
Prog Artif Intell (2016) 5:121–128
DOI 10.1007/s13748-015-0076-7

REGULAR PAPER

Parallel strategic oscillation: an application to the maximum leaf
spanning tree problem

Jesús Sánchez-Oro1 · Borja Menéndez1 · Eduardo G. Pardo2 · Abraham Duarte1

Received: 9 December 2015 / Accepted: 23 December 2015 / Published online: 19 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The maximum leaf spanning tree problem con-
sists in finding a spanning tree of a graph that maximizes
the number of leaves that the tree has. This problem has
been found to beNP-hard for general graphs. It has several
relevant applications in the context of telecommunication
networks. In this paper, we tackle this problem by propos-
ing the use of a parallel algorithm based on the strategic
oscillation methodology. In particular, we propose two dif-
ferent parallel approaches and we compare our best variant
with previous algorithms of the state of the art. The proposed
approach outperforms previous ones in the state of the art,
which is also confirmed by the use of statistical tests.

Keywords Telecommunication networks · Broadcasting ·
Spanning tree · Strategic oscillation

1 Introduction

Optimization is a key discipline in fields such as com-
puter science, artificial intelligence, and operations research.
Outside these scientific communities, the meaning of opti-

B Abraham Duarte
abraham.duarte@urjc.es

Jesús Sánchez-Oro
jesus.sanchezoro@urjc.es

Borja Menéndez
borja.menendez@urjc.es

Eduardo G. Pardo
eduardo.pardo@upm.es

1 Dpto. Informática y Estadística, Universidad Rey Juan Carlos,
Madrid, Spain

2 Dpto. Sistemas Informáticos, Universidad Politécnica de
Madrid, Madrid, Spain

mization becomes quite vague going to mean simply “do it
as better as you can”. In the context of this paper, the con-
cept of optimization is conceived as the process of trying to
find the best possible solution to an optimization problem,
usually in a limited time horizon. There exists two differ-
ent ways of tackling these problems. On the one hand, by
considering them as a black-box problem, where the main
available information is related with the solution represen-
tation; for instance, continuous [6], binary [19], or integer
problems [21]. On the other hand, optimization problems
can be approached by designing an specific algorithm. In
this paper, we follow the second strategy. In particular, we
solve maximum leaf spanning tree problem (MLSTP) using
a parallel strategic oscillation procedure. This problem can
be formally defined as follows. Let G = (V, E) be an undi-
rected and connected graph, where V is the set of vertices and
E is the set of edges. MLSTP consists in finding a spanning
tree ofG with themaximum number of leaves and, therefore,
the minimum number of internal nodes. This problem is triv-
ial to solve for complete graphs, since every spanning tree
presents the same number of leaves. However, it is proved to
be NP-hard for the general case [16].

More formally, the definition of the problem might be
stated as follows: given a graph G and being T(G) the set
of all possible spanning trees of G, the MLSTP consists in
finding a spanning tree t∗ ∈ T(G)with themaximumnumber
of leaves. In mathematical terms,

t� ← argmax
t∈T(G)

|{v ∈ V : |Nv(t)| = 1}|

where Nv(t) represents the set of adjacent vertices to v in the
tree t .

In Fig. 1, we show an example of two particular graphs
where the optimal solution is already known. Specifically,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-015-0076-7&domain=pdf
http://orcid.org/0000-0002-4532-3124

122 Prog Artif Intell (2016) 5:121–128

Fig. 1 Possible solutions
derived from special graphs: star
graph (a) and grid graph (c). a
Example of a star graph Gstar
with six nodes. b Example of a
spanning tree of Gstar with root
in A. c Example of a grid graph
Ggrid with six nodes. d Example
of a spanning tree of G with root
in B

(a) (b)

(c) (d)

in Fig. 1a, we present a star graph with six vertices and five
edges. For this graph, the vertex A is connected with the
rest of the vertices, while the rest of the vertices are only
connected with A. In the particular case of star graphs the
optimal value is always |V | − 1, being V the set of vertices
of the graph, since all nodes of the tree can be arranged as
leaves except one of them that will become the root of the
tree. The resulting spanning tree associated to this graph is
shown in Fig. 1b. As it was previously described, the node A
will be the root of the tree.

