therefore equipped to tackle BP1 and MBP instances.
• A scatter search method, SS2, for which solutions are represented as an assignment S of

wavelengths to groups and that it is configured to solve BP2 instances.

We also conduct competitive testing to compare the solutions obtained with SS1 and SS2
with the best methods published in the literature for these problems (DSR [1], GAs [2,
17]). In addition, we compare performance against commercial optimizers, one based on
metaheuristic technology (LocalSolver) and the other built on exact procedures (Gurobi).

2 Standard scatter search methods

Scatter search (SS) [13,20] is a population-based metaheuristic framework that consists of
methods that generate, maintain, and transform a reference set of solutions (Ref Set). The
methods are organized as shown in Algorithm 1. Basic and advanced SS implementations
have been developed for a variety of problems (see, e.g., [5,10,23,26,29]). In this section,
we describe the implementation of the standard methods within the SS framework that we
developed for BP1, BP2, andMBP. Two solution representations are used: 1) O , the ordering
of the wavelengths (for BP1 and MBP); and 2) S, the group assignment (for BP2). Since the
search strategies are linked to the solution representation, the same SS procedure is used to
search for solution to BP1 and MBP.

1 The Library of Bandpass Problems can be found here http://sci.ege.edu.tr/~math/BandssProblemsLibrary/.
2 Problem instances introduced in [19] are found here http://fen.ege.edu.tr/arifgursoy/mopt/.
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Diversifica�on generator
Improvement
Ini�al 
do

Subset generator
Combina�on
Improvement

update
un�l termina�on is criteria sa�sfied

Algorithm 1 Sca�er search template.

Following the template in Algorithm 1, we implemented standard methods for creating
the initial Ref Set , for generating solution subsets, and for updating the Ref Set . The diver-
sity generator and the improvement method (which will be described in Sections 3 and 4,
respectively) are applied first to produce a population P of feasible solutions to the problem.
Then, the initial Ref Set (of size β) is built by first selecting the β/2 best (in terms of the
objective function value) solutions from P. The selected solutions are removed from P. Then,
the β/2 most diverse solutions with respect to those currently in the Ref Set are selected
from it p. Because the selection of the most diverse group of elements out of a set is a hard
problem (see, e.g., [7]), the solutions are heuristically selected one at a time.

Any diversification strategy requires a measure of distance between any two solutions.
The distance for each solution representation is measured as follows.

p
(
O, O ′) =

m∑
i=1

|O (i) − O ′ (i) |

c
(
S, S′) = m − number of common elements

p
(
O, O ′) represents the so-called positional distance in permutation vectors (see Das and

Roberts [4]), where O (i) is the wavelength in row i. To calculate c
(
S, S′), we count the

number of common assignments between both solutions by matching the groups in S with
the groups in S′. For each group and its match, we identify the wavelengths that are assigned
to both (i.e., the common elements). The matching problem has the following form:

Maximize
∑

k

∑
l
ckl xkl

Subject to
∑

l
xkl = 1 ∀k

xklε{0, 1} ∀k, l ∈ [1, . . .m]
In this problem, xkl = 1when group k in solution S is matchedwith group l in solution S′. The
ckl value indicates the number of common elements in groups k and l. The total number of
common elements is given by cx∗, where x∗ is an optimal solution to the matching problem.
Then, c

(
S, S′) = m − cx∗.

For the sequential selection of the β/2 diverse solutions to be included in the reference set,
a maxmin criterion is used. The goal at each step is to find the solution that has the maximum
distance between itself and the solutions currently in the reference set. The distance between
a solution in P and the solutions in the reference set depends on the solution representation,
as follows:
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d (O, Ref Set) = min
O ′∈Ref set

p
(
O, O ′)

d (S, Ref Set) = min
S′∈Ref set

c
(
S, S′)

Then, at each step of the process, the solution R from P that has the maximum distance
between itself and the solutions currently in Ref Set is selected to be added to the reference
set. Mathematically, R is identified as follows:

R = arg max
X∈P

d (X, Ref Set)

where X is either O or S, depending on the solution representation. Solution R is added to
Ref Set and deleted from P.This is repeated β/2 times in order to complete the Ref Set with
β solutions. As shown in Algorithm 1, the iterative process begins after the initial Ref Set
has been created. This process consists of selecting subsets of reference solutions to perform
combinations that will result in new trial solutions. These solutions are then considered for
inclusion in the reference set once they have been subjected to the improvement method.
As recommended in [20], we employ a standard subset generation method that consists of
selecting all pairs of reference solutions that contain at least one new solution. A new solution
is one that has been added in the previous iteration of the do-loop in Algorithm 1. In the first
iterations, all the solutions are new and therefore the number of subsets generated the first

time around equals

(
β

2

)
.

The updating of Ref Set occurs at the end of each iteration. This is where the new solutions
that were generated by the combination method and potentially improved by the improve-
ment method are considered for membership in the reference set. The goal of the updating
procedures is to maintain both quality and diversity in the reference set. Therefore, a solution
is admitted to the reference set if its objective function value is better than the objective
function value of the worst solution in the current reference set. For the sake of diversity,
a solution that passes the above quality test replaces the reference solution that is closest
to it according to the distance measures described above. This means that a solution that is
included in the reference set does not necessarily replace the worst reference solution, unless
the worst solution in the current Ref Set happens to be the closest to this new reference
solution.

