
Solving dynamic memory allocation problems
in embedded systems with parallel variable

neighborhood search strategies

Jesús Sánchez-Oro a,1 Marc Sevaux b,4 André Rossi b,5

Rafel Mart́ı c,3 Abraham Duarte a,2

a Dept. de Informática y Estad́ıstica, Universidad Rey Juan Carlos, Móstoles,
Spain

b Lab-STICC, UMR6285 CNRS, Centre de Recherche, Université de
Bretagne-Sud, Lorient, France

c Dept. Estad́ıstica e Investigación Operativa, Universidad de Valencia, Burjassot,
Spain

Abstract

Embedded systems have become an essential part of our lives, thanks to their evo-
lution in the recent years, but the main drawback is their power consumption.
This paper is focused on improving the memory allocation of embedded systems
to reduce their power consumption. We propose a parallel variable neighborhood
search algorithm for the dynamic memory allocation problem, and compare it with
the state of the art. Computational results and statistical tests applied show that
the proposed algorithm produces significantly better outcomes than the previous
algorithm in shorter computing time.

Keywords: dynamic memory allocation problem, variable neighborhood search,
parallelism, embedded systems, metaheuristics.

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 47 (2015) 85–92

1571-0653/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2014.11.012

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2014.11.012
http://dx.doi.org/10.1016/j.endm.2014.11.012
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2014.11.012&domain=pdf


1 Introduction

Embedded systems have become an essential part of our lives, thanks to their
evolution in the recent years, but the main drawback is their power consump-
tion. This paper is focused on improving the memory allocation of embedded
systems, which is a problem that have been recently studied. A mixed lin-
ear formulation and a variable neighborhood search algorithm for the static
version of the problem is proposed in [10]. In [9], the authors focused on the
dynamic memory allocation problem in embedded systems. In this paper, we
propose a parallel variable neighborhood search algorithm for the dynamic
memory allocation problem, and compare it with the state of the art.

The memory architecture used for testing the proposal is quite similar to
the one present in a TI C6201 device [6] but can be adapted to many other
devices. The memory is divided into m different memory banks where each
one can store up to cj kilobytes (kB). The memory scheme also presents an
external memory (m + 1), whose capacity is large enough to be considered
unlimited. However, the access to that external memory is slower than the
access to the rest of memory banks. In particular, we need q milliseconds
to access data structures placed in a memory bank, and p · q milliseconds to
access the external memory.

Each program to be executed in the device uses a set of n data structures,
each one with a different size si, with 1 ≤ i ≤ n. The program is split in
T time intervals, in such a way that for each t ∈ T the program executes a
set of operations (At) where each one a ∈ At needs to access to one or two
data structures. The processor allows simultaneous access to data structures
located in different memory banks (in a specific time interval). Having defined
the structure of the program and the memory architecture, we need to analyze
the time needed by the processor to execute a program.

A solution for the dynamic memory allocation problem (DMAP) consists
of the state of the memory in each time interval, with all the data structures
placed in one of the memory banks or in the external memory. We define
b(i, t) as the function that finds the memory bank of interval t in which the
data structure i is located. Then, the objective function value (DMAP-value)
for a solution is computed as the sum of the move and access costs for all the

1 Email: jesus.sanchezoro@urjc.es
2 Email: abraham.duarte@urjc.es
3 Email: rafael.marti@uv.es
4 Email: marc.sevaux@univ-ubs.fr
5 Email: andre.rossi@univ-ubs.fr

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–9286



data structures and operations in each time interval. Specifically, the move
cost for a data structure i in a time interval t is computed as follows:

MoveCost(i) =

⎧
⎨

⎩

0 if b(i, t− 1) = b(i, t)

l · si if b(i, t− 1) �= b(i, t) �= m+ 1

v · si otherwise

where l denotes the milliseconds needed to move a kilobyte between memory
banks and v represents the milliseconds needed to move a kilobyte between
the external memory and a memory bank.

