Computers & Operations Research 52 (2014) 209-219

Contents lists available at ScienceDirect

puter:
& operations
research

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

Combining intensification and diversification strategies in VNS,
An application to the Vertex Separation problem

@ CrossMark

Jestis Sanchez-Oro, Juan José Pantrigo, Abraham Duarte *

Dpto. de Ciencias de la Computacién, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain

ARTICLE INFO ABSTRACT

Available online 18 November 2013 The Vertex Separation problem (VSP) is an NP-hard problem with practical applications in VLSI design,
graph drawing and computer language compiler design. VSP belongs to a family of optimization
problems in which the objective is to find the best separator of vertices or edges in a generic graph. In
this paper, we propose different heuristic methods and embed them into a Variable Neighborhood
Search scheme to solve this problem. More precisely, we propose (i) a constructive algorithm, (ii) four
shake procedures, (iii) two neighborhood structures, (iv) efficient algorithmic strategies to explore them,
(v) an extended version of the objective function to facilitate the search process and finally, (vi) we
embed these strategies in a Reduced Variable Neighborhood Search (RVNS), a Variable Neighborhood
Descent (VND) and a General Variable Neighborhood Search (GVNS). Additionally, we provide an
extensive experimental comparison among them and with the best previous method of the literature.
We consider three different benchmarks, totalizing 162 representative instances. The experimentation
reveals that our best procedure (GVNS) improves the state of the art in both quality and computing time.
This fact is confirmed by non-parametric statistical tests. In addition, when considering only the largest
instances, the other two proposed variants (RVNS and VND) also obtain statistically significant
differences with respect to the best previous method identified in the state of the art.

© 2013 Elsevier Ltd. All rights reserved.

Keywords:

Combinatorial optimization
Intensification

Diversification

Variable Neighborhood Search
Layout problems

Vertex separation problem

1. Introduction definitions. Let L(p, ¢, G) be the set of vertices in V with a position

in the layout ¢ lower than or equal to position p. Symmetrically,

Graph layout problems are a class of combinatorial optimiza-
tion problems where the objective consists of finding a linear
labeling of the vertices of a graph in such a way that a specific
objective function is maximized or minimized. Given an undir-
ected and unweighted graph G(V,E) where V (with |V|=n) and E
(with |E| =m) are the sets of vertices and edges, respectively, a
linear labeling ¢ of the vertices of G is a bijection ¢ :V—
{1,2,...,n} which assigns a unique and different integer between
1 and n to each vertex ue V. A labeling has also been named as
linear ordering, linear arrangement layout, numbering or simply,
ordering. A common way to represent a layout problem is to dispose
the vertices of a graph in a straight line, where each vertex u is
allocated in position ¢(u). Fig. 1a shows an example of a graph, G,
with 7 vertices and 11 edges, and Fig. 1b an example of a layout ¢.

The Linear Arrangement [27], Bandwidth [25], Cutwidth [23] or
Antibandwidth [7] fall into this class of optimization problems. In
this paper, we tackle the Vertex Separation problem (VSP). Before
defining mathematically the VSP, we need to introduce some

* Corresponding author. Tel.: +34 914888116.
E-mail address: abraham.duarte@urjc.es (A. Duarte).

0305-0548/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.11.008

let R(p, @, G) be the set of vertices with a position in the layout ¢
larger than position p. In mathematical terms,

L(p,p,G)={veV: @) <p},

R(p,p,G)={veV: @) >p}.

In general, L(p, ¢, G) can be simply referred to as the set of left
vertices with respect to position p in ¢. Symmetrically, R(p, @, G) is
the set of the right vertices with respect to p in ¢. We define the
separation value at position p of layout ¢, Sep(p,®,G), as the
number of vertices in L(p, ¢, G) with one or more adjacent vertices
in R(p, @, G). More formally

Sep(p, @,G)={uel(p,p,G) : IveR(p,p,G) A (u,v) e E}|.

The Vertex Separation value (VS) of layout ¢ is the maximum of
the Sep-value among all positions in ¢:

VS(p,G) = lfgnlfli(n Sep(p, @, G).

The Vertex Separation problem (VSP) then consists of finding a
layout, ¢*, minimizing the VS-value of the graph G. In mathematical

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.11.008&domain=pdf
mailto:abraham.duarte@urjc.es
http://dx.doi.org/10.1016/j.cor.2013.11.008
http://dx.doi.org/10.1016/j.cor.2013.11.008

210 J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219

terms

@* =arg min VS(¢, G),
ped

where @& represents the set of all possible layouts of G.

Fig. 2a-f depicts the Sep-value of each position p of layout ¢,
Sep(p, @, G). For instance, Sep(1,p,G)=1 (see Fig. 2a) because
L(1,¢,G)={c} and R(1,,G) ={A,D,E,B,F,G} and there is only one
vertex in L having an adjacent vertex in R. Similarly, Sep(5, ¢,G) = 4
(2e) because L(5, ¢, G) = {C, A, D, E, B} and R(3, ¢, G) = {F, G} and there
are four vertices {c,a,Dn,B} in L that has an adjacent vertex
in R. Notice that vertex E is not highlighted in Fig. 2e, since it
has no adjacent vertices in R. Therefore, it does not contribute to
the Sep-value. The objective function is then computed as the
maximum of these Sep-values. In particular, for the example
depicted in Fig. 2, this value is VS(G, @) = 4, associated to position
p=>5.

The VSP is strongly related to other well-known graph pro-
blems, such as the Path-width [17], the Node Search Number [19]
or the Interval Thickness [18], among others. The description of the
equivalences among these problems can be found in [12,17,19]. All
these optimization problems are NP-hard and have practical
applications in VLSI design [20], computer language compiler
design [4] or graph drawing [9].