Considering the aforementioned definition of theMLSTP,
the spanning tree constructed in Fig. 1b has an objective func-
tion value of 5 since there are five leaves in the tree (vertices
B,D,E,C, andF). Similarly, in Fig. 1c,we present an example
of a grid graphwith six vertices and seven edges. The optimal
solution for this graph corresponds to the graph depicted in
Fig. 1d. In this case, nodes B and E are internal, while A, D,
F, and C are leaves. Therefore, the objective function value
of this example is 4.

MLSTP has several practical applications, such as the
design of ad hoc wireless networks, telecommunication net-
works, circuit layouts, and other graph-theoretic problems
[28]. One of the most interesting applications of the MLSTP
arises in the broadcast of information through a telecommu-
nication network. In these networks, each computer is able to
transfer information to any other computer connected to the
network. Considering that not all the computers are directly
connected one to each other, there are some of them that
shouldwork as broadcasters.A broadcaster is a computer that
is able to allow communication among all the computers that
are directly connected to it. To allow this, a special hardware
component must be added to these computers. These compo-

nents, that allow the communication between two computers
with no direct link, are relatively expensive. Thus, it is crucial
to reduce the number of broadcasting computers to reduce the
cost of the network. This problem is equivalent to maximize
the number of non-broadcasting computers in the network.
Given a network, if we construct a spanning tree over it, then
it is only necessary to convert in broadcasters those comput-
ers that are placed in internal nodes of the tree. Therefore,
the larger the number of leaves in the tree, the smaller the
number of broadcasters needed in the network. The problem
of minimizing the number of internal nodes (i.e., minimize
the number of broadcasting computers) is known in the lit-
erature as the regenerator location problem (RLP), which
is completely equivalent to the minimum leaf spanning tree
problem [10].

Another well-known application of the problem is related
with the design of ad hoc wireless networks. These kind of
networks generally have a topology thatmay change dynami-
cally. For this type of application, it is desirable to set clusters
of nodes such that they represent subgraphs of G connected
among them with a small diameter. For each of these sub-
graphs, we must identify a cluster-head. Thus, the internal
vertices of a maximum leaf spanning tree τ of G emerge as
reasonable cluster-head candidates. It has to be specially con-
sideredwhen there exist internal vertices that share an edge of
τ with a leaf vertex. In that case, the resulting cluster would
contain not just the candidate cluster-head vertex, but also
their associated leaf vertices. Furthermore, it may also con-
tain some adjacent internal vertices of τ . For a more detailed
description of this application we refer the reader to [2].

MLSTP has a close link to the minimum connected dom-
inating set problem (MCDSP) [20], which has also been

123

Prog Artif Intell (2016) 5:121–128 123

proved to be NP-hard [16]. Given a subset S of the ver-
tices of a graph G, we say that S is a dominating set of G if
every vertex in V \S has an adjacent in S. Thus, MCDSP is
defined as finding a connected dominating set of maximum
size. Hence, a set of non-leaves of a spanning tree is a con-
nected dominating set and, similarly, a set of vertices outside
a connected dominating set is a set of leaves of some span-
ning tree. Therefore, given an optimal connected dominating
set for the MCDSP we can construct a tree over it, resulting
in an optimal solution for the MLSTP, and vice versa.

In this paper we center our attention on the maximum
spanning tree problem. This problem has been approached
from approximate, exact and heuristic perspectives. Among
the former, several approximation algorithms have been
proposed, where the most relevant ones presented an approx-
imation of factor 2 and 3, respectively [22,27]. As far as
the exact algorithms are concerned, the best approach [12]
studies the problem with an algorithm based on the original
formulation [9]. Polyhedral investigations were also con-
ducted in [13] for the formulation previously used [12].
Finally, [3,4] formally introduce the RLP and present a
branch-and-cut procedure for the Steiner arborescence prob-
lem with a unit degree constraint on the root node, which
is shown to be equivalent to the RLP (and, consequently,
equivalent to the MLSTP).

From a heuristic point of view, the first attempt to solve
this problem was introduced in [3]. Specifically, the authors
describe three greedy algorithms coupled with a local search
procedure for the RLP. In [7], the authors presented new effi-
cient implementations of the heuristics described in [3]. The
authors additionally propose two new procedures: a GRASP
and a biased random-key genetic algorithm, both for the RLP.
More recently, Ref. [25] has proposed a method, specifically
designated for the MLSTP, which explores both: feasible
and unfeasible solutions. As fas as we know, this procedure
currently obtains the best results in terms of quality and com-
puting time.