Each operation a for an interval t is a 3-tuple: the two data structures
involved in the operation (a1, a2) and the cost of the operation, acost . So we
can define the cost of accessing to the corresponding data structures as follows:

AccessCost(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

acost if b(a1, t) �= b(a2, t) �= m+ 1

2 · acost if b(a1, t) = b(a2, t) �= m+ 1

2 · p · acost if b(a1, t) = b(a2, t) = m+ 1

p · acost otherwise

where p is a penalization access factor for data structures placed in the external
memory. The first case considers that both data structures are in different
memory bank (but not in the external memory), so they can be accessed
parallely . The second case identifies the situation where data structures are in
the same memory bank and therefore they must be sequentially accessed (two
access). The third and fourth cases are variations of the first and second one
where at least one of the data structures are located in the external memory
(which involves a penalization p).

With these definitions, the DMAP-value of a solution S for a program with
n data structures and a set of operations At for each time interval t ∈ T can

be computed as: DMAP(S) =
∑
t∈T

(∑
s∈n

MoveCost(s) +
∑
a∈At

AccessCost(a)

)

The rest of the paper is organized as follows. Section 2 presents our al-
gorithmic approach based on the variable neighborhood search framework,
including the description of the shake procedure (Section 2.1) and the pro-
posed local search method (Section 2.2). Section 3 reports the computational
experience performed to validate the proposed algorithm. Finally, Section 4
summarizes the main conclusions of our research.

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–92 87



2 Parallel Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic for solving optimiza-
tion problems based on systematic changes of neighborhood structures, with-
out guaranteeing the solution’s optimality. In recent years, a large variety of
VNS strategies have been proposed. Some of the most relevant variants are
reduced VNS, variable neighborhood descent (VND), basic VNS, skewed VNS,
general VNS, or variable neighborhood decomposition search, among others
(see [5] for a complete review of the methodology, and [2,7,8] for some exam-
ple of successful research in VNS). The parallelization of VNS has been re-
cently studied and successfully applied to some problems in the literature (see
for instance the p-median problem [4] or the cutwidth minimization problem
[3]). Authors in [4] propose several parallelizations for the VNS metaheuris-
tic: Synchronous Parallel VNS, Replicated Parallel VNS, Replicated Shaking
Parallel VNS and Cooperative Neighborhood VNS. In this paper we focus on
the Synchronous Parallel VNS (SPVNS) variant, which is intended for the
parallelization of the local search method in the sequential VNS.

There are different technologies to implement parallel algorithms, which
are usually programming language dependent. All the algorithms in this paper
have been implemented in Java, so we have selected Java threads as paral-
lelization technology. Java threads allow us to take advantage of the architec-
ture of the computer by executing the algorithms simultaneously in different
processors, launching one or more threads (independent executions) in each
processor.

Algorithm 1 shows the pseudo-code of the SPVNS method proposed. We
use a multi-start scheme, since the initial solution is generated at random,
so we can start exploring from different points of the solution space in each
iteration. SPVNS receives two input arguments: the maximum neighborhood
to be explored, kmax , and the maximum number of iterations for the multi-
start scheme, iters . Firstly, the algorithm checks the available processors
(step 2). Then, SPVNS performs the indicated iterations (steps 3-16). Each
iteration is an independent sequential run of the simple SPVNS. The first step
is the generation of a random initial solution (step 4) and the selection of the
first neighborhood (step 5). Then, the method iterates over all neighborhoods
until reaching the maximum neighborhood allowed (steps 6-14). For each
iteration, the algorithm perturbs the solution (step 7), and then it proceeds
with the parallel local search method. For each processor, SPVNS establishes
the region that the local search will improve and starts the corresponding
thread (step 10). Notice that steps 9-11 are executed in parallel, so the main

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–9288



Algorithm 1 SPVNS(kmax , iters)

1: S� ← ∅
2: P ← AvailableProcessors()
3: for i ∈ iters do
4: S ← RandomSolution()
5: k ← 1
6: while k < kmax do
7: S ′ ← Shake(S)
8: S ′′ ← S ′

9: for p ∈ P do
10: LS parallel (S

′′, p)
11: end for
12: Synchronize()
13: k ← NeighborhoodChange(S, S ′′, k)
14: end while
15: Update(S ′′, S)
16: end for
17: return S�

algorithm waits in step 12 until all the processors have finished. Finally, the
algorithm updates the best solution found if necessary (step 15). Once all the
iterations have finished, the algorithm ends, returning the best solution found
(step 17).