We can find efficient exact approaches to solve the VSP on special
classes of graphs. A linear algorithm to compute the optimal Vertex
Separation of a tree is proposed in [10] as well as a O(n log n)
algorithm for finding the corresponding optimal layout. The algorithm
was improved in [28] with a linear time procedure to find the optimal
layout. In [24] an alternative method to compute the Vertex Separation
of trees was proposed. In [11] a O(n log n) algorithm to compute the
Vertex Separation of unicyclic graphs (i.e., trees with an extra edge) is
proposed. A polynomial-time algorithm to compute the Path-Width

:
'
~

Sep(1,9,G) =1

C

Sep(3.9.G)=3

'
Sep(5.0.G) =4

(which is identical to VSP) is proposed in [2]. However, the algorithm
cannot be considered from a practical point of view, since the bound
on its time complexity is £2(n), see [11]. In [5] it is proposed
a polynomial time algorithm for optimally solving the VSP for
n-dimensional grids. Co-graphs and permutational graphs can also
be optimally solved as it was proposed in [1,2], respectively. Approx-
imation algorithms have also been proposed for the VSP. Specifically,
[3] proposes a polynomial time O(log? n)—approximation algorithm
for general graphs and a O(log n)—approximation algorithm for
planar graphs. Similar results for binomial random graphs are pre-
sented in [6]. Finally, [8] proposed a Basic VNS for the VSP. In
particular, the authors presented two constructive procedures and
one local search based on interchange moves. As far as we know, this
algorithm obtains the best results in this problem, so we use it to test
the performance of our proposals.

The main objective of this paper is to provide experimental
evidences that, in the context of VNS, the compromise between
intensification and diversification usually obtains the best results.
In order to do so, we propose three VNS algorithms (RVNS, VND,
and GVNS), where RVNS mainly focuses on the diversification,
VND mainly focuses on the intensification, and GVNS balances
intensification and diversification. In this line, we also propose
new strategies to combine intensification and diversification
within shake procedures. Computational experiments reveal that
our best procedure (GVNS) improves the state of the art in both
quality and computing time. This fact is confirmed with non-
parametric statistical tests. In addition, when considering only the
largest instances, the other two proposed variants (RVNS and
VND) also obtain statistically significant differences with respect
to the best previous method identified in the state of the art.

The rest of the paper is organized as follows. Section 2 introduces
the VNS variants studied in this paper. We propose a new con-
structive procedure for the VSP (see Section 3.1). We provide a formal
definition of two new neighborhood structures for the VSP based on
insert moves (see Section 3.2). We then introduce four different
shake procedures with different balance between diversification and
intensification (see Section 3.3). In Section 3.4 we propose an
extended version of the objective function which provides a more
convenient view about the quality of the solutions. Additionally, we
include an efficient strategy to perform insert moves (see Section 3.5)
and algorithmic methods to explore the neighborhood structures
(Section 3.6). The paper finishes with the comparison of the
proposed algorithms with the state of the art (see Section 4) and
the associated conclusions (Section 5).

b

Sep(2,0,G) =2

Sep(6,9,G) =2

Fig. 2. (a)-(f) the computation of Sep(p,¢,G) (p=1,..., 6) for the layout ¢ = {C,A,D, E, B, F,G}.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 211

2. Variable Neighborhood Search

The Variable Neighborhood Search (VNS) is a metaheuristic
proposed by Mladenovic and Hansen [22] as a general framework
to solve hard optimization problems. It is based on the idea of
performing systematic changes of neighborhood structures within
the search procedure. The original metaheuristic has been widely
evolved with many extensions, highlighting Variable Neighbor-
hood Descent (VND), Reduced VNS (RVNS), Basic VNS (BVNS),
Skewed VNS (SVNS), General VNS (GVNS), Variable Neighborhood
Decomposition Search (VNDS) and Reactive VNS. See [14,15] for
recent thorough reviews.

Let N, with 1 <k < kiyex be a finite set of pre-selected neighbor-
hood structures, where N(x) is the set of neighbor solutions of x in
the k-th neighborhood. When solving an optimization problem by
using different neighborhood structures (Ni), VNS methodology
proposes to explore them in three different ways: (i) random,
(ii) deterministic, or (iii) mixed, which hybridizes both, determi-
nistic and random.

2.1. Random exploration of neighborhoods

The Reduced Variable Neighborhood Search (RVNS) consists of
exploring (generating) solutions at random in each N; neighbor-
hood. This variant does not consider the application of a local
search procedure. In fact, the values of these random solutions are
directly compared with the value of the incumbent solution,
updating the best solution in case of improvement. The stopping
criterion in this variant is usually the CPU time allowed (tqx).

The pseudo-code of RVNS is shown in Algorithm 1. It has three
input arguments: an initial solution (x), the largest predefined
neighborhood (kiqx) and the maximum computing time (tmqx).
The procedure starts by performing a perturbation to the current
solution using the function Shake, in step 5, and obtaining a new
solution x'. In step 6, it is decided whether the RVNS needs to
explore a larger neighborhood by increasing k (if x" is worse than x)
or not, which implies to set k=1 (if x’ is better than x). Steps 5 and
6 are repeated until k4 is reached. This parameter determines the
maximum number of different neighborhoods to be explored in the
current iteration when there is no improvement in the solution.
Steps 3-8 are repeated until t;,. is reached, starting in each
iteration from the incumbent solution.

Algorithm 1. Pseudocode of RVNS.

—

procedure RVNS (X, Kmax, tmax)
repeat
k<1
repeat
X'« Shake(x, k)
(X, k) —NeighborhoodChange(X, X', k)
until k = knax
t<—CPUTime()
until t >
end RVNS

SLRXNIUAWN

e

2.2. Deterministic exploration of neighborhoods

In Variable Neighborhood Descent (VND), several different
neighborhoods are explored in order, typically from the smallest
and fastest to evaluate, to the largest and slowest one. The process
iterates over each neighborhood while improvements are found,
performing local search until a local optimum is found at each
neighborhood. Only strictly better solutions are accepted after each
neighborhood search. Notice that most local search procedures are

based on only one neighborhood which means that the local
optimum is obtained with respect to that neighborhood. In VND,
the returned solution is alocal optimum in each N, with 1 < k < Kinax-
Therefore, the global optimum is more likely to be found.

The pseudo-code of VND is shown in Algorithm 2 where a
nested strategy is considered. It has only two input arguments: an
initial solution (x) and the number of neighborhoods (k,qy). The
procedure starts by obtaining a local optimum x’ with respect to
the first neighborhood. Then, instead of abandoning the search (as
a local search procedure), VND resorts to the following neighbor-
hood searching for an improvement. If so, the search starts again
by considering the first neighborhood (which implies to set k=1).
Otherwise, VND explores the next neighborhood by increasing k
(until ke is reached). This search strategy is condensed in steps
4 and 5 of Algorithm 2.