3 Diversification generation method

The diversification generator is one of three scatter search methods that are problem-specific.
That is, this method along with the combination and improvement methods take advantage
of the problem context to create a customized solution procedure within the scatter search
framework. Like it is often done to induce diversification, our method relies on a controlled
randomization process. Controlled randomization refers to a strategy that makes reference to
the objective function value while constructing solutions. This is in contrast to full random-
ization where solutions are constructed without any support or direction from the objective
function.

Algorithm 2 summarizes the steps performed by the diversification generation method
for solutions represented as an ordering of the wavelengths. The set U consists of all the
wavelengths that have not been assigned to a row. Initially, U contains all m wavelengths
in the problem and the solution O being constructed is empty. The iterative process assigns
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one wavelength at a time and ends when no more unassigned wavelengths are left (i.e., when
U is empty). In each step, a wavelength k is randomly selected from U by the Random ()

function. The Best Row () function then searches for the best row i∗ where to assign k in the
partial solution O . In the first iteration, the selected wavelength is assigned to the first row,
that is i∗ = 1. In the i th iteration, there are i − 1 wavelengths in the partial solution and the
search for the best row i∗ consists of inserting wavelength k in the i − 1 available positions,
starting in row 1. The row that produces the largest increase in the objective function value
(i.e., that increases the number of bandpasses the most) is chosen as i∗. If no row assignment
from 1 to i − 1 is able to improve upon the current objective function value then i∗ = i,
meaning that wavelength k is assigned to the last row.

← {1, … , }

← ∅

while ≠ ∅ do
← ( )

∗ ← ( , )

( ∗) =

← \{ }

end while

Algorithm 2 Diversifica�on genera�on method for solu�ons represented by .

The controlled randomization aspect of the method is evident in Algorithm 2 by a random
selection of a wavelength that is followed by a purposeful search for the best row. The random
nature of the procedure enables it to generate the population of solutions needed to initiate
the scatter search.

Algorithm 3 shows the procedure for solutions represented by S that like Algorithm
2 is also semi-greedy [8] but that follows the tenets of GRASP [9]. For each candidate
wavelength, the method calculates a greedy function h1 (i, g) that consists of the number of
the potential bandpasses that result fromaddingwavelength i to group g. A potential bandpass
is a column within the group that contains all 1s after wavelength i has been added to the
group. The function counts potential bandpasses because the final existence of a bandpass is
not confirmed until B wavelengths are assigned to a group.

For instance, consider a problem with n = 5 and B = 4 and the two partial groups with
two wavelengths each shown in Fig. 3. Wavelengths 4 and 8 are already assigned to group
1. Wavelengths 3 and 6 are assigned to group 2. The construction procedure is considering
wavelength number 7 to be added to either group 1 or group 2. Each group in the example
has two potential bandpasses, destinations 1 and 4 for group 1 and destinations 2 and 4 for
group 2. Adding row 7 to group 1 preserves the potential of two bandpasses for that group
(see blocks with bold lines in Fig. 3). Adding wavelength 7 to group 2 reduces the potential
bandpasses to 1. Therefore, the greedy function evaluations for adding wavelength 7 to each
group are:

h1 (7, 1) = 2

h1 (7, 2) = 1

To initiate the diversification generation procedure for solutions represented by S, the
first wavelength is randomly chosen and is arbitrarily assigned to group 1 (see the first three
lines in Algorithm 3). In the iterative loop, the greedy function is calculated for each pair of
wavelength-group for allwavelengths inU and all groupswith fewer than Bwavelengths. The
wavelength-group combination (i∗, g∗) is chosen among those pairs for which h1 (i, g) ≥
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Group Wavelength
Destination

1 2 3 4 5

1

4 1 1 0 1 0
8 1 0 1 1 0
7 1 0 0 1 1

?

2

3 1 1 1 1 0
6 0 1 0 1 0
7 1 0 0 1 1

?

Fig. 3 Example of greedy group assignment

hmin + α · (hmax − hmin), where hmin and hmax are the minimum and maximum values of
h1 among all the candidate wavelength-group combinations. As is customary in GRASP, α
is a tunable parameter that varies between zero (random selection) and one (deterministic
selection).

← {1, … , }  
← ( )  
( ) ← 1  
← \   

while ≠ ∅ do 
 ( ∗, ∗)  ← ( , , )  
 ( ∗) ← ∗  
 ← \{ ∗}  
end while 

Algorithm 3 Diversifica�on genera�on method for solu�ons represented by  

A slight variant of this method is also tested in which the greedy function, h2 (i, g),
includes the number of bandpasses “eliminated” by adding a wavelength i to group g. That
is, h2 (i, g) is the difference between potential bandpasses and eliminated bandpasses. A
wavelength eliminates a bandpass in a group if it adds a zero to a column that previously
contained all 1s within the group. Under this variant, the h2 values for the example in Fig. 3
are h2 (7, 1) = 2 and h2 (7, 2) = 0 because adding wavelength 7 to group 2 eliminates the
potential bandpass at destination 2.