The rest of the paper is organized as follows: in Sect. 2
we present a constructive procedure to generate good quality
solutions for the MLSTP. In Sect. 3 we describe the strate-
gic oscillation (SO) methodology used, while in Sect. 4 we
present two novel parallel approaches based on this method-
ology. Computational results and comparisons with previous
algorithms in the state of the art are shown in Sect. 5. Finally,
we state our conclusions in Sect. 6.

2 Initial solution

A constructive procedure is a method intended to create a
promising starting point for a search procedure, instead of
starting from a random one. This kind of methods gener-
ally starts from scratch, returning a feasible solution. In this

section, we propose a greedy strategy to generate a solution
to the MLSTP. This initial solution will become the starting
point for the improvement strategy (see Sect. 3).

Given a graph G = (V, E), a solution of the MLSTP is
a spanning tree T of G. Instead of working directly with the
tree, we propose to represent the corresponding solution by
means of the set of leaves S ⊂ V of T . More formally,

S ← {v ∈ V : deg(v, T) = 1}.

The objective function for the MLSTP, which is the num-
ber of leaves in T , is evaluated as |S|. Additionally, let us
denote as S′ the subset that contains those vertices which are
internal nodes of T . Therefore, S ∪ S′ = V and S ∩ S′ = ∅.

The feasibility of a solution S is determined by two con-
ditions: first, since S′ represents the internal nodes of the
spanning tree, the subgraph G ′ defined by the set of vertices
S′ and the set of edges E ′ ← {(u, v) ∈ E : u, v ∈ S′} must
be connected. Second, every vertex in S is connected, at least,
to one vertex in S′, to assure that S contains the leaves of the
tree. More formally,

∀v ∈ S ∃ u ∈ S′ : (u, v) ∈ E .

The constructive procedure proposed here tries to maxi-
mize the number of vertices in the initial solution S, building
the corresponding solution in a greedymanner. The algorithm
starts by considering all vertices in S (i.e., S = V). Then, the
method selects the vertex with the largest degree in G which
becomes the root of the spanning tree under construction.
This vertex is removed from S and inserted in a new set S′.
Again, we will use S′ as the subset that will contain those
vertices which are internal nodes of T . Then, a candidate list
is created with the adjacent vertices of the root. The vertices
in the candidate list are evaluated according to the greedy
function, g, defined as:

g(v) ← |N (v) ∩ S| − |N (v) ∩ S′|

where N (v) = {u ∈ V : (v, u) ∈ E} is the set of adjacent
vertices to v.

In each iteration, the method selects the vertex v� from
the candidate list with the largest g value updating the sets S
and S′ accordingly. In the next iteration, the candidate list is
updated with the adjacent vertices to v� which belong to S.
The method stops when the feasibility condition previously
defined is satisfied.

3 Strategic oscillation

Strategic oscillation (SO) methodology was proposed in the
context of tabu search [17,18]. The main idea behind this
strategy relies on giving the algorithm the opportunity to

123

124 Prog Artif Intell (2016) 5:121–128

explore the search space after a critical level, which is com-
monly a boundary where an algorithm would normally stop
[18]. Thus, it focuses on the search in relation to this criti-
cal level. An easy example of a reference critical level might
be the set of feasible solutions. When reaching that bound-
ary, SO would modify the rules of the search, allowing the
algorithm to surpass it and to continue the search with the
exploration through the set of unfeasible solutions. Later, if
a promising unfeasible solution is found it will be necessary
to bring it back to the feasible region of the search space.
In the context of MLSTP, we select the feasibility criterion
of the solution as the boundary for our strategic oscillation
approach. Specifically, the SO algorithm proposed in this
paper is intended to explore solutions beyond the feasibility
frontier.