Algorithm 2. Pseudocode of VND.

1 procedure VND(X, Kmqx)

2: k1

3: repeat

4: X' «arg min f(y) {* Find the best neighbor in Ny (x)*}
Yy eNpx)

5: NeighborhoodChange(X, X', k)

6: until k = kyqx

7: end vND

2.3. Mixed exploration of neighborhoods

In general terms, the RVNS strategy favors the diversification of
the search, while the VND focuses on the intensification. Basic VNS
(BVNS) and its generalization, known as General VNS (GVNS) are a
compromise between these two strategies. The BVNS and the GVNS
methods combine deterministic and random changes of neighbor-
hoods, where the deterministic component is given by an improve-
ment procedure and the random component is given by the shake
procedure. The main difference between BVNS and GVNS is that the
improvement strategy in BVNS is typically a local search, while in
GVNS it is replaced by a VND algorithm. This approach has led to
some of the most successful applications reported in the literature
[16]. Therefore, we consider GVNS instead of BVNS.

Algorithm 3 shows the pseudo-code of GVNS. It starts by
considering an initial solution x, which is an input argument
together with Kp,qx and t;q. This solution is then perturbed using
the function shake (step 5), obtaining a new solution x’. Then, a local
optimum, x”, is reached by using the VND procedure (step 6). In step
7, it is decided whether the GVNS needs to explore a larger
neighborhood (since x” is worse than x) or not, which implies to
set k=1.Steps 5-7 are repeated until k., is reached. This parameter
determines the maximum number of different neighborhoods to be
explored in the current iteration. Steps 3-9 are repeated until t,,,4x iS
reached, starting in each iteration from the incumbent solution.

Algorithm 3. Pseudocode of GVNS.

procedure GVNS (X, Kmax, tmax)
repeat
k<1
repeat
X'« Shake(x, k)
X" < VND(X')
NeighborhoodChange(X, X", k)
until k = kpngx
t—CPUTime()
until t >t
end GVNS

=2 OO NDU A WN =

=

212 J. Sanchez-Oro et al. | Computers & Operations Research 52 (2014) 209-219

3. Algorithm approach

From an algorithmic perspective, VNS variants mainly differ in
how they implement three basic strategies: shake (Section 3.3),
neighborhood change (Section 3.4), and improvement (Section
3.6). We also consider a constructive procedure to create the initial
solution needed for all VNS variants (Section 3.1). Finally, we
propose different neighborhood structures (Section 3.2) and an
efficient strategy to traverse them (Section 3.5).

3.1. Constructive procedure

We propose a new greedy procedure for constructing the initial
solution for each VNS procedure in the context of the Vertex
Separation problem. Given a graph G, this procedure is based on
the creation of a tree T, where the nodes are organized in levels
[21]. In this tree, two nodes belong to the same level if both have
the same depth; otherwise, they belong to different levels. Let us
denote T = {Ly, Ly, ..., L;}, where the first one, L, contains only one
vertex (i.e., the root of the tree). L, contains only the adjacent
vertices to the one in L;. In general, a level Ly with 1<s<lI
contains all the vertices adjacent to some vertex in L;_; that are
not present in any previous level.

The constructed tree guarantees that the vertices in alternative
levels are not adjacent. Therefore, we use a breadth-first search
approach to construct the corresponding tree. The number of
levels I (depth of the tree) exclusively depends on the vertex in L,
and the graph G. In the context of the Vertex Separation problem,
the larger the depth, the better the tree [8].

Algorithm 4 shows the pseudo-code of this procedure. The
algorithm starts by constructing the set 7 with n different spanning
trees of G. In particular, each Te7 is constructed by using a
breadth-first search procedure (BFS), starting the search from a
different vertex v e V. Then, the algorithm finds the deepest tree T*
in the set 7 (see step 2). In the next step, we identify the set of
levels in T* and initialize the solution to the empty set (steps 3 and
4). The constructive procedure scans the levels L; in ascending order
(steps 5-10) and, for each element u in set L; (see steps 6-9), the
procedure inserts it in the best position of the partial solution under

a

Original solution @

Insert(,C.2)

1

construction (steps 7 and 8). The constructive method ends when
all the vertices of the tree have been inserted in the solution.

Algorithm 4. Pseudocode of the constructive procedure.

1: procedure Constructive (G)

2: T* «arg max Depth(BFS(G, T))
TeT

3: {L],L27...,Ll}<—L€V€IS(T*)

4: P

5: for L;e T* do

6: foruel; do

7. j*— argmin VS(nsert(¢,u,j))

1 <j < size(p)

8: @« Insert(p, u,j*)

9: end for

10: end for

11: return ¢

12: end Constructive

The proposed constructive procedure has two different stages.
The algorithm first constructs a spanning tree of the graph, which
places the vertices belonging to a given level in consecutive positions
of the layout. This strategy tries to place adjacent vertices as close as
possible in the corresponding layout. In general, when a vertex has its
adjacents in close positions, it is expected that the involved vertices
present low Sep-values. However, this first stage does not provide any
information about the relative ordering among the adjacent vertices.
Therefore, we refine the solution under construction in the second
stage. Specifically, the constructive procedure searches, for each vertex,
the best position to be placed in the partial solution.

3.2. Neighborhood structures

Solutions to graph arrangement problems are typically repre-
sented as permutations, where the first vertex in the permutation
receives the label 1, the second vertex receives the label 2, and so
on. In this section, we define two neighborhood structures for

b

Insert(,C,5)

Fig. 3. (a) A given layout ¢ and (b)-(f) different solutions obtained inserting vertex C in positions i=1, 2, 5, 6 and 7.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 213

permutation-based solutions. They are based on insert moves,
which are typically defined as follows: given a solution ¢ =
(V1o Vis 1, Vi Vig 1, - V21, V), Vi1, ..., V), Insert(e, v;,j) consists
of removing the vertex v; from its current position i = ¢(v;), and
inserting it in position j, producing a new solution ¢’ =
(V1. Vic1,Vig1s -5 Vj2 1, Vju Vi, Vi 1, ..., V). For the sake of simpli-
city we denote ¢’ = Insert(e, v;,j).

