
Scatter Search for the Profile Minimization Problem

Jesús Sánchez-Oro
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Madrid, Spain

Manuel Laguna
Leeds School of Business, University of Colorado at Boulder, Boulder, Colorado

Abraham Duarte
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Madrid, Spain

Rafael Martí
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Valencia, Spain

We study the problem of minimizing the profile of a
graph and develop a solution method by following the
tenets of scatter search. Our procedure exploits the net-
work structure of the problem and includes strategies
that produce a computationally efficient and agile search.
Among several mechanisms, our search includes path
relinking as the basis for combining solutions to gener-
ate new ones. The profile minimization problem (PMP) is
NP-Hard and has relevant applications in numerical anal-
ysis techniques that rely on manipulating large sparse
matrices. The problem was proposed in the early 1970s
but the state-of-the-art does not include a method that
could be considered powerful by today’s computing stan-
dards. Extensive computational experiments show that
we have accomplished our goal of pushing the envelope
and establishing a new standard in the solution of the
PMP. © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 65(1),
10–21 2015

Keywords: profile minimization; SumCut problem; metaheuris-
tics; scatter search; OptQuest; LocalSolver; sparse matrices

1. INTRODUCTION

Given a graph G(V , E)—where V is a set of n vertices and
E is a set of edges—an ordering (or permutation) ϕ of the ver-
tices is a one-to-one mapping between the set {1, 2, . . . , n} and
V . An ordering in a graph can be conceptualized as locating

Received May 2012; accepted September 2014
Correspondence to: M. Laguna; e-mail: laguna@colorado.edu
Contract grant sponsor: Ministerio de Educación y Ciencia of Spain;
Contract grant number: TIN2012-35632-C02
DOI 10.1002/net.21571
Published online 23 December 2014 in Wiley Online Library
(wileyonlinelibrary.com).
© 2014 Wiley Periodicals, Inc.

its vertices in a line, as shown in Figure 1. For a given order-
ing ϕ, the profile δϕ(i) of vertex ϕ(i)—that is, the vertex in
position i—is given by δϕ(i) = i − fϕ(i), where fϕ(i) is the
smallest j < i such that ϕ(j) is adjacent to ϕ(i) (if none exists
then fϕ(i) = i). The profile P(G, ϕ) of G with the ordering
ϕ, is the sum of the profiles of all its vertices. The profile
minimization problem (PMP) consists of finding an ordering
ϕ∗ of V such that the profile is minimized. Mathematically,
the PMP seeks ϕ∗, over the set� of all possible permutations,
such that

P(G, ϕ∗) = min
ϕ∈�

n∑
i=1

δϕ(i) = min
ϕ∈�

n∑
i=1

(i − fϕ(i))

Figure 1 shows an example of a network with six vertices
ordered in a line, where the first one is labeled A, the second
one B, and so on. In this figure, f1 = 1 because there is no
vertex ϕ(j) for which j < 1. As a result, δ1 = 0. Similarly,
f2 = 2 and δ2 = 0. Conversely, f3 = 1 and δ3 = 3−1 = 2, as
the smallest j is 1, corresponding to vertex A. All additional
calculations are shown in Figure 1, resulting in a profile value
of P(G, ϕ) = 11.

It is possible to reduce the profile of the graph in Figure
1 by permuting its vertices. Figure 2 shows the same graph
with the ordering ϕ∗ = (B, D, F, E, C, A), which results in an
optimal profile value of P(G, ϕ∗) = 8.

Another interpretation of the PMP on a graph is based on
the notion of labeling. Each vertex v in the graph is assigned
a label π(v) that is nothing else than the position that the
vertex would occupy if the vertices were arranged in a line
as in Figures 1 and 2. A solution is fully specified when all
vertices have been labeled. By definition, the relationship
between ϕ and π is such that if ϕ(i) = v then π(v) = i. For a

NETWORKS—2015—DOI 10.1002/net

FIG. 1. Illustrative graph and profile calculation.

given π , the profile of vertex v is calculated as δv = π(v)− fv,
where fv is the smallest label of a vertex adjacent to v, as long
as such label is smaller than π(v). Otherwise, fv = π(v) and
δv = 0. The objective of the PMP is to find a labeling π∗ for
which the sum of all vertex profiles is minimized. To facilitate
the description of our work, we will use both interpretations.

The PMP was originally proposed as an approach to
reduce the space requirements for storing sparse matrices
[31]. In this context, the PMP was shown to be equivalent
to the SumCut problem [1]. One of the main applications of
the PMP continues to be the reduction of the space require-
ments to store systems of equations. Additionally, the PMP
enhances the performance of operations on systems of non-
linear equations, such as the Cholesky factorization [30].
Another interesting application of the PMP is described by
Karp [15] in the context of the Human Genome Project.
The main goals of this project are to identify all genes in
human DNA (between 20 and 25 thousand, approximately)
and determine the sequences of the approximately 3 billion
chemical base pairs associated with human DNA.

In archeology [16], the PMP has been used in connec-
tion with the problem of organizing items such as fossils,
tools, and jewels according to a specific order. This process
is known as “seriation” and consists of placing several items
from the same culture in a chronological order determined
by a method of establishing dates that are relative to each

FIG. 2. Illustrative graph reordered.

other. This results in a problem for which the reordering of
the rows and columns of a matrix is required, which is equiv-
alent to the reordering of a linear graph. Other applications
of the PMP can be found in information retrieval [2] and
fingerprinting [15].

Lin and Yuan [20] proved that the PMP for an arbitrary
graph is equivalent to the interval graph completion problem,
which was shown to be NP-complete by Garey and Johnson
[10]. However, special classes of graphs can be solved opti-
mally in polynomial time. For example, Lin and Yuan [20]
proposed several polynomial-time algorithms to find the opti-
mal solution of the PMP for paths, wheels, complete bipartite
graphs and D4-trees (trees with diameter 4). Likewise, Guan
and Williams [14] developed an algorithm to find the optimal
solution of the PMP for triangulated graphs.

The SumCut problem [11, 25, 26] and the PMP are equiv-
alent in the sense that a solution to one problem provides a
solution to the other problem by reversing the correspond-
ing permutation. Consequently, the optimum of one problem
corresponds to the optimum of the other [1]. The PMP is
also related to the bandwidth minimization problem (BMP),
which consists of finding a permutation of the rows and the
columns in a matrix, such that all the nonzero elements are
confined to a band that is the closest to the main diagonal.
The tabu search by Campos et al. [3] is the best BMP heuris-
tic in the literature and we adapt it to the PMP to show that
a specialized PMP search is justified to find solutions of the
highest quality.