The SO method is based on two different move operators.
The first one, denoted as drop(v, S), consists in removing
a vertex v ∈ S, inserting it in S′; while the second one,
add(v, S), inserts the vertex v in the solution S, removing
it from S′. According to the problem definition, drop-move
(applied to a feasible solution) does not ever result in unfea-
sible solutions, since removing a vertex from S (i.e., a leaf
of the spanning tree) does not break any feasibility condi-
tion. Specifically, if we drop a vertex from S, the remaining
vertices in S have, at least, one adjacent vertex in S′. Addi-
tionally, the subgraph G ′ = (S′, E ′) remains connected. On
the other hand, it is difficult to perform an add-move to a fea-
sible solution that does not produce an unfeasible solution.
In particular, adding a vertex to S (and removing it from
S′) can eventually disconnect the subgraph G ′. Furthermore,
the second condition of feasibility is broken if there is any
vertex in S whose only adjacent in S′ is the added vertex.
Notwithstanding, only add moves are able to improve the
quality of a solution, since they increase the size of S, which
determines the value of the objective function. In otherwords,
adding vertices to S increases the number of leaves of the cor-
responding tree. However, dropping vertices from S would
only reduce the number of leaves in the tree, and, therefore,
the quality of the solution is deteriorated. For that reason,
the strategic oscillation takes on special significance, since
traditional improving methods would quickly find a basin of
attraction from which is difficult to scape.

The main idea behind strategic oscillation is based on giv-
ing the algorithm the opportunity to explore the unfeasible
region and then bring the search back to the feasible region.
Specifically, the search performed by the SO algorithm is
based on removing some vertices from S with drop moves
(which leads to unfeasible solutions), and then repair the
solution by adding new vertices until the incumbent solution
becomes feasible. Then, a solution is improved if and only
if the number of added vertices is lower than the number of
dropped ones. The number of vertices that are dropped in
each iteration is determined by the parameter k, which indi-

cates how far a solution is from feasibleness. Specifically,
the oscillation strategy allows the procedure to visit solu-
tions close to the feasibility region (small values of k), when
it finds improvement moves, or far away from the feasibility
region (large values of k) when no improvement is found.

Algorithm 1 Strategic oscillation (G = (V, E), kstep, kmax)
1: S ← Construct(G)

2: S′ ← V \S
3: k ← kstep
4: while k ≤ kmax do
5: �− ← ∅
6: �+ ← ∅
7: for i = 1 to k ∗ |S| do
8: v ← SelectRandom(S)

9: drop(v, S)

10: �− ← �− ∪ {v}
11: end for
12: while not feasible(S) do
13: v� ← argmaxv∈S′ |{u ∈ S′ : (u, v) ∈ E ∧ �(u, w) ∈ E, w ∈

S\{v}}|
14: add(v�, S)

15: �+ ← �+ ∪ {v�}
16: end while
17: if |�+| ≤ |�−| then
18: k ← kstep
19: else
20: k ← k + kstep
21: S ← S ∪ �−\�+
22: S′ ← S′ ∪ �+\�−
23: end if
24: end while

In Algorithm 1 we present pseudocode of the strategic
oscillation procedure proposed in this paper. The method is
parametrized by kmax and kstep. The former indicates themax-
imum distance to feasibility that the algorithm is allowed to
reach (i.e., the number of extra vertices added), while the lat-
ter represents the increment of that distance in each iteration.
Themethod starts by constructing an initial solution S (step 1)
with theprocedure proposed inSect. 2.Remember that a solu-
tion to theMLSTP is a subset of vertices in V , which contains
the leaves of the tree. Then, the rest of the vertices of the graph
not assigned to the solution remains in S′ and k is initialized
to kstep (step 3). SO iterates until reaching themaximumvalue
of k (steps 4–24). For each iteration, the algorithm moves k
vertices at random from the set S′ to the current solution S
(steps 7–11). At this step, the solution might become unfea-
sible, so it needs to be repaired by dropping vertices until it
becomes feasible again (steps 12–16). Notice that the selec-
tion of the next vertex to be dropped v� follows a greedy
criterion (step 13) where N (v) = {u ∈ V : (v, u) ∈ E}.
Finally, if the number of added vertices is lower than the
number of dropped vertices it means that an improved solu-
tion has been found, so the algorithmoscillates again closer to
the feasibility by reducing k to the minimum value (step 18).

123

Prog Artif Intell (2016) 5:121–128 125

Fig. 2 Replicated independent
SO scheme

On the other hand, if no improvement is found, SO oscillates
further from feasibility by increasing the value of k (step 20).
In this case, the performed moves are undone (steps 21–22).
The algorithm stops when reaching the furthest point from
feasibility (kmax) without finding an improvement, returning
the best solution found.