Considering the insert move defined above, we introduce the
first neighborhood of ¢ as the set of solutions reachable by
inserting the vertex v in each position of the permutation. This
neighborhood is referred as N1(¢,v) and it is formally defined as

Ni(p,v) = {@' = Insert(p,v,j) : 1 <j<nj}.

The second neighborhood is based on the idea that we can
identify “good” positions for a given vertex. Specifically, let S(v)
be the set of adjacent vertices to v. In mathematical terms, S(v) =
{ueV:(u,v)eE}). Let (uj,uy,....uswy) be the elements of S(v)
sorted in ascending order with respect to their label in the
solution ¢ (i.e., p(u1) < @(uz) < -+ < @(Uswy))- If we only consider
moves of vertex v, we would obtain the maximum reduction of
the Sep-value by inserting v in a position j such that
Pur) <j < @uy).

Let us consider that vertex v has a label j=¢(v) such that
@(uy) <j < @(uy). We then expect that if we now insert v in a
position 1 <j < ¢(u;) the value of the objective function can only
remain equal or even get worse. Fig. 3 illustrates this behavior
with the layout depicted in Fig. 3a. Consider the vertex ¢ whose
set of adjacent vertices is S(C)={a,D,E,F}, which satisfies the
property described above (i.e., p(2) < @(C) < @(D) < @(E) < @(F)) in
@ ={G,A,B,C,D,E,F}. Fig. 3b and ¢ shows the resulting solutions
after the insertion of c in positions 1 and 2, respectively. The
associated values of each solution produce a null improvement of
the objective function.

If we alternatively insert the vertex v in a position j such that
@(uy) <j <n, we observe again the same behavior (i.e., it obtains a
null improvement or deteriorates the value of the objective
function). Fig. 3d-fillustrates that the obtained solutions are equal
or worse than the original ¢ in terms of quality.

Notice that this property is a heuristic rule, which means that
positions ¢(u;) <j < @(u;) are not always the best option to
insert a vertex in terms of the value of VS(¢, G). Fig. 4 illustrates
an example where the described heuristic rule does not find the
best position for the insertion of a vertex. Specifically, Fig. 4a
shows an example of layout obtained from the graph depicted in
Fig. 1a, with a VS-value of 4. If we consider the heuristic rule
described above, and focusing on vertex E, the best position to
insert it is in j such that ¢(C) <j < ¢(B). Then, j=3 since ¢(C) =2
and ¢(B) = 3. Fig. 4b shows the layout obtained after performing
the aforementioned insert move, whose VS-value is 4. Therefore,
there is no improvement in the move. However, considering
again the layout depicted in Fig. 4a, if we insert the vertex E in
the last position of the layout (position 7), we obtain the layout
depicted in Fig. 4c with a VS-value of 3, which improves the
original one and the layout obtained when applying the
heuristic rule.

This neighborhood is mathematically defined as follows:

Ny (. v) = (@' = Insert(p,v.j) : pur) <j < @(u2)}.

In order to further reduce the size of this neighborhood we
only consider to perform the insertion of v in only one position
@(u1) <j < @(uy) selected at random. Therefore, considering this
reduction, the neighborhood N,(¢,v) finally contains only one
solution.

1 1
1 1
1 1 T T 1 1
1 3

Fig. 4. (a) A given layout ¢, (b) insertion of vertex E in the last position (7) starting
from (a), and (c) insertion of vertex E in the most promising position (2) starting
from (a).

3.3. Shake

In this section we propose 4 different shake functions for the
vertex separation problem. These variants differ in how each one
balances the intensification and the diversification. For each shake
function we need to identify the set of vertices which will be
perturbed and the associated positions for that vertices. In
particular, Shake—1(¢, k) selects k vertices at random and then
those vertices are inserted again in positions selected at random.
This method clearly favors the diversification of the search.

Shake—2(¢p, k) focuses on the intensification of the search.
Specifically, this method selects the k vertices in V with the largest
Sep-value in ¢. Then, the procedure finds the best position to
insert each vertex.

Shake—3(¢,k) and Shake—4(@,k) try to find a compromise
between the intensification and diversification. In particular,
Shake—3(@, k) selects k vertices at random, but instead of inserting
them in random positions, as Shake—1(¢, k), they are inserted in
the best position. Finally, Shake—4(g, k) selects the k vertices with
the largest Sep-value in ¢, and then the procedure inserts the
vertices in random positions.

3.4. Neighborhood change

VSP is a min-max problem [8] where the value of the objective
function is usually reached in several positions of the solution ¢.
This kind of problems presents a “flat landscape”, which turns out
in a challenge for classical local search procedures. Typically, local
search strategies do not perform well from a computational point
of view, since most of the moves have associated a null value.
Then, given a graph G, changing the label i of a particular vertex v;
in ¢ (i.e.,, obtaining a new solution ¢’) such that its Sep-value is
decreased, does not necessarily imply that VS(G,¢’) < VS(G, @).

214 J. Sanchez-Oro et al. | Computers & Operations Research 52 (2014) 209-219

However, it can be considered as an interesting move if the
number of vertices with a relative large Sep-value is reduced,
regardless whether the objective function improves or not.

Given a solution ¢, let us define C(¢,i) as the set of vertices
whose Sep-value is equal to i. For instance, the C sets for the layout
depicted in Fig. 3a are: C(¢, 1) = {G}, C(¢,2) = {2,B}, and C(¢,3) =
{c,D,E}.

Let cmax be the index associated to the set which contains the
vertices with the largest Sep-value. Obviously, VS(@, G) = Cinax. We
propose an alternative formulation (i.e., a new objective function)
for the vertex separation problem. This extended formulation,
denoted as EVS(¢, G) overcomes the lack of information provided
by the original objective function. Specifically, this new objective
function is defined as follows:

Cmax .
EVS(p,G)= Y n'|C(g,i)|.
i=1

With this new formulation, we could compare any pair of
solutions beyond the value of ¢4y In particular, we consider that a
move improves the current solution (using the new objective
function) if any vertex involved in the move is removed from
C(¢, 1) and included in C(¢,j) with j < i, and without increasing the
cardinality of any set C(¢,]) for [>i.

It is important to remark that if we have two solutions ¢ and
@' such that VS(¢,G)<VS(¢',G) (ie, ¢ is better than ¢’) then
EVS(¢,G) <EVS(¢’',G). A formal proof of this property is provided
as follows.