4 Improvement method

In scatter search, solutions that are either constructed by the diversification generator or
created by the combination method are subjected to an improvement process that is typically
based on neighborhood searches. The search in an improvement method is local, meaning
that it stops as soon as no improved solution is found in the neighborhood of the current
solution. Four improvement methods were developed and tested for solutions represented by
an ordering O of the wavelengths:
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IM1 Best insertion

IM2 Best swap

IM3 Block merging

IM4 Variable neighborhood descent

All these improvementmethods treat the bandpass problem as a search for the best ordering of
a set of elements. The search neighborhood in IM1 is built via insertions of each wavelength
in each row. Let O be the solution before the insertion of wavelength O (i) in row k, and O ′
the solution after the insertion:

O = (O (1) , . . . , O (i − 1) , O (i) , O (i + 1) , . . . , O (k − 1) , O (k) , O (k + 1) , . . . , O (m))

O ′ = (O (1) , . . . , O (i − 1) , O (i + 1) , . . . , O (k − 1) , O (k) , O (i) , O (k + 1) , . . . , O (m))

All insertions are attempted and the best is chosen. The procedure stops when no insertion
results in an increase of the number of bandpasses in the current solution. The same best-move
strategy is used by IM2 with the difference that swaps define the neighborhood instead of
insertions. A swap between the wavelengths in rows i and k transforms O into O ′ as follows:

O = (O (1) , . . . , O (i − 1) , O (i) , O (i + 1) , . . . , O (k − 1) , O (k) , O (k + 1) , . . . , O (m))

O ′ = (O (1) , . . . , O (i − 1) , O (k) , O (i + 1) , . . . , O (k − 1) , O (i) , O (k + 1) , . . . , O (m))

IM3 is significantly different from IM1 and IM2. This improvement method analyzes the
binary matrix associated with the current solution to identify higher-order exchanges. In
particular, for each column in the matrix of the current solution it searches for two blocks
of non-zero elements, one primary block with B − 2 wavelengths and one secondary block
with 2 wavelengths, where a block has non-zero elements in consecutive rows. Once these
two blocks have been identified, the secondary block is merged “at the end” of the primary
block by rearranging the row assignments of the wavelengths in the secondary block. This
merger forms a new bandpass, however, the row reassignment of the two wavelengths in
the secondary block could have eliminated one or more bandpasses in other columns. In an
attempt to reestablish those bandpasses or finding newones, an exhaustive search is performed
among the rows corresponding to the new bandpass. This means that all permutations of the
rows are explored in order to identify the best. The process is repeated for primary blocks
with B −3 wavelengths, then B −4 wavelengths, and so on until the number of wavelengths
in the primary block reaches 2. This local search procedure terminates when no improvement
is possible after exploring all destinations.

Figure 4 shows a simple example of one move in IM3. As in previous examples, the
gray blocks indicate the bandpasses. Figure 4a shows the current solution with an objective
function value of 3. In this figure, the primary block identified by IM3 is the one with the
black background, which corresponds to wavelengths (rows) 5 and 6 in destination (column)
3. The secondary block is shown as a solid bold outline, corresponding to wavelengths (rows)
2 and 3 in destination (column) 3. As prescribed by the IM3 logic, the secondary block is
inserted at the end of the primary block. This means that rows in the secondary block are
removed and inserted right below the rows in the primary block, and then all rows (except
the first one) are shifted up. The result of this exchange is an increase in the number of
bandpasses, as shown in Fig. 4b. It can be shown that no permutation of the last four rows
(i.e., the ones that participated in the exchange) results in a better solution.
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Fig. 4 Example of a move in IM3

IM4 combines IM2 and IM3 in the framework of a variable neighborhood descent (VND).
VND employs multiple neighborhoods that are typically ordered in increasing level of com-
plexity [24]. The first neighborhood is applied until no improvement is possible. At that time,
the second neighborhood is explored until an improved solution is found at which point the
search reverts back to the first neighborhood and the process starts again. If no improved
solution is identified, then the search moves to the next neighborhood. The entire VND ends
when the last (and often the most complex) neighborhood is not able to identify an improved
solution. In our case, we only use two neighborhoods: IM2 and IM3. The VND starts with
IM2 and it identifies the first local optimum. Then, IM3 is applied and as soon as an improved
solution is found it goes back to IM2. The search keeps alternating between IM2 and IM3
until IM3 fails to find an improved solution. The selection of IM2 followed by IM3 was
supported by a full-factorial experimental design where all orderings of two neighborhoods
and also all orderings of the three neighborhoods were considered. The experiment yielded
IM2 followed by IM3 as the best combination in terms of solution quality and exploration
time.

A single improvementmethodwas developed for solutions represented by S. Thismethod,
like IM2, is based on swaps, which preserve the feasibility of a solution. The neighborhood
search is organized in such a way that the groups are ordered by increasing number of
bandpasses, and hence the first group is the one with the least number of bandpasses and the
last group is the one with the largest number of bandpasses. The exploration is such that it
starts by attempting swaps of wavelengths from the first group with wavelengths in group
2 to G. Then, wavelengths in group 2 are exchanged with wavelengths in groups 3 to G,
and so on until wavelengths from group G − 1 are exchanged with wavelengths in group G.
If a trial swap results in an increase in the number of bandpasses, the swap is executed. In
other words, a first-improving strategy is used in this neighborhood exploration. The process
terminates when no more improving swaps can be identified.