Algorithmically, the PMP has been tackled as the late six-
ties. To the best of our knowledge, the first heuristic in the
literature consists of a constructive procedure proposed by
Cuthill and McKee [4] known as the Reverse Cuthill–McKee
algorithm (RCM). Their procedure is based on constructing
a level structure of the vertices. Poole et al. [27] improved the
RCM algorithm by changing the selection of the root node
within a more general level structure. The method is known in
the literature as GPS. Gibbs [12] developed GK, a procedure
that uses a pseudodiameter to produce a new level structure.
GK outperforms GPS in solution quality but it requires more
computational time. Lewis [18] introduced new implemen-
tations that improve the performance of both GK and GPS.
His experimental results confirm the superiority of GK over
GPS in terms of solution quality.

The best heuristic for the PMP in the literature belongs
to Lewis [19]. It uses the simulated annealing (SA) method-
ology in combination with existing constructive procedures.
The SA search starts from a solution constructed with RCM
or GK, whichever is better according to the objective func-
tion value. In typical SA fashion, neighborhood exploration is
performed with moves that are randomly generated. Improv-
ing moves are always executed and nonimproving moves are
only executed with a probability that depends on the current
temperature. A so-called cooling schedule controls the sys-
tematic reductions of the temperature and the search ends
when the temperature reaches a prespecified minimum level.

In contrast to all past efforts, we develop a specialized pro-
cedure that it is built within the scatter search (SS) framework.

NETWORKS—2015—DOI 10.1002/net 11

Our main contribution consists of designing SS methods that
are effective in finding high-quality solutions to the PMP. The
mechanisms that we develop exploit the network structure of
the problem and may be adapted to problems with similar
characteristics. For instance, our diversification generation
procedure creates diverse solutions by a strategy that is based
on labeling the vertices in the graph. Likewise, the strategies
embedded in the improvement method use label exchanges
to explore the neighborhood of the current solution. A care-
ful analysis of the neighborhood structure is performed to
design an efficient process for evaluating exchanges. Finally,
the combination method creates paths between solutions that
result in a series of relabeling steps from an initiating to a
target graph.

Our computational experiments and statistical tests show
that we have been able to establish new benchmarks for the
PMP. We compare not only against the best methods in the
literature but also against a state-of-the-art procedure for a
closely related problem (the BMP) and against two general-
purpose black-box commercial optimizers with embedded
metaheuristic search engines.

2. SCATTER SEARCH

Scatter search [17] is a metaheuristic whose framework
includes five methods that are designed to build, maintain,
and transform a population of solutions (see Fig. 3). Three of
these methods, the diversification generation, the improve-
ment, and the combination methods, are problem dependent
and therefore their strategies take advantage of information
that is context specific. Conversely, the Reference Set Update
and the Subset Generation Methods have standard implemen-
tations that are context independent. The SS literature is fairly
rich and includes multiple examples of successful applica-
tions, such as those documented in Gallego et al. [9], Martí
et al. [21], Duarte et al. [7], and Pantrigo et al. [24].

The procedure starts with the application of the diversi-
fication generation method (which we describe in section 3
in the context of the PMP) and the Improvement method
(described in section 4), obtaining as a result a population P
of solutions from which the initial reference set (RefSet) of
size b is constructed. The initial RefSet must balance solu-
tion quality and diversity and therefore the standard update
in step 3 (Fig. 3) selects the best b/2 solutions from P and

FIG. 3. Scatter search framework.

then the b/2 solutions in P \ RefSet that are most diverse
with respect to those solutions already in the reference set.
We point out that selecting the most diverse solutions from a
set is an NP-hard problem (see for instance Duarte and Martí
[6]) and hence we perform this step heuristically. In particu-
lar, after selecting the b/2 best solutions (i.e., the ones with
the best objective function value), the remaining solutions are
added one at a time. The first one to be added is the solution
in P \ RefSet that is the most diverse with respect to the solu-
tions currently in RefSet. Diversity is typically measured with
a function that maximizes the minimum distance between the
solution under consideration and the set of solutions where
the solution will be added (in this case RefSet). As discussed
above, a solution s to the PMP is fully characterized by its
ordering ϕs and equivalently by the labeling πs of the vertices
in G. The distance between s and RefSet is given by

d(s, RefSet) = min
r∈RefSet

(
n∑

v=1

|πs(v) − πr(v)|
)

The distance is the sum of the absolute differences of the
labels assigned to each vertex in the candidate solution s and
all the reference solutions r. As the labels represent positions,
the calculation is equivalent to the so-called positional dis-
tance [5]. Once a solution s is selected from P \ RefSet, the
solution is added to RefSet and the process is repeated b/2
times, choosing at each step the solution s∗ with the maxi-
mum distance to the solutions currently in the reference set,
that is:

s∗ = arg max
s∈P\RefSet

d(s, RefSet)

In our implementation, step 4 in Figure 3 consists of gen-
erating all pairs of reference solutions that have not been
combined before. Details about the combination method
[based on the path relinking (PR) methodology] are presented
in section 5.

The reference set update in step 7 is different from the
updating performed in step 3. Assume that the reference solu-
tions r are ordered according to their objective function values
in such a way that the solution r(1) in the first position in the
RefSet is the best and the solution r(b) in the last position is
the worst. To maintain the diversity among the reference solu-
tions, a new solution s is admitted if either of the following
conditions is satisfied, where P(s) is the profile of solution s:

1. P(s) < P(r(1))

2. P(s) < P(r(b)) and d(s, RefSet) > dthresh

The first condition establishes that a new solution becomes
a reference solution if it is better than the best solution found
so far. The second condition allows a new solution s into the
reference set if it is better than the worst reference solution
and its distance to the current reference set is larger than the
distance threshold parameter dthresh. If solution s is admitted
to the reference set, then s replaces the closest (according to d)
reference solution r from all those for which P(s) < P(r).

12 NETWORKS—2015—DOI 10.1002/net

The process terminates when no new solutions become
part of the RefSet. That is, if at a given iteration, RefSet does
not change after step 7, then the search ends. We point out
that our step 7 update is significantly different from the one
typically used in SS implementations, where a new solution
s replaces r(b) as long as P(s) < P(r(b)).