4 Parallel strategic oscillation

After decades of evolution in computer architecture, most of
modern computers have several processors, enabling them
to execute different programs simultaneously. Therefore, the
programmers are now allowed to develop their algorithms
following a parallel design to increase the performance of
their programs. Parallelism is particularly effective in the
case of heuristics and metaheuristics [1,29]. However, it is
important to remark that algorithms must be redesigned to
be adapted to a parallel architecture, since a direct parallel
implementation of the original algorithm can eventually lead
to low-quality results.

In this context, there exist several technologies for the
implementation of parallel algorithms, such as threads,
OpenMP, or CUDA. Some tutorials on parallel programming
can be found in [5,14,24]. In this paper, we center our atten-
tion on threads. In programming languages, a thread is an
independent flow of control executed in a processor. In this
paradigm, Pthreads (POSIX threads) and Java threads are
the most representative technologies. In particular, Pthreads
were defined in the mid-90s as an effort to provide a unified
set of C library routines to make multi-threaded programs
portable. Java threads are a version of Pthreads for Java
programming language and they offer the advantages of the
portability inherent in Java programs.Moreover, Java threads
can be easily used to tackle task parallel applications. Since
all our algorithms have been implemented in Java, we select
this technology to implement our parallel algorithms.

The aim of parallelism used in metaheuristics is usually to
either reduce the computational time or to increase the explo-

ration of the search space [15]. The first step in parallelization
is to identify which parts of the sequential algorithm can be
redesigned to be efficiently executed in parallel. There exist
several examples of parallelization of different metaheuris-
tics: genetic algorithms, ant colony optimization, scatter
search, simulated annealing, tabu search, etc., (see [1] for
a thoroughly review on parallel metaheuristics). One of the
most recently parallelized methodologies has been variable
neighborhood search [23]. In the last years, several parallel
variants have been presented, such as synchronous parallel
VNS (SPVNS), replicated parallel VNS (RPVNS), or repli-
cated shaking VNS (RSVNS), among others [15].

In this paper we investigate an efficient parallelization of
the SO methodology. Our parallel investigation is inspired
by two of the previously mentioned algorithms: RPVNS and
RSVNS. The idea behind RPVNS is to explore a wider por-
tion of the solution space using a multi-start strategy, while
RSVNS relies on a classical master–slave scheme where the
master executes the main algorithm, and each slave executes,
in parallel, a small part of the search. Since these strategies
has lead to several successful research [8,26], we propose
an adaptation of these algorithms to the strategic oscillation
methodology.

The first parallel strategy, depicted in Fig. 2, is called
replicated independent SO (RISO). The algorithm starts by
creating p threads where each one executes an independent
sequential strategic oscillation procedure. Therefore, in each
thread a new solution is constructed, adding k vertices at ran-
dom and, therefore, obtaining an unfeasible solution. Then,
each thread removes vertices from its corresponding solu-
tion until obtaining a feasible one. Each thread stops when
reaching the furthest point of unfeasibility (k = kmax). The
method stops when no improvement is found after execut-
ing a predefined number of independent iterations, which is
a parameter of the algorithm. Finally, RISO returns the best
solution found along the search.

The second novel parallel strategy for SO is called simul-
taneous exploration SO (SESO). In Fig. 3, we show shows

123

126 Prog Artif Intell (2016) 5:121–128

Fig. 3 Simultaneous
exploration SO scheme

the proposed SESO, where the highlighted area is the part
of the code executed in parallel by each thread. Specifically,
the algorithm starts from an initial solution, S, generated by
the constructive algorithm explained in Sect. 3. The algo-
rithm then creates p threads to improve the original solution.
In each thread, the solution is led to unfeasibility by adding
nodes and then it is repaired by removing nodes until becom-
ing feasible. At the end of each iteration, the algorithm waits
with a barrier synchronization strategy until all threads have
finished, updating the best solution found if necessary. The
best solution is used as initial solution for the next itera-
tion. It is important to remark that this strategy explores
several unfeasible solutions derived from the original one
(instead of exploring a unique unfeasible solution as in the
sequential version). This feature allows the search to explore
a wider portion of the solution space. For each iteration, if
an improvement has been found in any of the threads, the
distance to feasibility for the next iteration is reset (k = 1).
Otherwise, it is increased (k = k + 1). Notice that the selec-
tion of the distance to unfeasibility is executed in the master
thread (i.e., it is the only part of the SO procedure not exe-
cuted in parallel).