5 Combination method

The combination method is a procedure that generates new solutions from a given subset
of solutions. As mentioned above, our implementation considers only subsets of size 2 (i.e.,
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pairs of reference solutions). Path relinking (PR) is used as themethod to create new solutions
from the subsets created by the subset generation method. PRwas originally proposed in [12]
and formalized in [13]. The main idea behind PR consists of creating a path (i.e., a sequence
of solutions) between two or more solutions. It is called relinking because the process was
conceived in the context of a solution method that performs neighborhood searches to move
from one solution to the next. In such a search, solutions are connected by the paths that
the procedure created to reach them. The relinking in that context refers to creating a new
path to connect solutions that are typically selected due to their elite status. In scatter search,
solutions in the reference set may not have historical paths that connect them. Hence, in most
cases, the application of PR to two reference solutions builds the first path between them.
The PR principles have been successfully applied to multiple problem classes and in a variety
of methodological frameworks, including tabu search [15], scatter search [29], and GRASP
[3].

Our first combination method based on PR (referred to as CM1) operates on solutions
represented by an ordering O . Given a pair of reference solutions, one is denominated the
initiating solution Oi and the other the guiding solution Og. PR consists of transforming the
initiating solution into the guiding solution by a sequence of moves. Consider for example
the initiating solution Oi = (5, 2, 3, 4, 6, 1) and the guiding solution Og = (5, 3, 2, 1, 4, 6)
shown in Fig. 5. The gray cells representwavelengths in positions that do not coincidewith the
positions that they occupy in the guiding solution. Swaps are used to make the transformation
from the initiating solution to the guiding solution, which is achieved in three moves. The
most-improving swap is chosen at each step as prescribed by a greedy path relinking process
[28]. The moves are represented by arrows that are labeled with the pair of wavelengths that
are swapping positions.

Initially, there are four swaps that transform the initiating solution into intermediate solu-
tions that move toward to the guiding solutions. The (6,1) swap results in an intermediate
solution with an improved objective function value. For this particular example, the relink-
ing process could stop at this point because the objective function value of the intermediate
solution matches the upper bound value of 5. However, for completeness, the figure shows
that, at each step, the relinking process continues from the best intermediate solution. In this
case, the solution resulting from the (4,1) swap is chosen and then the (2,3) swap completes
the process.

We developed a second combination method (referred to as CM2) based on a PR strategy
that has been recently suggested and that has been labeled Exterior Path Relinking (EPR)
[6,14]. EPR is a diversification strategy because, instead of moving the initiating solution
toward the guiding solution, it searches for intermediate solutions that move away from

Fig. 5 Path relinking example
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Fig. 6 Exterior path relinking example

the guiding solution. Figure 6 shows an EPR example applied to a Oi = (5, 2, 3, 4, 6, 1)
and the guiding solution Og = (5, 2, 6, 4, 3, 1). The process starts by randomly select-
ing one of the elements in Oi that occupies the same position in Og , these are the cells
with a gray background (i.e., 5, 2, 4, and 1 in the initiating solution). Assume that the
random selection is 5. Then another random selection is made among those elements
that, if swapped with 5, do not produce an increase in the number of wavelengths that
the resulting intermediate solution will have in the same position as in the guiding solu-
tion.

In Fig. 6, two possible paths are shows, where the left path is created by first swapping
5 and 6, while the right path is initiated by the swap of 5 and 3. Clearly, this process relies
heavily on randomization to create a diverse set of solutions that move away from the guiding
solution. A large number of paths could be created from any Oi and Og pair. As done in
[14], we generate additional solutions by reversing the roles of the initiating and guiding
solutions.

The path relinking for solutions represented by a group assignment S starts with the
solution of the matching problem described in Section 2. Recall that, given two solutions,
the problem matches the groups in one solution with the groups in the other solution
in order to maximize the total number of wavelengths assigned to the same group (also
referred to as the common elements). The optimal matching identifies the common elements
between an initiating solution Si and a guiding solution Sg . Then, swaps are performed
to move Si toward Sg . As done in CM1, the swap with the largest improvement of
the objective function is chosen. The process terminates when the guiding solution is
reached.

Table 1 shows the group assignments for two reference solutions for a BP2 instance with
m = 18 and B = 6, and therefore G = 3.