3. DIVERSIFICATION GENERATION METHOD

We develop four diversification generation methods
(labeled C1–C4) to build a population P of solutions. These
methods are based on the GRASP methodology [8, 28, 29].
To describe these methods we define U as the set of ver-
tices that have not been labeled and L = V \ U as the set
of the vertices that have already been labeled. Initially, all
vertices are in U (i.e., U = V). C1 starts by selecting the
vertex w ∈ U with the smallest degree (i.e., the vertex with
the least number of adjacent vertices). In this step, ties are
broken arbitrarily. The chosen vertex w is given the first label
and therefore π(w) = 1 and ϕ(1) = w. Then U = U \ {w}
and L = L∪ {w} and a candidate list CL consisting of the set
of vertices adjacent to w is constructed:

CL = {u : (w, u) ∈ E}
A greedy function value is calculated for each vertex v in CL
as follows:

g1(v) = |NL(v)| − |NU(v)|
where NL(v) = {u ∈ L : (v, u) ∈ E} and NU(v) = {u ∈ U :
(v, u) ∈ E}. The greedy function g1(v) measures the level
of “urgency” of labeling vertex v next. The function consid-
ers that it is more urgent to label a vertex for which most
of its adjacent vertices have already been labeled. A greedy
procedure would choose, at each step, the vertex v with the
largest g1(v) value. However, in the GRASP framework, con-
structions are semigreedy and the implementation includes a
so-called restricted candidate list (RCL). The RCL includes
top candidates that are equally preferred and hence equally
likely to be chosen:

RCL = {v ∈ CL : g(v) ≤ gmin
1 + α1(g

max
1 − gmin

1)}

where gmin
1 (gmax

1) is the minimum (maximum) value of g1(v)
for all v in CL, and α1 is a parameter that controls random-
ness/greediness of the corresponding procedure. In particular,
if α1 = 0, the constructive method would be deterministic
and completely greedy. Conversely, for α1 = 1 the procedure
becomes totally random. A vertex v from RCL is chosen ran-
domly, the next available label is assigned to it, and the U and
L sets are updated. CL is also updated by adding the unla-
beled vertices that are neighbors of the selected vertex v (i.e.,
CL = CL∪NU(v)). The construction ends when all vertices
have been labeled.

The second construction procedure (C2) is similar to C1
but implements the semigreedy selection in a different way.
Instead of calculating the greedy function value first and then

randomly selecting from a restricted candidate list, C2 first
takes from CL a random sample of vertices. Then, the vertex
with the largest g1(v) value in the sample is selected. The
size of the random sample is controlled by the parameter α2,
which represents a fraction of the size of the candidate list
(i.e., the random sample includes α2|CL| vertices). As before,
once the vertex is selected, the next available label is assigned
to it and the U and L sets are updated.

The g1(v) greedy function does not take into consideration
the values of the labels assigned to the vertices adjacent to
v. For instance, if i is the next available label, g1(v) does not
include in its calculation the labels that vertices in NL(v) have
received (which may be any between 1 and i−1). Clearly, the
“urgency” of vertex v is greater if its adjacent vertices have
received labels that are much smaller than i. The following
greedy function takes this into consideration:

g2(v) = (|NL(v)| − |NU(v)|)
∑

u∈NL(v)

|π(v) − π(u)|

This greedy function is used to formulate two additional
construction methods. C3 is the same as C1 but with g2 as
the greedy function. C4 is the same as C2 but with g2 as the
greedy function.

4. IMPROVEMENT METHOD

For our improvement method we tested both a search
neighborhood defined by swap moves and one defined by
insert moves. The representation of a solution as an ordering
of the vertices is useful to conceptualize these search neigh-
borhoods. A swap(i, j) is the exchange of positions of vertices
v, u that are currently in positions i and j, respectively. That
is, ϕ(i) = v and ϕ(j) = u. An insert(i, j) is the movement of
vertex v = ϕ(i) to position j. After the move, v precedes u if
i > j and v follows u if i < j. As both of these moves produce
a neighborhood of size O(n2), a fast calculation of the move
value is critical to search such a neighborhood efficiently and
identify the best move to make.

For instance, to evaluate the move insert(i, j) for j > i,
it is easy to see that only the profile of the vertices v for
which i ≤ π(v) ≤ n needs to be recalculated. Therefore, if
the profile values for all vertices in the current solutions are
stored, then the calculation of the move value may be done
by updating only those relevant profile values and adding
them to the values that the move does not affect. Additionally,
the updates to the profile values may be accumulated. For
instance if we first evaluate the insert (i, j), then n−i+1 values
must be recalculated, i.e., those corresponding to the vertices
with labels between i and n. If we then evaluate insert(i, j+1)

without storing any information from the previous evaluation,
we would need to recalculate once again n − i + 1 values.
However, observing the change of the profile values from
one trial move to the other, it can be determined that the only
changes occur in the vertices with labels π(v) ≥ j + 1.

Figure 4 illustrates two insertion moves applied to solution
ϕ = {A, B, C, D, E, F}, on the left side of the figure. The first

NETWORKS—2015—DOI 10.1002/net 13

FIG. 4. Illustrative representation of a move.

move inserts vertex B in position 4, obtaining the solution
ϕ’ = {A, C, D, B, E, F} at the top right of Figure 4, where
vertices that changed their δi value are highlighted (i.e., ver-
tices C, D, B, E, and F). The insertion of B in position 5 that
yields a new solution ϕ’’ is depicted at the bottom right of
Figure 4. Considering that the improvement procedure eval-
uates insertions as a sequence of swap moves, evaluating the
insertion of B in position 5 after evaluating the insertion of B
in position 4 requires the updating of only vertices E, B, and
F. Calculation savings are achieved because there is no need
to update C and D again.

Therefore, an efficient way of searching the insert neigh-
borhood is to evaluate the insert(i, j) as a sequence of swaps
of the vertices in positions (i, i + 1), then (i + 1, i + 2) and
so forth until (j − 1, j). These values are stored because the
sequence is the same for insert(i, j + 1) with the addition of
the swap(j, j+1). We have implemented this strategy and the
corresponding one for the case when j < i.

By implementing the search as a sequence of swaps of
vertices in adjacent positions, the only possible moves values
are −1, 0, and +1. Consider the swap(i, i +1) that exchanges
the labels of vertex v from π(v) = i to i + 1 and vertex u
from π(u) = i + 1 to i. Then, the move value is given by

value(i, i + 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if fv > i and fu < i + 1

0 if (fv > i and fu ≥ i + 1)

or (fv ≤ i and fu < i + 1)

+1 if fv ≤ i and fu ≥ i + 1

This characteristic renders a first improving strategy
impractical. A first improving refers to the strategy of stop-
ping the neighborhood search after finding the first move that
improves the current solution. As our neighborhood search is
structured in such a way that complex moves [i.e., insert(i, j)
for j > i + 1] are achieved by a sequence of simple moves
[i.e., swap(i, i + 1)], stopping after a finding any improve-
ment results in a process where improvements of more than
one unit are not possible in a single move. Therefore, our
implementation uses the best improving strategy in which
the entire neighborhood is searched and the move with the
best value is selected.