Proof. Let cmex=VS(@,G) and cp, =VS(¢’,G) be the indexes
associated to the set which contains the vertices with the largest
Sep-value in @ and ¢/, respectively. By definition, the extended
version of the objective function for a solution ¢ and a graph
Gis

Cmax .
EVS(p,G)= ¥ n'|C(g, D).
i=1

Let us separate the last term of the summation from the rest of
elements

Cmax—1 .
EVS(¢, G) = n|C(@, Cmax)|+ Y 1'[C(, D).
i=1

By construction, the n vertices of the graph are distributed
among the C(¢,i) sets, where 1 <i < cmqax. Obviously, if all vertices
are in set C(¢,Cmax), EVS presents its maximum value. In this
situation C(¢, cmax) =1 and C(¢,1) =0 for 1 <i < cmax- Then,

EVS(,G) < nme x n=nfmext1,

Our hypotheses establish that ¢y < Cpqy- Then, considering that
both cmex and c,,,, are integer values, it trivially holds that cinex+
1<c,. Therefore

max*

EVS(¢, G) < nmax.

The extended version of the objective function for a solution ¢’
and a graph G is

Cnax
EVS(¢',G)= Y n'|C(g’, D).
i=1

If we again separate the last term of the summation from the
rest of elements, we have

; , Cmax_<l . .
EVS(¢',G) = nmex|C(@p', Cpg) |+ 2 MYC(', D).
i=1

We can affirm that |C(¢’, ¢;,)| = 1 since at least one vertex must
be in C(¢',cCpq)- Additionally, Zf";”]_]ni\C(qu’,)| >0 since the
summation is performed over non-negative terms. Considering
that the n vertices of the graph are distributed among the C(¢’, 1)

sets, where 1 <i < cnax, We analyze all the possible situations:

® There is only one vertex in C(¢’, Cp,)- Then, the remaining n—1
vertices are distributed among the C(¢’,i) sets where
1 <i<cp,q Therefore,

. CleﬂX _] . .
EVS(¢p',G)=nmx+ > n'|C(¢’,1)| > nmx > EVS(@, G),
i=1
which implies that EVS(¢’, G) > EVS(¢, G)
® All the vertices are in C(¢',C,,)- Then, |C(¢’,i)| =0, where
1 <i<cp,,,. Therefore,

max*
EVS(@', G) = nme x n > nmex > EVS(g, G),

which implies that EVS(¢’, G) > EVS(¢, G)
® 1 <k<n vertices are in C(¢’, Cp,qy)- Then,

, Crgx =1 .
EVS(¢',G)=nmx x k+ Y n'|C(¢’,i)| > nmx > EVS(g, G),
i=1

which implies that EVS(¢’, G) > EVS(¢, G)

Then, independent of the distribution of the n vertices in the C-sets,
we have proved thatifVS(¢, G) < VS(¢', G)thenEVS(¢, G) < EVS(¢', G).

We then propose a neighborhood change procedure that
considers the aforementioned extended objective function. In
particular, Algorithm 5 compares the incumbent solution ¢ with
other solution ¢’ obtained from the k-th neighborhood using the
EVS. If ¢’ is better than ¢, the procedure updates the incumbent
solution (step 3) and the search method resorts to the first
neighborhood structure (step 4). Otherwise, the method considers
the next neighborhood by increasing the value of k (step 6).

Algorithm 5. Pseudocode of the neighborhood change function.

procedure NeighborhoodChange (@, @', k)
if EVS(¢’, G) < EVS(¢, G) then
(A
k1
else
ke—k+1
end if
end NeighborhoodChange

A o e

3.5. Efficient implementation of insert moves

Given a graph G and a layout ¢, the computation of VS(¢,G)
requires to scan all the edges in the graph. Therefore, in a direct
and straightforward implementation, the update of the objective
function after performing a move is extremely time-consuming.
However, it is clear that the Sep-values of some vertices does not
change when we perform a move and therefore we do not need to
re-compute it again. This idea was originally proposed in [8]. In
particular, the authors proposed a move based on the interchange
of two vertices in the layout. Considering the way in which the
Sep-value is computed (difference between the label of incumbent
vertex and the label of its adjacent with the largest label), if the
move interchanges two vertices with labels i and j, it is only
required to update the Sep-values from 1 to max{i,j}.

We use in this paper an alternative definition of the Sep-value
(see Section 1), which allows us to reduce the number of vertices
that must be update. Specifically, after performing the move
Insert(¢, v;,j), it is only required to update the Sep-values in

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 215

Fig. 5. Update of the objective function after a swap move.

positions k such that i < k <j. As it will be shown in Section 4, this
observation saves a considerable amount of computing time. We
propose an additional improvement in the way that the Insert
move is implemented. In particular, the move is decomposed as a
sequence of swaps, where each swap is defined as the interchange
of vertices in consecutive positions in the corresponding permuta-
tion. This move is referred to us ¢’ =Swap(e,v;,v;,1) in such a
way that ¢'(v)) = ¢(vi 1) and @'(viy 1) = @(vy).

Let us consider, without loss of generality, that (i <j). Then, the
move Insert(p,v;,j) can be computed as the sequence of swaps
of vertices in positions (i,i+1), (i+1,i+2) and so forth until
(—1,j). If we store these values, the computation of the move
Insert(¢, v;,j+1) is equivalent to compute the swap move between
positions (j,j+1) after performing Insert(g,v;,j). The situation
when i > j is completely equivalent.

The computation of the objective function after a swap move
between the vertex v; in position ¢(v;) =i and the vertex v;,; in
position ¢(v;, 1) =i+ 1 only involves the update of the Sep-value in
position i. Fig. 5 shows an example of a swap move between
vertices B and E, in positions 4 and 5, respectively. It is easy to see
that the only Sep-value that needs to be updated is the one in
position 4 (highlighted in Fig. 5b). In particular, Sep(4,¢,G)=3
and, after performing the swap, Sep(4, ¢’, G) =4, while the other
Sep-values remain unaltered.