The matching problem associated with the solutions in Table 1 is:

Maximize x11 + 3x12 + 3x13 + 4x21 + x22 + x23 + x31 + 2x32 + 3x33
Subject to x11 + x12 + x13 = 1

x21 + x22 + x23 = 1

x31 + x32 + x33 = 1
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Table 1 Two reference solutions for a BP2 instances with m = 18 and B = 6

Solution Group 1 Group 2 Group 3

1 1, 3, 6, 9, 12, 17 2, 5, 8, 10, 11, 18 4, 7, 13, 14, 15, 16

2 1, 4, 5, 10, 11, 18 2, 3, 6, 12, 13, 15 7, 8, 9, 14, 16, 17

An optimal solution to this problem is x∗
12 = x∗

21 = x∗
33 = 1, resulting in the following

common elements:

Group1 : 3, 6, 12
Group2 : 5, 10, 11, 18
Group3 : 7, 14, 16

The PR process then starts by switching the labels of the first two groups in solution 2 (i.e.,
the original group 1 becomes group 2 and the original group 2 becomes group 1). Since
x∗
33 = 1, the original label for group 3 remains unchanged. Then, a sequence of swaps must

be performed to move the wavelengths 1, 2, 4, 8, 9, 13, 15, and 17 from their current group
in solution 1 to their group in solution 2. For instance wavelength 1 must be moved to group
2 and wavelength 2 must be moved to group 1. Therefore, a swap between wavelength 1 and
2 is considered since it moves solution 1 closer to solution 2.

6 Computational experiments

Before engaging in competitive testing, we performed a series of scientific tests to determine
the contribution of the various elements that we have designed for the two problem classes
defined by the solution representations. These experiments are also used to determine the best
SS configuration for each problem class. Henceforth, SS1 refers to the implementation for
which solutions are presented by an ordering O of the wavelengths and therefore equipped
to tackle BP1 and MBP instances. The SS2 procedure refers to the scatter search for which
solutions are represented as an assignment S ofwavelengths to groups and that it is configured
to solve BP2 instances. Table 2 summarizes the SS components for each SS implementation.

Our scientific testing focuses on determining the best combination of components for
each SS. All components were programmed in Java 8 and the experiments were executed
on an Intel Core i7 2600 (3.4 GHz) processor with 4 GB of RAM. We use the Library of
Bandpass Problems (BPLIB)3 for BP1 and BP2 and the MBP library (MBPLIB)4 for the
MBP. The BPLIB contains 90 instances, 45 referred to as OS and 45 referred to as BKS.
The OS instances were constructed in such a way that the optimal solutions are known for
BP1 but not for BP2. The BKS problems were randomly generated and optimal solutions
are not known for either BP1 or BP2. There are 45 instances with known optimal solutions
in the MBP library. We use the BKS instances for the scientific experimentation and reserve
the OS and the MBP instances for the competitive testing. This means that the experiments
used to configure SS1 include only BP1 instances and that the configuration is expected to
generalize to the MBP instances.

3 http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/.
4 http://fen.ege.edu.tr/arifgursoy/mbpopt/.

123

http://sci.ege.edu.tr/~math/BandpassProblemsLibrary/
http://fen.ege.edu.tr/arifgursoy/mbpopt/


J Glob Optim (2016) 66:769–790 783

Table 2 Summary of SS components for the two bandpass problem classes

Component SS1 (BP1 and MBP) SS2 (BP2)

Solution representation Ordering of wavelengths (O) Assignment of wavelengths
to groups (S)

Distance measure Positional distance Number of wavelengths
assigned to different groups

Subset generation method All pairs of reference
solutions

All pairs of reference
solutions

Initial reference set Half of the reference
solutions chosen by quality
and half by diversity

Half of the reference
solutions chosen by quality
and half by diversity

Reference set update Eligible new trial solution
replaces the reference
solution closest to it

Eligible new trial solution
replaces the reference
solution closest to it

Diversification generation Semi-greedy (random
selection of a wavelength
followed by best insertion)

GRASP construction with
two greedy functional
forms (h1 and h2)

Improvement method Four variants (IM1 to IM4)
based on exchanges of
positions

First-improvement swap of
group assignments

Combination method PR (CM1) and EPR (CM2)
based on swapping
positions

PR based on swapping group
assignments

A two-factor factorial design is employed to configure SS1 by fixing the population size
|P| to 100 and the reference set size β to 10, the default values suggested in the literature.
Also, the stopping criterion (see last line of Algorithm 1) is set as the iteration when no
trial solution is admitted to the reference set. Since there are four improvement methods
and two combination methods, the factorial design consists of 8 treatment combinations
with 45 replications each. For this experiment, the deviation from the best-known solution

is used as the response variable. The deviation is calculated as
(

f ∗− f
f ∗

)
, where f ∗ is the

objective function value of the best-known solution and f is the objective function value
of the solution obtained by the treatment combination. The ANOVA associated with the
experiment revealed that both main effects are significant, with p values smaller than 10−9.
However, the experiment did not detect a significant interaction effect between CM and IM,
as indicated by a p value of 0.881. Figure 7, a plot of the average deviation values (y-axis)
for each improvement method (x-axis), confirms this finding, where it can be observed that
the CM1 line (solid) does not cross the CM2 line (dotted).

Figure 7 shows that CM2 is more effective than CM1 regardless of the IM. It also shows
that the response obtained by the IM alternatives does not change with the choice of CM.
This means that the selection of the CM and the IM could have been done independently. The
experiment indicates that the best treatment combination and therefore the SS1 configuration
that is expected to yield the best results is CM2 with IM4.