5. COMBINATION METHODS

We have developed one combination method (CM1) and a
variant (CM2). The combination method follows the strategy
known as PR [13]. The main idea behind PR is to construct a
path between two elite solutions where the guide is not lim-
ited to the value of the objective function of the problem. PR
was suggested in connection with tabu search because choice
mechanisms in neighborhood-based searches often use the
objective function as the only oracle to measure the quality
of a move (just as we do in the improvement method described
above). PR attempts to create search paths where the objec-
tive function is only one of the elements used to determine the
direction. PR also exploits the principle that the neighborhood
of an elite solution might contain other high-quality solutions
that could be found if the elite solution is approached from
a direction that is different from the one that was used to

14 NETWORKS—2015—DOI 10.1002/net

FIG. 5. Illustration of the combination method CM1.

find the elite solution in the first place. PR is implemented by
choosing one or more elite solutions as the initiating solution
and one or more as the guiding solutions. Strategies are then
built around the notion of applying transformations to the ini-
tiating solution with the goal of moving it toward the guiding
solution(s). As all solutions that have been found during a
search are connected by the path that the search followed to
find them, building a new path between elite solutions may be
conceptualized as a relinking exercise, and hence the name
of the strategy.

Let s be the initiating (or starting) solution and t the guid-
ing (or target) solution. CM1 starts by identifying the set
D of vertices that have different labels in s and t, that is,
D = {v : πs(v) �= πt(v)}. A set of solutions is generated by
swapping the labels of vertex v and vertex ϕs(πt(v)) in the
initiating solution, for all v ∈ D. Note that after these swaps,
πs(v) equals πt(v) and the initiating solution moves closer to
the guiding solution. This step generates |D| trial solutions
from which we select the best according to the objective func-
tion value. The chosen solution becomes the new initiating
solution and the process continues until D = ∅, that is, until
the labeling in s is the same as in t. The procedure, referred
to as Greedy Path Relinking in [28], returns the best trial
solution found.

Figure 5 illustrates how CM1 operates on two solutions,
where s is the initiating solution and t is the guiding solution.
The relinking requires 4 steps and generates 12 intermediate
solutions that are labeled with a digit and a letter, where the
digit is the step number and the letter a solution identifier.
Note that at each step, the best solution (according to the
objective function value) becomes the initiating solution for
the next step. Once the guiding solution is reached, the best
intermediate solution (in this case solution 3A with a profile
value of 8) is returned.

We created a variant of CM1 that we refer to as CM2
and that consists of replacing the selection criterion of the
trial solution generated during the relinking process. In par-
ticular, instead of selecting the best solution with respect to

the objective function value from the set D of trial solutions,
the next initiating solution is selected randomly. In this way,
CM2 favors diversification over intensification. As before,
CM2 returns the best solution encountered during the PR
process.

6. COMPUTATIONAL EXPERIMENTS

We now describe the computational experiments per-
formed to test the SS approach that we developed for the PMP
and then we discuss the resulting outcomes. The SS procedure
was implemented in Java SE 6 and was compared against the
best methods reported in the literature so far, namely, RCM
[4], and SA [19]. The RCM and SA results were obtained run-
ning the original C implementations shared by the authors.
We also compare against an adaptation of the best heuristic
for the BMP as well as two general-purpose optimizers. All
tests were performed on an Intel Core i7 2600 machine run-
ning at 3.4 GHz and with 2 GB of RAM. The test set consists
of 262 instances divided into three subsets. All instances are
available at www.optsicom.es/pmp/.

• HB—This set is derived from 73 instances in the Harwell-
Boeing Sparse Matrix Collection [22]. The data matrices in
this set correspond to problems in linear systems, least squares
and eigenvalue calculations in a wide variety of scientific and
engineering disciplines. We selected the 73 problems with
n ≤ 1000 and therefore the number of vertices ranges from
24 to 960 and the number of edges ranges from 34 to 3721.

• K-Graphs—This set contains 98 bipartite graphs with number
of vertices ranging from 4 to 142 and number of edges ranging
from 3 to 5016. A complete bipartite graph is such that the set
of vertices V can be divided into two subsets V1 and V2 in such
a way there exists an edge between every pair of vertices, one
belonging to V1 and the other belonging to V2. At the same
time, there is no edge for which its endpoint vertices are in
the same subset. Optimal objective function values are known
by construction [20] and are given by n1n2 + 1

2 n1(n1 − 1) for
n1 ≤ n2, where n1 = |V1| and n2 = |V2|.

NETWORKS—2015—DOI 10.1002/net 15

FIG. 6. Comparison of construction methods. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

• D4-Trees—This set consists of 91 instances that are based on
trees with a diameter of 4 and a number of vertices ranging
from 10 to 100 and a number of edges ranging from 9 to 99.
These trees are built by choosing a root vertex v0 and adjacent
vertices v1 to vk , for k ≥ 2. The vertices adjacent to v0 form
a star with v0 in the center. If γ (vi) is the degree of vertex
vi then the vi-branch has γ (vi) − 1 leaves, because the other
edge is the one connecting vi to the root vertex v0. The trees
in the D4 set are built in such a way that γ (v1) ≥ γ (v2) ≥
· · · ≥ γ (vk) ≥ 2 and with a diameter of 4. This means that the
tree consists of the root vertex, of all the adjacent vertices in a
star configuration and of all the vertices corresponding to the
leaves of the tree. The optimal objective function values are
known by construction and are given by |E|+∑k

i=3(γ (vi)−1).

The experiments are divided into two main blocks. The
first block has the goal of studying the behavior of the com-
ponents of the solution procedure as well as determining the
best values for the search parameters. The second block of
experiments has the goal of comparing our procedure with
the best in the literature and two commercial optimizers. To
be able to test the effectiveness of our strategies in the entire
PMP class, the first set of experiments is performed on a sub-
set of all problem instances. In this way, we can test how well
our choices generalize to the entire set of problems. Specif-
ically, the tuning experiments are performed on the 30 HB
instances that have less than 250 vertices. We refer to these
instances as the training set and to all other instances as the
testing set.

A common practice in SS implementations is to arrive to
the best design by choosing the components of the solution
procedure sequentially. As we are using standard implemen-
tations for the reference set update and the subset generation
methods, our design process focuses on choosing a diversifi-
cation generator, an improvement method and a combination
method. As described in the previous sections, we have

developed four diversification generation methods (C1–C4),
two improvement methods (one based on swaps and one
based on inserts), and two combination methods (CM1 and
CM2). This results in a full-factorial design with 16 combi-
nations. We start by contrasting the sequential process that
selects components one at a time and adds them to the solu-
tion procedure with the full-factorial approach that identifies
the best combination with a single experiment.

For the sequential design process, we begin by compar-
ing the four construction methods described in section 3. As
these methods are used for diversification purposes, the com-
parison metrics must include a measure of diversity as well
as a measure of solution quality. Each method (C1–C4) is
executed to generate 100 solutions. The value of α1 for C1
and C3, and α2 for C2 and C4 are chosen at random in each
construction. For validation purposes, we also generate 100
solutions at random and refer to this set of solutions as C0.
The objective function value of each solution is used to calcu-
late an average quality of each set, which is then normalized
to a value between 0 and 1. The average diversity of a set of
solutions is calculated using the distance measure described
in section 2. That is, for a particular set of solution, the dis-
tance between a solution and the rest in the set (i.e., the other
99 solutions) is computed and then the average of the 100
values obtained is used to represent the diversity of the set.
We also normalize this diversity measure to obtain a value
between 0 and 1. Figure 6 compares the diversity and quality
of the construction methods.