The proposed parallel strategies present different main
goals. On the one hand, RISO is intended to reduce the com-
puting time by performing several iterations in parallel. On
the other hand, SESO is devoted to explore a wider portion
of the solution space, using the same or slightly more com-
puting time. Therefore, the objective of RISO is to obtain
the same quality in less computing time, while SESO tries
to improve the quality of the algorithm when executing it for
similar computing time.

5 Experimental results

In this section, we present the experiments performed to
empirically study the influence of the proposed strategies

in the quality of the solutions obtained. We then compare
our best variant with the best algorithms identified in the
state of the art. The best previous works found in the liter-
ature are the sequential strategic oscillation (SSO) [25] and
a GRASP algorithm [7] (originally proposed for the RLP,
which is equivalent to the MLSTP). We have implemented
our algorithms in Java 8 and they were run on an Intel Core
i7 920 CPU (2.67 GHz) and 8 GB of RAM.

We have considered three sets of instances publicly avail-
able to make a fair comparison. The first two sets (small
and large) corresponds to 480 instances used in [7,25].
Each instance is generated by considering two parameters:
the number of nodes in the network (n) and the percentage
of pairs which cannot share information in the network (ρ).
In particular, small instances sets n = {40, 60, 80, 100}
and ρ = {10, 20, 30, 40, 50, 60, 70, 80, 90}, while large
instances consider n = {200, 300, 400, 500} and ρ =
{10, 30, 50, 70, 90}. We have additionally included a new
set of instances, harwell-boeing, derived from the Harwell-
Boeing Sparse Matrix Collection,1 a dataset which has been
used in several graph-related problems. This collection con-
sists of a set of standard test matrices M = Muv arising from
problems in linear systems, least squares, and eigenvalue cal-
culations from a wide variety of scientific and engineering
disciplines. The graphs are derived from these matrices by
considering an edge (u, v) for every element Muv �= 0. From
the original set we have selected a subset of 87 representative
instances with n ranging from 30 to 685.

Computational experiments have been divided into two
parts: the preliminary experimentation and the final exper-
imentation. For each experiment, we report the following
statistics: average number of leaves in the best solution,
Avg.; average computing time in seconds, Time (s); aver-
age deviation with respect to the best solution found in the
experiment, Dev (%); and number of best solutions found in

1 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/.

123

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/

Prog Artif Intell (2016) 5:121–128 127

Table 1 Performance of RISO when considering p = {2, 4, 8}
Algorithm p Avg. Time (s) Dev (%) #Best

RISO 2 190.02 59.76 0.01 58

4 190.02 45.15 0.01 58

8 190.03 52.96 0.00 59

SESO 2 190.03 81.76 0.03 57

4 190.07 93.90 0.02 59

8 190.07 123.93 0.00 59

the experiment, #Best. It is important to remark that, to avoid
unacceptable computing times, we have set a maximum time
limit of 1000 s for all the algorithms.

The preliminary experimentation is intended to test how
the number of threads used in the parallel algorithms influ-
ences the quality of the search. For this experiment, we have
selected a subset of 60 representative instances extracted
from the small and large datasets to avoid over-training.
Considering that the computer used for the experiments is
able to execute 8 threads simultaneously, the parallel algo-
rithms has been tested using p = {2, 4, 8} threads.

In Table 1, we show the results obtained by RISO and
SESO when considering p = {2, 4, 8}. It is important to
remark that the results obtained by both methods are ana-
lyzed independently. Specifically, the deviation and number
of best solutions for RISO are only considering the results
of the three variants of RISO (similarly in SESO). Although
there are no significant difference among the different config-
urations, it is worth mentioning that in both cases, the variant
with themaximumnumber of threads is able to obtain slightly
better results in terms of quality. Therefore, we select this
configuration (p = 8) for the remaining experimentation.

The final experiment is devoted to compare the quality of
the best parallel variants, RISO with eight threads and SESO
with eight threads, against the best previous methods found
in the literature: GRASP [7] and sequential SO (SSO) [25].
Table 2 presents the results divided by the considered set of
instances: small, large, and harwell-boeing.