In addition, the value of Sep(i,¢’,G) can be incrementally
computed by considering the value of Sep(i—1, ¢, G). In particular,
Sep(i,¢',G) =Sep(i—1,¢,G)+6" —5~, where 5+ determines if the
vertex in position i (previously in position i+1) has, at least, one
adjacent in the set R(i, ¢, G). If so, the Sep-value is incremented by
one unit. Otherwise, it holds the same value. On the other hand,
o~ refers to those vertices in L(i, ¢, G) whose adjacent vertex with
the largest label is the one in position i. In mathematical terms

5 {1 if [R(, @, G) N SW)| > 0,
~ 10 otherwise

5 =

>

{VE L1, ¢,G) N SW) : mg(x) Ppu) = i}

where S(v) represents the set of adjacent vertices to v. This
strategy saves a considerable CPU time since it only updates one
position and the computation of the Sep-value in that position is
incrementally performed.

Considering again the example shown in Fig. 5, 6 " = 1 because the
vertex B in position 4 has one or more adjacent vertices (F and G)
placed in a position larger than 4. On the other hand, 6~ =0 since
there are not vertices in the solution whose adjacent vertex with the
largest label is B.

3.6. Local search methods

In this paper we propose two local search strategies, LS, and LS,,
that scan the neighborhoods N; and N>, respectively. Algorithm 6
represents the pseudocode for both methods, where LS;=
LocalSearch(¢,1) and LS, = LocalSearch(¢,2). The pseudocode
starts by sorting the vertices in descending order of their Sep-
value, constructing the ordered set A (step 7). Then, LocalSearch

finds the best solution for each node of A in their corresponding
neighborhood (step 9). Next, the new solution ¢’ is compared with
the best solution so far ¢* considering the alternative objective
function (i.e., EVS) in step 10, updating it if needed (step 11). The
LocalSearch procedure performs moves while an improvement is
produced (steps 4-15). Finally, the method returns the best
solution found in the corresponding neighborhood.

Algorithm 6. Pseudocode of the local search procedure.

1: procedure LocalSearch(@,k)
2: improvement « true
3: QF—@
4: while improvement do
5: improvement < false
6: Q@
7: A« OrderBySepValue(gp)
8: for all ve A do
9: @' —arg min EVS(¢, G)
@ € Ni(v)
10: if EVS(¢’, G) < EVS(¢*, G) then
11: Q@
12: improvement « true
13: end if
14: end for

15: end while
16: return ¢*
17: end LocalSearch

4. Computational experience

This section reports the computational experiments that we
have performed for testing the efficiency of the proposed three
VNS variants (RVNS, VND, and GVNS) for solving the VSP. All the
algorithms were implemented in Java SE 6 and the experiments
were conducted on an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB
RAM. We have considered three sets of instances previously used
in this problem. All instances are available at http://www.optsi
com.es/vsp/. A detailed description of each type of instances
follows:

® uB: We derived 62 instances from the Harwell-Boeing Sparse
Matrix Collection. This collection consists of a set of standard
test matrices M = M, arising from problems in linear systems,
least squares, and eigenvalue calculations from a wide variety
of scientific and engineering disciplines. The graphs are derived
from these matrices by considering an edge (u,v) for every
element M, # 0. From the original set we have selected the 62
graphs with n < 1000. The number of vertices and edges ranges
from 24 to 960 and from 34 to 3721, respectively.

® Grids: This set consists of 50 matrices constructed as the
Cartesian product of two paths [26]. They are also called two-
dimensional meshes and the optimal solution of the VSP for
squared grids is known by construction, see [6]. Specifically,
the vertex separation value of a square grid of size 4 x 4 is A.
For this set, the vertices are arranged on a square grid with a

http://www.optsicom.es/vsp/
http://www.optsicom.es/vsp/

216 J. Sanchez-Oro et al. /| Computers & Operations Research 52 (2014) 209-219

dimension A x A for 5<A<54. The number of vertices and
edges range from 5 x 5 =25 to 54 x 54 =2916 and from 40 to
5724, respectively.

® Trees: Let T(4) be set of trees with minimum number of nodes
and vertex separation equal to A. As it is stated in [10], there is
just one tree in T(1), namely the tree with a single edge, and
another one in T(2), the tree constructed with a new node
acting as root of three subtrees that belong to T(1). In general,
to construct a tree with vertex separation 1+ 1 it is necessary to
select any three members from T(4) and link any one node from
each of these to a new node acting as the root of the new tree.
The number of nodes, n(4), of a tree in T(1) can be obtained
using the recurrence relation n(l)=3n(A—1)+1 where and
n(l)=2 (see [10] for additional details). We consider 50
different trees: 15 trees in T(3), 15 trees in T(4) and 20 trees
in T(5). The number of vertices and edges range from 22 to 202
and from 21 to 201, respectively.

We have divided our experimentation into two different parts:
preliminary experimentation and final experimentation. The pre-
liminary experiments were performed to set the values of the key
search parameters of each VNS variant as well as to show the merit
of the proposed search strategies. We consider a representative
subset of 23 HB instances, with different sizes and densities.
Specifically, we consider: 494_BUS, 662_BUS, 685_BUS, BCSPWR04,
CAN_292, CAN_445, CAN_634, CAN_715, DWT_245, DWT_307,
DWT_310, DWT_361, DWT_419, DWT_503, DWT_592, DWT_758,
LHSP_778, NOS3, NOS4, NOS5, NOS6, NOS7, and PLAT362.

In our first experiment we compare the performance of the
proposed constructive procedure (named as Cgreeqy and described
in Section 3.1) with the best previous constructive approach
(named as C2 in [8]). We generate one solution for each instance
with each constructive procedure. Table 1 reports #Best, number

of best solutions found in the experiment; Avg., average quality
over all instances; Dev. (%), average percent deviation with respect
to the best solution found in the experiment; and Time, average
computing time in seconds required by the procedure. We report
these statistics in the remaining experiments.

Table 1 shows that Cgqy clearly outperforms C2 in terms of
both, number of best (23 versus 8) and average percentage
deviation (0.00% versus 11.88%). Our constructive procedure needs
more CPU time (0.53 versus 0.18). However, this time is negligible
when considering the computing time of the whole algorithm
(constructive procedure plus the corresponding VNS variant).
Therefore, we consider Cgrq, as the best constructive procedure
and it will be used for the remaining experiments.