Not surprisingly, C0 obtains the largest diversity of all the
sets, as well as the lowest quality, and hence it is not depicted
in the figure. However, this set of solutions is of minimum
quality when compared to the constructions based on GRASP.
The C2 set has the highest quality but the lowest diversity.
The sets generated by C3 and C4 are very similar, with C3
slightly more diverse and C4 with slightly higher quality. To

16 NETWORKS—2015—DOI 10.1002/net

TABLE 1. Construction procedures coupled with improvement methods

Variant Obj Dev (%) #Best Time

C2+Swap 1235.94 4.61 7 68.76
C3+Swap 1209.72 2.05 10 90.84
C2+Insert 1209.34 1.30 17 2.56
C3+Insert 1194.78 0.67 18 3.90

test the effect of adding the improvement method to these
construction procedures, we select C2 and C3 to perform
additional experiments. Ignoring the purely random genera-
tor C0, the set generated by C2 and C3 are at the extremes
of the frontier in which C1 is dominated and C4 is the most
balanced nondominated point.

The second experiment couples the construction methods
C2 and C3 with the improvement methods based on swap and
insert neighborhoods, resulting in 4 different variants. Once
again, the α values associated with C2 and C3 are chosen ran-
domly in each construction. Table 1 shows results obtained
when applying these variants to the training set. For each
variant, the table reports the average objective function value
(Obj), the percent deviation of this value from the average
obtained with the best known solutions (Dev), the number of
best solutions found out of 30 (#Best) and the CPU time in
seconds.

The improvement method based on inserts seems to be
more effective than the one based on swaps according to the
results in Table 1. The table also shows that local search based
on swap moves is computationally more expensive than the
one based on insert moves. The best combination of con-
struction and improvement is given by C3+Insert, CPU time
notwithstanding. Therefore, in this sequential process, we
have determined, so far, that our final SS should have C3 as
the diversification generator and Insert as the improvement
method.

Finally, we must choose a combination method that works
well with the C3+Insert improvement method. For this exper-
iment, we also need to add the subset generation method and
the reference set improvement method. The subset generation
method is a standard implementation and has no parameters.
The behavior of the reference set update method depends on
the values of b and the dthresh parameters. Although we set
b to the standard value of 10 used in the SS literature, in this
experiment, we try 4 values for dthresh (0.01, 0.05, 0.10, and
0.30), which is given as a fraction of the maximum distance
MD between the labeling of two solutions. Considering the
distance function formulated in section 2, MD is computed
as follows:

MD =
n∑

i=1

|i − (n − i + 1)|

As indicated at the end of section 2, the search terminates
when no solution generated by the application of the combi-
nation and improvement methods is admitted to the reference
set. Table 2 summarizes the results of this experiment, where

TABLE 2. Performance of combination methods CM1 and CM2

Variant dthresh Obj Dev (%) #Best Time

C3+Insert+CM1
0.01* MD 1187.97 0.10 25 6.54
0.05* MD 1187.38 0.08 25 6.37
0.10* MD 1187.63 0.09 24 6.71
0.30* MD 1188.16 0.12 24 6.73

C3+Insert+CM2
0.01* MD 1191.69 0.43 21 6.08
0.05* MD 1191.56 0.43 21 5.74
0.10* MD 1191.78 0.45 21 5.90
0.30* MD 1191.56 0.43 20 5.43

the column labels have the same meaning as in Table 1 with
the addition of the dthresh column containing the value of
the parameter that was used to produce the results.

According to the results shown in Table 2, the best SS con-
figuration should include CM1 as the combination method.
Within that, the best value for dthresh seems to be 0.05,
which results in the smallest deviation from the best known
solutions. The results indicate that while there is a signif-
icant difference in performance between using CM1 and
using CM2, the procedure is robust with respect to the value
of dthresh. In particular, there is no significant difference
between values in the range between 0.01 and 0.10 for CM1.

The final experiment of this block consists of choosing
the best SS configuration by running a single full-factorial
experiment. To perform this experiment, we set b = 10,
dthresh = 0.05 and α is chosen randomly in each construc-
tion. Table 3 summarizes the results obtained with the 16
variants on the training set.

The results of the full-factorial design that Table 3 summa-
rizes indicate that there are two configurations that dominate
all others when considering percent deviation and number of
best solutions: C1+Insert+CM1 and C3+Insert+CM1. The
C3+Insert+CM1 configuration was the one identified as the
best by the sequential design process. It achieves the lowest

TABLE 3. Full-factorial experiment

Variant Obj Dev (%) #Best Time

C1+Insert+CM1 1189.44 0.80 20 6.59
C1+Insert+CM2 1195.38 0.96 18 5.30
C1+Swap+CM1 1195.94 1.35 13 92.68
C1+Swap+CM2 1200.91 1.74 12 91.24
C2+Insert+CM1 1218.31 3.30 11 3.79
C2+Insert+CM2 1219.41 3.51 12 3.48
C2+Swap+CM1 1228.91 4.42 9 76.20
C2+Swap+CM2 1232.91 4.74 7 75.36
C3+Insert+CM1 1188.06 0.75 17 6.78
C3+Insert+CM2 1191.53 1.04 14 6.58
C3+Swap+CM1 1201.91 1.79 10 101.27
C3+Swap+CM2 1202.78 1.95 12 96.13
C4+Insert+CM1 1195.28 1.27 14 6.91
C4+Insert+CM2 1200.97 1.50 15 6.14
C4+Swap+CM1 1205.44 2.25 10 94.01
C4+Swap+CM2 1205.66 2.44 10 93.00

NETWORKS—2015—DOI 10.1002/net 17

TABLE 4. Experiments with 98 K-Graphs

Procedure Obj Dev #Opt Time

RCM 1165.64 0.00 98 1.02
SA 1167.06 0.02 97 5.87
SS 1165.64 0.00 98 0.66

deviation of 0.75% and the third largest number of best solu-
tions of 17. The C1+Insert+CM1 configuration achieves the
largest number of best solutions of 20 and an average devia-
tion of 0.8% that is the second lowest. The configuration uses
a diversification generator that is different from the one that
we selected during the sequential design process. In fact, in
our analysis, C1 was dominated by the other three construc-
tion procedures in terms of both quality and diversity (see
Fig. 6). Hence, the full-factorial design is able to identify a
configuration that performs well when all elements are put
together at once but that does not seem attractive when the
merit of each element is assessed separately. Nonetheless, the
fact that the C3+Insert+CM1 configuration is in the nondom-
inated set seems to indicate that in situations where running
a full-factorial design is not practical, a sequential process is
an approach from which it is reasonable to expect an effective
combination of SS components. This analysis concludes the
first block of experiments.