In the process of conducting this experiment, 39 solutions were found that improved
upon the best-known solution currently published in the BPLIB website. We point out that
the website does not indicate how those solutions were found given that neither [1] nor
[2] reports results on these instances. The objective function values of the new best-known
solutions, which improve upon the current best-known solutions by an average of 16.2%, are
shown in “Appendix 1”.
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IM1 IM2 IM3 IM4
CM1 0.1295 0.1046 0.1622 0.0782
CM2 0.0496 0.0352 0.0797 0.0115
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Fig. 7 Plot of average response for all (CM, IM) treatment combinations

To configure SS2 we also fix |P| and β to their default values and execute the procedure
(Algorithm 1) a total of 10 times on each instance. Recall that the standard SS stopping
criterion (which we also use for SS1) terminates the search when the reference set does
not change, that is, when in a given iteration, no trial solution is admitted to the reference
set. In SS2, the procedure is allowed to rebuild the reference set by seeding it with the
incumbent solution. That is, the incumbent solution is placed in the new reference set first
and the remaining b − 1 solutions are added following the construction processes within
SS2. A two-factor factorial design is employed to study the effects of various α values and
the greedy functions h1 and h2. The α values included in the experiment are 0, 0.25, 0.5,
and 0.75. We also include a variant where the value of α is selected at random during the
search. This factorial design has a total of 10 treatment combinations and 45 replications. We
again use the average deviation—calculated as described above—as the response variable.
The ANOVA yielded p values of 0.03 and 0.00015 for the main effects associated with
the greedy functions and the α values, respectively. Hence, we consider both main effect
significant. The interaction effect between the two factors has a p value of 0.366. Therefore,
we conclude that there is no significant interaction between the choice of h and α. Figure 8 is
a graphical representation of the average deviations obtained by each treatment combination.

It can be concluded fromFig. 8 that h2 is generallymore effective than h1, exceptwhenα =
0. Also in general, increasing the value of α—thus making the construction less random—
improves performance (except for h1 and α = 0.5). Allowing α to change randomly during
the search seems to be better than using small α values. Given these results, the combination
h2 and α = 0.75 is selected.

We now turn our attention to the competitive testing for which we use the OS and theMBP
instances. The competitors for BP1 are the DSR (Different Start Rows) method of Babayev,
Bell, and Nuriyev [1] and the four variants of a genetic algorithm (GA1 to GA4) proposed
by Berbeler and Gürsoy [2]. Results of the OS instances associated with DSR and the GA
variants were obtained from [1,2] respectively. The articles do not report computational time.
For future reference, we report that the SS1 results shown in Table 3 were obtained in an
average of 875 seconds. In Table 3, OF Value refers to the average objective function value
and #Opt indicates the number of optimal solutions that each competitor is able to find out
of the 45 in the set. The column labeled GAP contains the average relative optimality gap
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0 0.25 0.5 0.75 Rand
h1 0.0943 0.0736 0.0814 0.0533 0.0588
h2 0.0997 0.0565 0.0398 0.0327 0.0513

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

AV
ER

AG
E 

DE
VI

AT
IO

N

Fig. 8 Plot of average response for all (h, α) treatment combinations

Table 3 Summary of
competitive testing for BP1

Procedure OF value GAP #Opt

DSR 37.00 0.3407 0

GA1 40.53 0.2516 3

GA2 40.53 0.2550 3

GA3 40.24 0.2613 2

GA4 40.29 0.2575 3

SS1 46.07 0.1027 16

Table 4 Friedman test ranking Procedure Ranking

SS1 1.12

GA2 3.33

GA1 3.34

GA4 3.61

GA3 3.73

DSR 5.86

(i.e., the absolute gap divided by the optimal objective function value and averaged over all
instances).

The results in Table 3 indicate that there is little difference in performance among the GA
variants. DSR produces results that are inferior to those produced by all other methods while
SS1 dominate all competitors. In order to support this conclusion, we performed a Friedman
test. This test assigns, for each instance in the test set, the value of 1 to the procedure that
obtains the best result, the value 2 to the second best, and so forth. The average ranking is
then calculated for each procedure and a p value is calculated to assess the strength of the
ranking. The rankings shown in Table 4 result in a p value of less than 0.001.

The next competitive test compares the performance of SS1 with four variants of a genetic
algorithm (GA1 to GA4) proposed by Gürsoy and Nuriyev [17] for MBP. The 45 MBPLIB
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Table 5 Summary of
competitive testing for MBP
instances

Procedure OF value GAP

GA1 20.38 0.5153

GA2 19.49 0.5326

GA3 19.69 0.5324

GA4 18.76 0.5458

SS1 30.09 0.2349

instances are employed for this comparison and the summary of the results is presented in
Table 5. Gürsoy andNuriyev [17] do not report solution times but for future reference we note
that the SS1 solutions summarized in Table 5 were obtained in an average of 267 seconds.
Table 5 does not include the #Opt column because none of the procedures is capable of
finding a single optimal solution. This is in agreement with the large optimality gap shown
in Table 5. Nonetheless, the average objective function value of the SS1 solutions is at least
47.6% better than the average objective function values of all the GA variants, resulting
in optimality gap that is less than half of those corresponding to the GAs. Although this
is a significant improvement over the existing GA procedures, it is clear that the strategies
designed for BP1 and embedded in SS1 lose some of their effectiveness when applied to
MBP instances. Additional strategies that directly exploit the structure of the MBP instances
are necessary to produce improved outcomes.