Analyzing the first testbed, small, we can see that all
the algorithms perform similarly, although GRASP method
is slightly better in terms of quality but requiring consider-
ably more computing time. To test if GRASP is statistically
better than the other methods, we have conducted the non-
parametric Friedman statistical test [11], resulting in a p
value lower than 0.001, which indicates that there are signifi-
cant differences among themethods compared. Additionally,
we have performed a non-parametric Wilcoxon signed rank
test [30] between the two best methods (GRASP and SESO).
The associated p value of 0.002 confirms again the superior-
ity of the GRASP over our proposed method in this testbed.

Table 2 Performance of RISO and SESO against GRASP and SSO

Algorithm Avg. Time (s) Dev (%) #Best

Small

SSO 65.52 0.62 0.20 242

GRASP 65.62 2.95 0.09 271

RISO 65.54 0.28 0.17 247

SESO 65.55 1.20 0.15 251

Large

SSO 342.96 134.35 0.03 187

GRASP 342.61 979.75 0.13 130

RISO 342.96 89.76 0.02 187

SESO 343.00 237.45 0.01 195

Harwell-boeing

SSO 240.06 519.55 0.55 48

GRASP 233.71 652.37 4.35 34

RISO 240.87 550.76 0.30 56

SESO 240.71 643.99 0.29 62

If we now focus on the large dataset, we can clearly
see the superiority of the parallel proposals in terms of devi-
ation and number of best solutions found. In this case, the
algorithm with the lowest quality is GRASP, which needs
the largest computing time and obtains the lowest number of
best solutions and the highest deviation. On the contrary, the
parallel variants present the best quality. Specifically, RISO
is able to outperform both SSO andGRASP by requiring half
of the computing time used by SSO, and ten times faster than
GRASP. In the case of SESO, the wider exploration of the
solution space allows themethod to obtain the best results but
requiring larger computing time. In this case, the Friedman
test returns a p value lower than 0.001, indicating that there
are significant differences among the results.

Regarding the last testbed,harwell-boeing, the com-
puting time of the compared algorithms are more or less
the same, being SSO and RISO the fastest approaches. It is
important to remark that the time limit of 1000 s is reached in
several instances by all the algorithms although the instances
present similar sizes than the other testbeds. This behavior
can be partially explained because the instances of this test-
bed are a real challenge for heuristic algorithms in the context
of MLSTP. The best method in terms of quality for this case
is SESO, with the smallest deviation and the largest num-
ber of best solutions found. We confirm the superiority of
our proposals by conducting a Friedman test. Specifically,
the associated p value is lower than 0.001, while the aver-
age ranking of each method is 1.09 (SESO), 1.26 (RISO),
1.63 (SSO), and 2.02 (GRASP). Finally, we compare the
best parallel method (SESO) with the best previous (sequen-
tial) method (SSO) with a Wilcoxon test, resulting in a p

123

128 Prog Artif Intell (2016) 5:121–128

value lower than 0.001, emerging SESO as the state-of-the-
art method for the MLSTP.

6 Conclusions

In this work, two novel strategies for the parallelization
of the strategic oscillation methodology are proposed. The
strategies have been tested by applying them over different
instances for the MLSTP. The experiments performed sup-
port the fact that the parallel proposal finds solutions of higher
quality than the sequential one in less computing time. Fur-
thermore, the results obtained by the proposed algorithms
outperform the best previous methods found in the literature,
becoming the state-of-the-art algorithms for the MLSTP. All
results have been analyzed using non-parametric statistical
test to validate the differences among the algorithms. The
proposed parallel strategies have been designed to be easily
adapted to anyother sequential strategic oscillation approach,
and can be also used to parallelize other traditional meta-
heuristics.

Acknowledgments This research has been partially supported by
the Spanish “Ministerio de Economía y Competitividad”, and by
“Comunidad de Madrid” with Grants Refs. TIN2012-35632-C02 and
S2013/ICE-2894, respectively.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms, vol.
47. Wiley, New York (2005)

2. Balasundaram, B., Butenko, S.: Graph domination, coloring and
cliques in telecommunications. In: Handbook of Optimization in
Telecommunications, pp. 865–890. Springer, New York (2006)

3. Chen, S., Ljubić, I., Raghavan, S.: The regenerator location prob-
lem. Networks 55, 205–220 (2010)

4. Chen, S., Raghavan, S.: The regenerator location problem. In:
Proceedings of the 2007 International Network Optimization Con-
ference (INOC’07) (2007)

5. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel
Computingwith GPUs (Applications of GPUComputing), 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco (2012)

6. Duarte, A., Martí, R., Gortázar, F.: Path relinking for large-scale
global optimization. Soft Comput. 15, 2257–2273 (2011)

7. Duarte, A., Martí, R., Resende, M., Silva, R.: Improved heuristics
for the regenerator location problem. Int. Trans. Oper. Res. 21,
541–558 (2014)

8. Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J.: Parallel
variable neighbourhood search strategies for the cutwidth mini-
mization problem. IMA J. Manag. Math. 27, 55–73 (2016)

9. Fernandes, L.M., Gouveia, L.: Minimal spanning trees with a con-
straint on the number of leaves. Eur. J. Oper. Res. 104, 250–261
(1998)

10. Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible,
D., Rossmanith, P.: An exact algorithm for the maximum leaf span-
ning tree problem. In: Parameterized and Exact Computation, pp.
161–172. Springer, New York (2009)

11. Friedman, M.: The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. J. Am. Stat. Assoc. 32,
675–701 (1937)

12. Fujie, T.: An exact algorithm for the maximum leaf spanning tree
problem. Comput. Oper. Res. 30, 1931–1944 (2003)

13. Fujie, T.: The maximum-leaf spanning tree problem: formulations
and facets. Networks 43, 212–223 (2004)

14. Gao, G., Sato, M., Ayguadé, E.: Special issue on parallel program-
ming with openmp. International Journal of Parallel Programming
36, (2008)

15. García-López, F., Melián-Batista, B., Moreno-Pérez, J., Moreno-
Vega, J.: The parallel variable neighborhood search for the p-
median problem. J. Heuristics 8, 375–388 (2002)

16. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide
to the Theory ofNP-Completeness. Freeman, San Francisco (1979)

17. Glover, F.: Heuristics for integer programming using surrogate con-
straints. Decis. Sci. 8, 156–166 (1977)

18. Glover, F., Laguna,M.: Tabu Search. KluwerAcademic Publishers,
Norwell (1997)

19. Gortázar, F., Duarte, A., Laguna, M., Martí, R.: Black box scatter
search for general classes of binary optimization problems. Com-
put. Oper. Res. 37, 1977–1986 (2010)

20. Guha, S., Khuller, S.: Approximation algorithms for connected
dominating sets. Algorithmica 20, 374–387 (1998)

21. Laguna, M., Gortázar, F., Gallego, M., Duarte, A., Martí, R.: A
black-box scatter search for optimization problems with integer
variables. J. Glob. Optim. 58, 497–516 (2014)

22. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in
almost linear time. J. Algorithms 29, 132–141 (1998)

23. Mladenović, N., Hansen, P.: Variable neighborhood search. Com-
put. Oper. Res. 24, 1097–1100 (1997)

24. Oaks, S., Wong, H.: Java Threads. O’Reilly Media (2004)
25. Sánchez-Oro, J., Duarte, A.: BeyondUnfeasibility: StrategicOscil-

lation for the Maximum Leaf Spanning Tree Problem. In: Lecture
Notes in Computer Science, vol. 9422. Springer, New York (2015)

26. Sánchez-Oro, J., Sevaux,M., Rossi, A.,Martí, R., Duarte, A.: Solv-
ing dynamic memory allocation problems in embedded systems
with parallel variable neighborhood search strategies. Electron.
Notes Discret. Math. 47, 85–92 (2015)

27. Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning
TreewithMaximumNumber ofLeaves. Springer,NewYork (1998)

28. Storer, J.A.: Constructing full spanning trees for cubic graphs. Inf.
Process. Lett. 13, 8–11 (1981)

29. Talbi, E.G.: Metaheuristics: from design to implementation.Wiley,
New York (2009)

30. Wilcoxon, F.: Individual comparisons by ranking methods. Biom.
Bull. 1(6)80–83 (1945)

123

	Parallel strategic oscillation: an application to the maximum leaf spanning tree problem
	Abstract
	1 Introduction
	2 Initial solution
	3 Strategic oscillation
	4 Parallel strategic oscillation
	5 Experimental results
	6 Conclusions
	Acknowledgments
	References