In the second block of experiments, we start by com-
paring the performance of the SS procedure configured as
C1+Insert+CM1 to the best methods in the literature. In par-
ticular, the comparison includes RCM [4] and SA [19]. Tables
4 and 5 show the results associated with the K-Graph and
D4-Tree data sets, respectively. The optimal solutions to these
problems are known by construction and therefore the devi-
ations are calculated using the optimal objective function
values. Also, the tables report the number of optimal solutions
found (#Opt) instead of the number of best solutions.

Clearly, the K-Graphs do not represent a challenge to any
of the procedures in our test. Only SA fails to find the optimal
solutions to one of the instances, even when using consider-
ably more time than its counterparts. The situation changes
when the methods are applied to the D4-Tree data set. The
results are shown in Table 5 where the difficulty of these prob-
lems becomes evident. The best performance is achieved by
SS, which is able to find the optimal solution to 97.8% (i.e.,
89 out of 91) of the problems. The solution time is negligible
for all procedures.

We perform nonparametric tests to provide additional sup-
port to our conclusions about the performance of the SS

TABLE 5. Experiments with 91 D4-Trees

Procedure Obj Dev(%) #Opt Time

RCM 282.75 173.57 2 1.01
SA 126.08 30.39 31 0.68
SS 86.12 0.01 89 0.28

implementation. First, we apply the Friedman test for multi-
ple correlated samples to the best solutions obtained by each
of the three methods in Table 5. This test computes, for each
instance, the rank value of each method according to solu-
tion quality (where rank 1 is assigned to the best method
and rank 3 to the worst). Then, it calculates the average rank
values for each method across all instances. If the averages
differ greatly, the associated p-value or level of significance
is small. The resulting p-value obtained in this experiment
(smaller than 0.001) clearly indicates that there are statisti-
cally significant differences among the three methods. The
rank values produced by this test are 1.18 (SS), 1.85 (SA),
and 2.97 (RCM).

Next, we used the Wilcoxon test and Sign test to make
a pairwise comparison of SS and SA, which consistently
provide the best solutions reported in our experiments. The
results of the Wilcoxon test (with a p-value smaller than
0.001) determined that the solutions obtained by the two
methods indeed represent two different populations. The Sign
test (with a p-value smaller than 0.001) indicated that the
objective function values of the solutions obtained with SS
tend to be better (i.e., smaller) than those obtained with SA.

In the final experiment of this block, we add three pro-
cedures to our comparison set: (1) an adaptation of the tabu
search developed by Campos et al. [3] for the solution of
the BMP (TS-BMP), (2) OptQuest, and (3) LocalSolver.
The BMP is related to the PMP because they both have the
goal of finding a graph labeling such that the corresponding
sparse incidence matrix is transformed into one for which the
nonzero elements are close to the main diagonal. The PMP
achieves this goal with an additive objective function that
penalizes a distance measure from the main diagonal while
the BMP uses a criterion that minimizes the maximum devi-
ation. Specifically, in the BMP, the objective is to find an
ordering of the rows and columns of a matrix M in such a
way that the nonzero elements are in a band that is as close
as possible to the main diagonal. In terms of the graph rep-
resentation, the goal is to find a labeling π of the vertices
of the corresponding G(V , E) graph such that the bandwidth
B(G, π) is minimized, where:

B(G, π) = max(B(v, π) : v ∈ V) and

B(v, π) = max(|π(v) − π(u)| : (v, u) ∈ E).

That is, B(v, π) is the bandwidth of vertex v for labeling
π and it is calculated as the maximum absolute difference
between the label of v and the labels of its adjacent vertices.
The bandwidth of the graph is the maximum vertex band-
width. Given these similarities, it is reasonable to believe
that a solution procedure designed for the BMP might find
high-quality solutions to the PMP. To test this, we applied
TS-BMP without any modifications to the HB instances. TS-
BMP operates with the objective of minimizing B(G, π) and
on termination the procedure returns the solution π∗ with the
best value according to this objective function. We then calcu-
late P(G, ϕ∗) by applying the transformation ϕ∗(π∗(v)) = v
for all vertices in the graph.

18 NETWORKS—2015—DOI 10.1002/net

TABLE 6. Experiments with 26 HB instances with n ≤ 200

Procedure Obj Dev (%) #Best Rank Time

OptQuest 1466.54 46.7 2 4.3 36.9
LocalSolver 1030.04 2.4 23 1.3 60.0
TS-BMP 1596.83 42.7 1 5.1 30.8
RCM 1109.58 20.4 2 3.9 97.3
SA 1110.92 14.5 4 3.3 4.0
SS 1007.58 1.1 15 1.5 2.8

OptQuest (optquest.com) is a general-purpose black-box
optimizer built on a SS platform. The system includes sev-
eral variable types, including permutations. We used the latest
OptQuest version in C# and followed three simple steps: (1)
read data, (2) define optimization model by creating n permu-
tation variables, and (3) create Evaluate() to evaluate the
objective function. Each OptQuest iteration consists of the
evaluation of a trial solution that is generated by the search
mechanisms implemented within the system.

LocalSolver (localsolver.com) is also a black-box opti-
mizer for combinatorial problems. LocalSolver uses a hybrid
approach to optimization that ranges from neighborhood
search and metaheuristics to constraint propagation and
mathematical programming. The main elements of the search
are the so-called autonomous moves (complex moves, such
as ejection chains, that have the goal of preserving feasi-
bility) and incremental evaluation (a concept introduced by
Michel and van Hentenryck [23]). LocalSolver admits only
binary variables and therefore a transformation must be used
to apply it to an ordering problem such as the PMP. In partic-
ular, we created a LocalSolver model with binary variables
x, such that x[i][j]=1 indicates that vertex i has label
j. Appendix A contains the LocalSolver Program (LSP) that
we used to perform the experiment.

The results associated with this experiment are in Tables
6–8. As the optimal solutions to the HB instances are not
known, the deviations are calculated against the best-known
solutions and #Best refers to the number of best-known solu-
tions found by each procedure. These tables also include
the average rank for each procedure. The tables divide the
instances into three different groups according to the number
of vertices in the graph: 26 instances with less than or equal to
200 vertices (Table 6), 27 instances with more than 200 and
no more than 500 vertices (Table 7), and 20 instances with
more than 500 vertices (Table 8). As TS-BMP is designed
to tackle connected graphs and 11 HB instances correspond
to graphs that are not connected, our experiments with this
code are limited to 62 instances (23, 22, and 17 instances for
Tables 6–7, and 8, respectively).