Our third and last competitive testing compares the performance of SS2 to LocalSolver,
a commercial metaheuristic optimizer, and Gurobi, a commercial MIP solver. To the best
of our knowledge, there is no specialized procedure for BP2 in the literature. The Gurobi
solutions were found with the IP formulation presented in [1], and the solver was run with its
default optimization settings. This means that the search took advantage of the 8 processors
on the machine that was used for testing. The LocalSolver model that we used is included in
“Appendix 2”. The model is a simplified version of the IP formulation of BP2 presented in
[1]. The LocalSolver model is simpler because it requires of only one set of binary variables,
namely, the x[i][g] variables that indicate whether or not wavelength i is assigned to
group g. We perform two experiments, one with a relatively short search time limit of 600
seconds per instance and one with a longer search horizon of 3000 seconds. As described
above, SS2 is set up to rebuild the reference set every time the stopping criterion is satisfied
and therefore is capable of continuing the search until any specified time limit. The results
of this experiments are summarized in Table 6.

TheGAPcolumn inTable 6 is calculated against the best-known solution for each instance,
19 of which are optimal, as confirmed by the 3000-s Gurobi runs. The #Opt is the number
of optimal solutions, out of the 19 that are known, that each procedure is able to match. The
#Best column contains the number of best-known solutions matched by each procedure. The
#Best values are divided into two groups, the number of outright best solutions (#Outright)
and the number of ties with at least one of the competing procedures (#Ties). The #Worst
column indicates the number of times that the solution procedure yielded the worst solution

The following observations can be made from the analysis of the results in
Table 6:

• SS2 exhibits the most robust behavior of the three competing procedures. Its #Best values
are at the top in both the short and the long runs. At the same time, its #Worst values are
the lowest in both runs.
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Table 6 Summary of results for the competitive testing on BP2 instances

Procedure OF value GAP #Opt #Best #Outright #Ties #Worst

Time limit of 600 s

Gurobi 31.044 0.0434 19 25 1 24 18

LocalSolver 32.577 0.0644 11 31 7 24 12

SS2 32.711 0.0119 17 33 1 32 2

Time limit of 3000 s

Gurobi 31.733 0.0291 19 27 0 27 17

LocalSolver 32.778 0.0516 12 37 8 29 8

SS2 32.956 0.0050 19 37 1 36 2

• The GAP values of 0.0119 and 0.005 for SS2 supports the robustness argument. That is,
SS2 produces high-quality solutions inmost runs and avoids arbitrarily inferior solutions.
SS2’s worst deviation from the best-known solutions is 0.067 in both, short and long runs.

• LocalSolver is highly competitive and a viable option for finding high-quality solutions
to BP2 instances. This solution alternative is particularly attractive when one takes into
consideration the development effort of creating a customized solution methods such as
SS2. The only caveat is the variability of the solution quality produced by Local Solver.
Note that for the long runs LocalSolver has the same number of outright best solutions (8)
as the number of worst solutions. This variability causes LocalSolver to have the worst
average deviation.

• Gurobi’s GAP values are reasonably low because, even though it has the highest #Worst
counts in both runs, its deviations from the best-known solutions are never more than 0.2

Additional search strategies could widen the gap between the performance of a specialized
procedure like SS2 for theBP2 and a commercial softwareLocalSolver. For instance, strategic
oscillation proved critical in boosting performance in a tabu search for a grouping problem
[11].

7 Conclusions

The bandpass problem is somewhat new to the OR literature in the sense that, although it
was originally introduced at a conference more than 10 years ago, the first publication did
not appear until 2009. Several versions of the problem have been introduced in subsequent
publications along with additional test data. One of our goals in this project was to gain
understanding of the current state of knowledge associated with the bandpass problem and
to identify avenues for advancing this area. Through our investigation, we identified two
problem classes and a total of three problem variants within those classes. We then designed
a common SS solution framework and developed the individual strategies for each problem
class.

We performed meticulous scientific testing that provided some interesting insights on
the behavior and interaction of the search components. These experiments produced new
benchmarks that will help future researchers test solution methods that could prove even
more effective than those described here. We were also able to show that although BP1 and
MBP belong to the same problem class, the effectiveness of the search strategies designed for
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BP1 diminish when applied to MBP instances. Nonetheless, competitive testing showed that
the proposed SS1 method applied (without customization) to both BP1 and MBP instances
produces results that are significantly better than those produced by the existing procedures.
Finally, our experiments show that the adaptation of the SS to BP2 exhibits a robust behavior
when compared to commercial software.

Acknowledgments This research was partially supported by the Ministerio de Economía y Competitividad
of Spain (Project Number TIN2015-65460-C2-P) and the Comunidad deMadrid (Project Number S2013/ICE-
2894).

Appendix 1

Table 7 shows the objective function values of the new best-known solutions for the BKS
instances. A dash indicates that no solution better than the current best known was found in
our experimentation.