2.1 Shake

The main aim of a shake procedure in the VNS context is the diversification
of the search to escape from local optima. The shake procedure proposed in
this paper traverses the memory through each time interval, generating a new
solution in a neighborhood k by perturbing the original solution. We define
the move for a data structure i in a time interval t as Move(i, t, j), where
1 ≤ j ≤ m + 1 indicates the bank where the data structure will be placed.
Note that the method will only accept feasible moves. In particular, a data
structure will only be moved to a memory bank with enough free space for
storing it. The proposed shake method iterates over all time intervals t ∈ T
selecting k data structures at random and moving them to a random memory
bank in which there is enough free space for the data structure.

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–92 89



2.2 Parallel local search

The parallel local search proposed in this paper is designed to make the most of
the computer architecture, by balancing load among the available processors in
the computer. This is conducted by following a divide and conquer strategy. In
particular, if the computer has P available processors and the instance that we
are solving has T time intervals, then each processor is focused on improving
a total of T/P periods. Then, the first processor will improve the periods
in the range [1, T/P ], the second one periods in range [T/P + 1, 2 ∗ (T/P )],
and so on. In general, the processor p ∈ {1, . . . , P} will improve periods
in the range [(p − 1) ∗ (T/P ), p ∗ (T/P )]. Then, the corresponding partial
local search improves each time period of its designated interval as follows.
The first step in each time interval consists of ordering the data structures in
descending order according to its contribution to the objective function value.
The contribution ΔDMAP(S, i, t) of a data structure i in a time interval t in a
solution S can be defined as the sum of the move cost for that data structure
plus the access cost of each operation in which the data structure is involved
in that time interval. More formally,

ΔDMAP(S, i, t) = MoveCost() +
∑

a∈At
a1∨a2=i

AccessCost(a)

Then, each partial local search traverses the ordered data structures finding
the best bank in which it can be moved. The selection of the best bank is
performed by checking the change in the objective function value for moving
the data structure to each bank j ∈ {1, . . . , m+ 1}. The improvement moves
produce solutions with lower objective function value, so each data structure
is moved to the bank which produces the lowest DMAP-value (as described
in Section 2.1). The method stops when no improvement move is found after
traversing all data structures in each time interval.

3 Computational experiments

This section reports the computational experiments that we have performed
for testing the effectiveness and efficiency of the proposed SPVNS algorithm
compared to the best algorithm found in the state of the art. The algorithms
have been developed in Java SE 7 and all the experiments were conducted on
an Intel Core i7 920 CPU (2.67 GHz) and 8GB RAM. The testbed used for
testing the algorithm is the same set of 44 instances used in the algorithms
of the state of the art (see [9] for a detailed description of the instances).

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–9290



Firstly, we have conducted a preliminar experimentation with 8 of the most
representative instances to find the best kmax parameter value. Specifically, we
have tested the following values: 0.10n, 0.25n, and 0.50n, n being the number
of data structures. The best kmax found have been 0.50n, so it has been used
for the final comparison.