The procedures from the literature (TS-BMP, RCM, and
SA) were executed with the parameters values suggested by
their authors. As all three methods are heuristics, we impose
a maximum computing time of n seconds, where n, as before,
represents the number of vertices. To stop the execution of
OptQuest and LocalSolver, we also use a time limit that
depends on the size of the problem. However, we allow them

TABLE 7. Experiments with 27 HB instances with 200 < n ≤ 500

Procedure Obj Dev (%) #Best Rank Time

OptQuest 8923.07 61.1 0 4.1 211.9
LocalSolver 7492.30 25.5 8 2.9 220.0
TS-BMP 10204.82 73.4 0 5.2 212.1
RCM 7491.85 34.0 4 3.2 335.6
SA 7542.48 33.1 1 3.6 39.5
SS 5701.48 2.2 17 1.4 78.5

to run considerably longer on the larger instances because
these two procedures are not specialized to the PMP. The
stopping times (in seconds) are 60 (n ≤ 200), 120 (200 <

n ≤ 300), 300 (300 < n ≤ 500), 600 (500 < n ≤ 600),
900 (600 < n ≤ 700), 1200 (700 < n ≤ 800), 1800
(800 < n ≤ 900), 3600 (n > 900). We configure OptQuest
to report the time when the incumbent solution is last updated
during the run and those are the average times that we report
in Tables 6–8. The time when the procedure stops is the same
as the time reported for the LocalSolver.

The results in Table 6 indicate that LocalSolver is a very
good alternative for problems with up to 200 vertices. This
procedure finds the largest number of best solutions and there-
fore has the best rank. Its average deviation is slightly larger
than SS due to a 42.58% deviation in problem CAN 198
(see Appendix B for the complete list of problems in the HB
dataset). In contrast, the largest deviation for SS in this subset
of problems is 16.06% (in the DWT 162 instance).

The merit of SS becomes evident as the problem size
increases. The results in Tables 7 and 8 support the posi-
tion that SS is the best procedure for the PMP when dealing
with medium to large instances.

We applied statistical tests to the results in Table 6–8. The
Friedman test detects significant differences in all cases (p-
value smaller than 0.001). We used the Wilcoxon test and
Sign test to make a pairwise comparison between the best
two procedures in each set of instances. In particular, both
tests are inconclusive with regard of LocalSolver and SS for
the instances in Table 6. Conversely, considering SS and its
closest competitor, LocalSolver (Table 7) and SA (Table 8),
both tests indicate that the solutions obtained with SS are
consistently and significantly (p-value smaller than 0.001)
better, confirming the superiority of the proposed method.
Table 9 in Appendix B shows the details of the SS output for
the HB instances.

TABLE 8. Experiments with 20 HB instances with n > 500

Procedure Obj Dev (%) #Best Rank Time

OptQuest 27156.00 105.4 1 4.7 1518.4
LocalSolver 26078.30 90.0 1 4.4 1575.0
TS-BMP 25226.29 61.4 0 4.5 714.7
RCM 19256.05 28.5 1 2.7 744.1
SA 19246.65 29.2 0 3.2 1367.3
SS 15629.05 1.0 17 1.2 674.8

NETWORKS—2015—DOI 10.1002/net 19

TABLE 9. Best individual values on HB instances obtained with SS

Instance Size Best SS Time Instance Size Best SS Time

CAN 24 24 95 95 0.1 CAN 292 292 4673 4718 41.7
BCSPWR01 39 82 82 0.1 DWT 307 307 6676 6676 46.4
BCSSTK01 48 460 466 0.4 DWT 310 310 2630 2630 25.0
BCSPWR02 49 113 113 0.3 DWT 346 346 6051 6051 54.1
DWT 59 59 214 223 0.4 DWT 361 361 4635 4635 64.8
CAN 61 61 338 338 0.4 PLAT362 362 9150 10620 105.8
CAN 62 62 172 172 0.5 LSHP 406 406 5964 5964 83.2
BCSSTK02 66 2145 2145 0.4 DWT 419 419 6679 6679 107.3
DWT 66 66 127 127 0.2 BCSSTK06 420 13239 13437 123.9
DWT 72 72 147 151 0.7 BCSSTK07 420 13224 13437 123.9
CAN 73 73 520 520 0.9 BCSPWR05 443 3076 3354 90.3
ASH85 85 490 490 1.4 CAN 445 445 15494 15494 150.4
DWT 87 87 428 434 1.2 NOS5 468 20446 20446 209.0
CAN 96 96 1078 1080 2.1 BCSSTK20 485 3006 3006 195.8
NOS4 100 651 651 1.1 DWT 492 492 3361 3361 151.0
BCSSTK03 112 272 272 0.3 494 BUS 494 3499 3499 237.5
BCSPWR03 118 434 434 3.2 DWT 503 503 13152 13152 192.3
BCSSTK04 132 3154 3159 4.9 DWT 512 512 3975 3975 144.6
BCSSTK22 138 628 641 2.2 LSHP 577 577 10035 10045 222.1
CAN 144 144 969 969 2.3 DWT 592 592 9498 9498 220.5
BCSSTK05 153 2191 2192 4.3 DWT 607 607 13278 13278 419.3
CAN 161 161 2482 2482 6.6 CAN 634 634 28493 28493 499.9
DWT 162 162 1108 1286 5.8 662 BUS 662 8962 8962 318.5
CAN 187 187 2184 2195 9.7 NOS6 675 9095 9095 184.2
DWT 193 193 4355 4388 15.3 685 BUS 685 8528 8528 799.8
DWT 198 198 1092 1092 7.6 CAN 715 715 24414 24414 984.3
DWT 209 209 2494 2621 25.1 NOS7 729 34226 34675 338.7
DWT 221 221 1646 1646 20.1 DWT 758 758 6392 6392 371.3
CAN 229 229 3928 4141 27.9 LSHP 778 778 15719 15719 586.2
DWT 234 234 782 803 10.6 BCSSTK19 817 7638 7638 855.7
NOS1 237 467 467 2.1 DWT 869 869 13107 13107 1526.5
DWT 245 245 2053 2053 29.7 DWT 878 878 17259 17259 1104.6
CAN 256 256 5049 5049 40.8 GR 30 30 900 24311 24311 1190.4
LSHP 265 265 3162 3162 25.7 DWT 918 918 16502 16502 1277.3
CAN 268 268 5215 5215 25.0 NOS2 957 1907 1907 36.0
BCSPWR04 274 1808 1992 40.6 NOS3 960 38676 45631 2222.8
ASH292 292 2717 2784 61.8

7. CONCLUSIONS

Our goal was to develop a state-of-the-art solution method
for the PMP. We accomplished this goal with an implementa-
tion of a SS procedure that computational experiments show
to be superior to the solution methods reported in the litera-
ture. We developed a number of mechanisms that we believe
can be helpful in similar problem settings. For instance, the
ideas behind our efficient move evaluation in the improve-
ment method could be adapted to other problems with similar
characteristics (i.e., labeling vertices in a graph). Also, in
the process of choosing the best SS design, we discovered
that a sequential approach is capable of producing a highly
competitive design and thus allowing future SS implemen-
tations to avoid a full-factorial design when such a design is
computationally intractable.