Table 7 New best solutions found during the scientific experimentation for SS1

Instance Previous New %Improve Instance Previous New %Improve

P01-A1B8 10 11 10.00 P24-A10B16 10 12 20.00

P02-A1B16 3 – – P25-A11B5 54 59 9.26

P03-A2B8 14 16 14.29 P26-A11B8 23 29 26.09

P04-A2B16 5 6 20.00 P27-A11B16 6 9 50.00

P05-A3B8 20 23 15.00 P28-A12B5 78 83 6.41

P06-A3B16 8 – – P29-A12B8 37 40 8.11

P07-A4B5 27 30 11.11 P30-A12B16 9 13 44.44

P08-A4B8 12 15 25.00 P31-A13B5 71 – –

P09-A4B16 4 – – P32-A14B5 83 87 4.82

P10-A5B5 40 41 2.50 P33-A15B8 53 56 5.66

P11-A5B8 18 21 16.67 P34-A16B16 29 35 20.69

P12-A5B16 5 7 40.00 P35-A17B5 104 106 1.92

P13-A6B5 62 67 8.06 P36-A18B5 215 223 3.72

P14-A6B8 31 34 9.68 P37-A19B16 71 – –

P15-A6B16 9 11 22.22 P38-A20B5 132 134 1.52

P16-A7B8 17 20 17.65 P39-A22B8 74 78 5.41

P17-A8B8 25 27 8.00 P40-A22B25 17 22 29.41

P18-A8B16 9 10 11.11 P41-A23B5 161 – –

P19-A9B5 44 47 6.82 P42-A24B8 93 95 2.15

P20-A9B8 18 23 27.78 P43-A25B16 51 53 3.92

P21-A9B16 5 8 60.00 P44-A26B5 245 248 1.22

P22-A10B5 62 68 9.68 P45-A27B5 28 41 46.43

P23-A10B8 33 35 6.06
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Appendix 2

LocalSolver input and model functions for the experiments with BP2.

function input()
{
usage = "\nUsage: localsolver BP2.lsp "

+ "B=BandpassNumber fileName=dataFile "
+ "[lsTimeLimit=timeLimit] [lsVerbosity=0 or 1]\n";

if (fileName == nil) error(usage);
dataFile = openRead(fileName + ".txt");
m = readInt(dataFile);
n = readInt(dataFile);
a[i in 1..m][j in 1..n] = readInt(dataFile);
close(dataFile);
G = floor(m/B);
b = m-G*B;
GP = (b > 0) ? G+1 : G;

}

function model()
{
// x[i][g] equal to 1 if wavelength i is assigned to group g
x[1..m][1..GP] <- bool();    

// each group from 1 to G has exactly B rows
for [g in 1..G] constraint sum[i in 1..m](x[i][g]) == B;

// group G+1 if it exists has b rows
if (GP > G) constraint sum[i in 1..m](x[i][GP]) == b;

// each row is included in exactly one group
for [i in 1..m] constraint sum[g in 1..GP](x[i][g]) == 1;

// y[j][g] is equal to 1 if there is a bandpass in destination j of group g
y[j in 1..n][g in 1..G] <- sum[i in 1..m] (a[i][j]*x[i][g]) == B;
if (GP > G) y[j in 1..n][GP] <- sum[i in 1..m] (a[i][j]*x[i][GP]) == b;

// objective function is the sum of bandpasses
obj <- sum[g in 1..GP][j in 1..n] (y[j][g]);
maximize obj;

}

References

1. Babayev, V., Bell, G.I., Nuriyev, U.G.: The bandpass problem: combinatorial optimization and library of
problems. J. Combin. Optim. 18(2), 151–172 (2009)

2. Berberler,M.E., Gürsoy, A.: Genetic algorithm approach for bandpass problem. In: Kasimbeyli R., Dinçer
C., Özpeynirci S., Sakalauskas L., (eds.) 24th Mini EURO Conference on Continuous Optimization and
Information-Based Technologies in the Financial Sector (MEC EurOPT 2010), pp. 201–206. Vilnius
Gediminas Technical University Publishing House Technika, İzmir (2010)
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24. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput.Oper. Res. 24(11), 1097–1100 (1997)
25. Nuriyev, U.G., Kutucu, H., Kurt, M.: Mathematical models of the bandpass problem and OrderMatic

computer game. Math. Comput. Model. 53, 1282–1288 (2011)
26. Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem.

Ann. Oper. Res. 199(1), 285–304 (2011)
27. Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective.MorganKaufmann,

San Francisco (1998)
28. Resende, M., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max–min diversity

problem. Comput. Oper. Res. 37, 498–508 (2010)
29. Sánchez-Oro, J., Laguna, M., Duarte, A., Martí, R.: Scatter search for the profile minimization problem.

Networks. 65(1), 10–21 (2015)

123


	Scatter search for the bandpass problem
	Abstract
	1 Introduction
	2 Standard scatter search methods
	3 Diversification generation method
	4 Improvement method
	5 Combination method
	6 Computational experiments
	7 Conclusions
	Acknowledgments
	Appendix 1
	Appendix 2
	References