In the next experiment, we study the performance of the
incremental computation of the objective function described in
Section 3.5 over the instances used in the preliminary experi-
mentation. In particular, we test whether the use of swap moves
(as a way of implementing insert moves) reduces the CPU time or
not. We construct a solution with Cgeq, and then we improve it
with the local search based on insert moves. In order to have a
clear idea about the saving in the computing time, we compare
our proposal with the one proposed in [8], and with a direct
computation of the objective function. Fig. 6 depicts a diagram
where the X-axis represents the set of instances considered for this
experiment (ordered according to the number of vertices) and the
Y-axis gives the computing time required to obtain a local optimum
for the three considered methods (Insert Moves, Interchange Moves,
and Direct) in the corresponding instance. The Y-axis uses a
logarithmic scale to reduce the ranges to a more manageable size.
The figure clearly shows that the saving in computing time is
significant for the introduced method. Specifically, for these instances
the proposed method is about 40 times faster than the incremental
computation described in [8] and it is about 1000 times faster than
the direct computation of the objective function. Notice that the

Table 1 Table 2
Comparison of different constructive procedures. Comparison of different shake procedures.
Creedy 2 RVNS-1 RVNS-2 RVNS-3 RVNS-4
#Best 23 8 #Best 15 7 19 7
Avg. 42.26 46.43 Avg. 37.74 42.09 37.48 42.04
Dev. (%) 0.00 11.88 Dev. (%) 233 16.24 1.27 16.06
Time 0.53 0.18 Time 101.96 102.00 101.99 101.96
10000
== |nsert move Interchange move =@= Direct impl.
1000 4
100 -
10 -\ f N\ A Tpm————a_ N\
1 =
0.1 -
001 ﬁ-—iM

T/ W
0.001

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 6. Incremental computation of the objective function.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 217

Table 3
Comparison of different neighborhoods.

LS, LS, VND
#Best 17 6 23

Avg. 3735 4113 36.65
Dev. (%) 2.59 15.01 0.00
Time 3.93 0.78 6.94

incremental computation described in [8] is about 25 times faster
than the direct computation.

In the next experiment, we compare the performance of 4 RVNS
variants (RVNS-1, RVNS-2, RVNS-3, and RVNS-4). The only differ-
ence among them is the shake procedure (see Section 3.3) used in
each one. In particular, RVNS-x considers the Shake—x function,
where x € {1, 2, 3,4}. As it is pointed out in [15], the best outcomes
in RVNS are obtained when the value of k.« is 2 or 3. Then, we
select kyay =3 since we obtained slightly better results. Table 2
shows the results of the 4 RVNS variants when t,,,q is set to 100 s.
In this time horizon, RVNS-3 emerges as the best procedure,
where the shake procedure selects vertices at random that are
then placed in their best position (maximum decreasing of the
objective function). This strategy seems to be the most promising
one since it balances diversification (random selection of vertices)
with intensification (greedy selection of the best position). In fact,
selecting vertices at random (RVNS-1 and RVNS-3) produces better
outcomes than selecting them in a greedy fashion (RVNS-2 and
RVNS-4).

In the fourth preliminary experiment, we compare the perfor-
mance of the VND with the local search procedures in isolation
(i.e., LSy and LS;). Typically, VND explores the neighborhoods from
the smallest and fastest to evaluate, to the slowest and largest one.
Consequently, our VND first considers N, and then N;. Notice that
the neighborhoods are explored in a nested strategy. Results in
Table 3 confirm that the VND procedure compares favorably with
simple local search methods. Specifically, VND achieves the lowest
deviation (0.00%) compared with the two local search methods
tested (2.59% and 15.01% for LS1 and LS2, respectively). It is worth
to mention that the results of LS2 seem to be quite bad. However,
when coupling LS1 and LS2 in a VND strategy, the resulting
algorithm obtains the best outcomes.

The next experiment consists of selecting the best GVNS variant
by running a single full-factorial experiment. In particular, we
consider the 4 shake functions described in Section 3.3 and
Kmax = {0.05n,0.10n,0.15n,0.20n}, n being the number of vertices
of the instance. For the sake of simplicity we do not show this
experiment in a table and we only report that the best results are
obtained using the Shake—1 procedure. This result is in line with
the ones shown in Table 2. Specifically, the best strategy consists of
selecting the vertices at random. However, in the GVNS context,
the positions (where those vertices are placed) are selected at
random. This result can be partially explained when considering
that the shake procedure in GVNS mainly diversify the search and
the intensification is performed by the improvement strategy
(i.e., VND algorithm). As expected, the higher the value of ki,
the better the results are. Unfortunately, the computing time also
increases with the value of k, so we set k=0.15n as a compromise
between computing time and quality.

We compare in the next experiment the best of each VNS
variant (RVNS, VND, and GVNS) with the best previous method
identified in the state of the art [8], which is also a VNS algorithm.
Consequently, in order to avoid a misunderstanding with the VNS
variants that we are proposing in this paper, we refer to this
method as BestPrev. To provide a fair comparison, GVNS has the
same stopping criterion than BestPrev (either k reaches k;,qx Or the

Table 4
Final comparison over the sets Grids (50 instances), Trees (50 instances), and HB
(62 instances).

GVNS RVNS MS_VND BestPrev
Grids #0Opt. 50 50 50 50
Avg. 29.5 29.5 29.5 29.5
Dev. (%) 0.00 0.00 0.00 0.00
Time 93.32 215.30 101.08 1422.76
Trees #0Opt 40 34 35 31
Avg. 4.30 4.46 4.40 4.64
Dev. (%) 4.00 7.00 6.00 11.00
Time 9.07 21.10 298 126.73
HB #Best 53 28 27 34
Avg. 24.60 27.00 26.77 26.11
Dev. (%) 2.07 10.85 11.91 6.90
Time 482.08 700.03 702.89 705.60

CPU time exceeds tmgx =1000s). RVNS has t;qx as input para-
meter, which is set to the same CPU time than BestPrev. Finally, in
the case of VND, tmq is not an input parameter. Therefore, to be able
to execute VND for the same CPU time than the other variants, we
consider a multi-start scheme, where each iteration consists of a
construction (with the procedure described in Section 4) and then a
VND execution. Table 4 reports the results of this experiment. This
table is structured into three main rows. Each row represents the
results associated to each set of instances. In particular, the first row
reports the results of the four algorithms over the set Grids. In
sight of these results we can conclude that grids instances are easily
solved by the four procedures. Although the computing time seems
to be relatively large, it is important to note that all the procedures
find the optimum value in less than a second. Therefore, we do
believe that this set of instances does not worth to be included in
future comparisons. Regarding the instances of the set Trees
(second main row), the four algorithms are able to find the optimal
solution for the small and medium instances (i.e., Trees with 22 and
67 vertices). Considering the largest tree instances (with 202
vertices), the BestPrev only obtains one optimum solution, while
the three proposed methods obtain, 4 (RVNS), 5 (MS_VND) and 10
(GVNS) out of 20, respectively. Although the CPU time of the four
procedures is relatively small, our three methods need much less
time to produce better results.