Avg. Time (s) Dev. (%) #Best

GRASP+EC 1060597.74 130.55 5.58 12

SPVNS 1015325.49 32.32 3.49 36

Table 1
Comparison of GRASP+EC and SPVNS

Table 1 shows the comparison of the proposed algorithm, SPVNS, and the
best previous algorithm found in the literature, GRASP+EC [9], reporting
the following statistics: Avg., the average objective function value; Time (s),
the average computing time measured in seconds; Dev. (%), the average
percentage deviation with respect to the best solution found; and #Best, the
number of times that a method matches the best known solution. The results
show that the proposed algorithm produces better outcomes in all the metrics
analyzed. Specifically, SPVNS obtains a lower average objective function value
and a deviation 5% lower than the previous method by requiring three times
less computing time. In addition, SPVNS obtains 36 out of 44 best solutions,
while GRASP+EC is only able to reach 12 best solutions. These results
are confirmed with the Wilcoxon signed statistical test, which presents an
associated p-value lower than 0.001.

4 Conclusions

In this work we have proposed a parallel variable neighborhood search al-
gorithm for solving the dynamic memory allocation problem (DMAP). The
parallel strategy used has been the synchronous parallel VNS (SPVNS), which
is focused on the parallelization of the local search method. We also include a
shake procedure that perturbs a solution of the DMAP problem randomly to
escape from local optima. In addition, we have proposed a new parallel local
search for the DMAP that reduces the computing time needed to improve a
solution by concurrently improving different regions of a solution. The ex-
periments, supported by the Wilcoxon signed test, show that SPVNS clearly
outperforms the best algorithm found in the literature, becoming the state of

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–92 91



the art for the DMAP.

Acknowledgment

This research has been partially supported by the Spanish Ministry of “Economı́a
y Competitividad”, grants ref. TIN2012-35632-C02.

References

[1] Chimientia, A., Fanucci, L., Locatellic, R. and Saponarac S., VLSI architecture
for a low-power video codec system, Microelectronics Journal 33 (2002), pp. 417–
427.

[2] Duarte, A., L. F. Escudero, R. Mart́ı, N. Mladenović, J. J. Pantrigo and J.
Sánchez-Oro, Variable neighborhood search for the Vertex Separation Problem,
Computers & Operations Research, 39 (2012), pp. 3247–3255.

[3] Duarte, A., J. J. Pantrigo, E. G. Pardo and J. Sánchez-Oro, Parallel variable
neighbourhood search strategies for the cutwidth minimization problem, to appear
in IMA Journal of Management Mathematics, DOI:10.1093/imaman/dpt026,
(2013).

[4] Garćıa López, F., B. Melián-Batista, J. A. Moreno-Pérez and J. M. Moreno-Vega,
The Parallel Variable Neighborhood Search for the p-Median Problem, Journal of
Heuristics 8 (2002), pp. 375–388.

[5] Hansen P., N. Mladenović and J. A. Moreno-Pérez, Variable neighbourhood
search: methods and applications, Annals of Operations Research, 175 (2010),
pp. 367–407.

[6] Julien, N., J. Laurent, E. Senn and E. Martin, Power consumption modeling and
characterization of the TI C6201, IEEE Micro 23 (2003), pp. 40–49.

[7] Pardo, E. G., N. Mladenović, J. J. Pantrigo and A. Duarte, Variable Formulation
Search for the Cutwidth Minimization Problem, Applied Soft Computing, 13
(2013), pp. 2242–2252.

[8] Sánchez-Oro, J., J. J. Pantrigo, A. Duarte, Combining intensification and
diversification strategies in VNS. An application to the Vertex Separation
Problem, Computers & Operations Research, 52 (2014), pp. 209–219.

[9] Sevaux, M., A. Rossi, M. Soto, A. Duarte and R. Mart́ı, GRASP with Ejection
Chains for the dynamic memory allocation in embedded systems, Soft Computing
18 (2014), pp. 1515–1527.

[10] Soto, M., A. Rossi and M. Sevaux, A mathematical model and a metaheuristic
approach for a memory allocation problem, Journal of Heuristics 18 (2011), pp.
149–167.

J. Sánchez-Oro et al. / Electronic Notes in Discrete Mathematics 47 (2015) 85–9292


	Introduction
	Parallel Variable Neighborhood Search
	Shake
	Parallel local search

	Computational experiments
	Conclusions
	References