APPENDIX A

This is the model() function used within the LSP
applied to the HB instances that can be found in
www.optsicom.es/pmp/. Note that vcount[i] contains the

number of vertices adjacent to vertex i and vlist[i][j]
is the jth vertex adjacent to vertex i. Also, p is the profile
of each vertex that is being added to the value of obj.

function model()
{

// x[i][j] equal to 1 if vertex i is assigned
label j

x[1..nodes][1..nodes] <- bool();

// one label per vertex i for [i in 1..nodes]
constraint sum[j in 1..nodes](x[i][j]) == 1;

// one vertex per label j for [j in 1..nodes]
constraint sum[i in 1..nodes](x[i][j]) == 1;

//label[i] is the label of vertex i
label[i in 1..nodes] <- sum[j in 1..nodes]

(j*x[i][j]);
obj <- 0; for [i in 1..nodes]
{

p <- 0;
for[j in 1..vcount[i]] p <- max(label[i]

- label[vlist[i][j]], p);
obj <- obj + p;

}
minimize obj;

}

20 NETWORKS—2015—DOI 10.1002/net

APPENDIX B

Table 9 shows the SS results for the 73 Harwell-Boeing
instances (ordered by size). The table compares the SS objec-
tive function value and the best known value (Best) and it also
shows the SS computing time (in seconds). Best solutions
found by the SS procedure are shown in bold.

Acknowledgment

The authors would like to thank Professor Robert R. Lewis
for sharing the source code of the RCM and SA methods.

REFERENCES

[1] A. Agrawal, P. Klein, and R. Ravi, Ordering problems approx-
imated: Single-processor scheduling and interval graph com-
pletion, Automata Languages Programming 510 (1991),
751–762.

[2] R.A. Botafogo, Cluster analysis for hypertext systems, Pro-
ceedings of the 16th Annual International ACM-SIGIR
Conference on Research and Development in Information
Retrieval, 1993, pp. 116–125.

[3] V. Campos, E. Piñana, and R. Martí, Adaptive memory pro-
gramming for matrix bandwidth minimization, Ann Oper Res
183 (2011), 7–23.

[4] E. Cuthill and J. McKee, Reducing the bandwidth of sparse
symmetric matrices, Proc ACM 24th National Conf, 1969,
pp. 157–172.

[5] A. Das and M. Roberts, Metric distances of permu-
tations, 2004, Available at: www.cra.org/Activities/craw_
archive/dmp/awards/2004/Das/paper.ps.

[6] A. Duarte and R. Martí, Tabu search and grasp for the
maximum diversity problem, Eur J Oper Res 178 (2007),
71–84.

[7] A. Duarte, F. Glover, R. Martí, and F. Gortázar, Hybrid scatter
tabu search for unconstrained global optimization, Ann Oper
Res 183 (2011), 95–123.

[8] T.A. Feo and M.G.C. Resende, A probabilistic heuristic for
a computationally difficult set covering problem, Oper Res
Lett 8 (1989), 67–71.

[9] M. Gallego, A. Duarte, M. Laguna, and R. Martí, Hybrid
heuristics for the maximum diversity problem, Comput
Optim Appl 44 (2009), 411–426.

[10] M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W. H. Freeman
and Co, 1979.

[11] A. Gibbons, M. Paterson, J. Torán, and J. Diaz, The minsum-
cut problem, Algorithms Data Struct 519 (1991), 65–79.

[12] N.E. Gibbs, A hybrid profile reduction algorithm, ACM Trans
Math Softw 2 (1976), 378–387.

[13] F. Glover and M. Laguna, Tabu search, Kluwer Academic
Publishers, Boston, 1997.

[14] G. Guan and K.L. Williams, Profile minimization of triangu-
lated triangles, Discrete Math 260 (2003), 69–76.

[15] R. Karp, Mapping the genome: Some combinatorial problems
arising in molecular biology, STOC’93 Proc Twenty-Fifth
Ann ACM Symp Theory Comput, 1993, pp. 278–285.

[16] D. Kendall, Incidence matrices, interval graphs and seriation
in archaeology, Pac J Math 28 (1969), 565–570.

[17] M. Laguna and R. Martí, Scatter search: Methodology and
implementations in C, Kluwer Academic Publisher, Boston,
2003.

[18] J. Lewis, The Gibbs-Poole-Stockmeyer and Gibbs-King
algorithms for reordering sparse matrices, ACM Transactions
on Mathematical Software 8 (1982), 190–194.

[19] R. Lewis, Simulated annealing for profile and fill reduction,
Int J Numer Methods Eng 37 (1994), 905–925.

[20] Y. Lin and J. Yuan, Profile minimization problem for matrices
and graphs, Acta Math Appl Sinica, English-Series 10 (1994),
107–112.

[21] R. Martí, A. Duarte, and M. Laguna, Advanced scatter search
for the max-cut problem, INFORMS J Comput 21 (2009),
26–38.

[22] Matrix Market 2011, webpage. http://math.nist.gov/Matrix
Market/collections/hb.html

[23] L. Michel and P. van Hentenryck, Localizer, Constraints 5
(2000), 43–84.

[24] J.J. Pantrigo, R. Martí, A. Duarte, and E.G. Pardo, Scatter
search for the cut width minimization problem, Ann Oper
Res 199 (2012), 285–304.

[25] M. Penrose, J. Petit, M. Serna, and J. Diaz, Convergence
theorems for some layout measures on random lattice and ran-
dom geometric graphs, J Combin Probab Comput 9 (2000),
489–511.

[26] J. Petit, M. Serna, and J. Díaz, A survey of graph layout
problems, ACM Comput Surv 34 (2002), 313–356.

[27] W. Poole, P. Stockmeyer, and N. Gibbs, An algorithm for
reducing the bandwidth and profile of a sparse matrix, SIAM
J Numer Anal 13 (1976), 236–250.

[28] M.G.C. Resende, R. Martí, M. Gallego, and A. Duarte,
GRASP and path relinking for the max-min diversity prob-
lem, Comput Oper Res 37 (2010), 498–508.

[29] M.G.C. Resende, S.H. Smith, and T.A. Feo, A greedy
randomized adaptive search procedure for maximum inde-
pendent set, Oper Res 42 (1994), 860–878.

[30] Y. Saad, Iterative methods for sparse linear systems, Soci-
ety for Industrial and Applied Mathematics, San Francisco
(California), 2003.

[31] R. Tewarson, Sparse matrices, Academic Press, New York,
1973.

NETWORKS—2015—DOI 10.1002/net 21