The third main row reports the results over the most challen-
ging set of instances (i.e., HB). As it was aforementioned, the
optimum of these instances is not known. Moreover, the proper-
ties of each instance (density, max and min degree, etc.) enor-
mously vary from one to another. Table 4 shows that GVNS clearly
outperforms the other three methods (including the best method
found in the state of the art) in average percentage deviation and
number of best solutions found. Moreover, it only needs a half of
the computing time used by the other three methods to produce
much better results. Therefore, results reported in this table
suggest the superiority of GVNS over the other three methods.
Regarding RVNS and MS_VND, BestPrev apparently obtains better
results. In order to confirm these hypothesis, we applied the non-
parametric Friedman test [13] for multiple correlated samples to
the best solutions obtained by GVNS, RVNS, MS_VND, and Best-
Prev. This test computes, for each instance, the rank value of each
method according to solution quality (where rank 1 is assigned to
the best method and rank 4 to the worst one). Then, it calculates
the average rank values of each method across all the instances
solved. If the averages differ greatly, the associated p-value or
significance will be small. We only consider in this experiment the
instances in the HB set, and the largest instances of the Tree set
(trees with 202 vertices), since grids and small and medium trees
are optimally solved by all the algorithms.

218 J. Sanchez-Oro et al. | Computers & Operations Research 52 (2014) 209-219

The resulting p-value of 0.00001 (considering a level of
significance of 0.05) obtained in this experiment clearly indicates
that there are statistically significant differences among the four
methods tested. Specifically, the rank values produced by this test
are 1.88 (GVNS), 2.61 (BestPrev), 2.75 (MS_VND), and 2.76 (RVNS).
To detect the differences among BestPrev and the three proposed
methods in this paper and considering the proximity in the rank
between BestPrev, RVNS and MS_VND, we conduct a Wilcoxon's
test. Let R+ be the sum of ranks for the functions on which the
first algorithm outperforms the second one, and R— be the sum of
ranks for the opposite. Ranks corresponding to zero differences are
split evenly among the sums. If min{R+,R—} is less than or equal
to the critical value, the Wilcoxon's test detects significant differ-
ences between the algorithms, which means that an algorithm
outperforms its opponent.

Table 5 summarizes the results of this statistical test with a
level of significance 0.05, where the values of R+ (associated to
one of our methods) and R— (associated to BestPrev) of the test
are specified. The third column reports the p-value associate to
each experiment and the last column indicates whether Wilcox-
on's test found statistical differences between these algorithms or
not. In particular, if min{R+, R—} is less than or equal to the critical
value [29] in this experiment, this test detects that an algorithm
outperforms its opponent. In particular, if this fact occurs and,
simultaneously, R— = min{R+,R—}, then our method is better
than BestPrev. However, the confidence of the test is always
determined by the p-value.

These results complement the ones reported in Table 4. Speci-
fically, the Wilcoxon's test again confirm the superiority of GVNS
over BestPrev. Additionally, this test shows that there is no
significant statistical differences between RVNS versus BestPrev
and MS_VND versus BestPrev. Therefore, even considering the
results reported in Tables 4 and 5, it is not possible to say that
BestPrev is statistically better than either RVNS or MS_VND.

Table 5
Wilcoxon's test results.

R— R+ p-value Significant
GVNS versus BestPrev 1345 900.5 0.00 Yes
RVNS versus BestPrev 520.5 299.5 0.14 No
MS_VND versus BestPrev 684.5 491.5 0.32 No

In the final experiment we explore the behavior of these
methods over a long-term time horizon, we run GVNS, RVNS,
MS_VND and BestPrev for 30 min, reporting every 30 s the average
deviation of the best solution found. We select the ten largest
instances in HB to illustrate the performance of the four proce-
dures over the hardest instances. Fig. 7 shows the corresponding
average time profile, where it is represented with a dash line the
best results found in the state of the art. We can observe that GVNS
consistently produces the best results, from the very beginning to
the end of the experiment. It is important to remark that GVNS
produces high quality solutions in the short-term horizon (out-
performing the state of the art in the first 30 s) and in the long-
term horizon (producing considerable improvements about
1500 s). This fact shows that the intensification stage (VND
procedure) produces good solutions in short CPU time, but also
the diversification stage (shake procedure) is able to find promis-
ing regions in the search space.

MS_VND presents competitive results only in the short-time
horizon. This fact can be partially explained by considering that
the constructive procedure is not designed to perform multiple
constructions. Consequently, it produces high quality but not
diverse solutions. The improvement of the RVNS algorithm is
constant during the 30 min. As it was pointed out above, the
shake procedure embedded in this algorithm presents a balance
between diversification (selecting vertices at random) and inten-
sification (inserting them in the best possible position). This
strategy seems to be successful over the whole experiment. In
fact, it is expected that the RVNS would outperform MS_VND in
larger computing times. It is worth to mention that the superiority
of GVNS over the remaining methods comes from the fact that
GVNS behaves like MS_VND in short CPU times, while it behaves
like RVNS in larger computing times.

Table 6
Friedman's test results over the ten largest instances.

GVNS RVNS MS_VND BestPrev p-value
1 min 1.90 315 1.90 3.05 0.034
10 min 1.80 2.90 2.10 3.20 0.049
20 min 1.75 2.80 2.20 3.25 0.048
30 min 1.50 2.60 2.45 3.45 0.009

25%

e$= GVUNS «ill= RVNS

20%

MS_VND =@= BestPrev

15% -

10% -

»
L 4

R R R R R S g A N I I A R N I I IR I I I
CRLPLSLRELLRLER L L L L PP LD PSS
L A M M G U G M AN RS IR SN RSO R ST IR)

Al

Fig. 7. Search profile for a 30 min run on the largest instances.

J. Sdnchez-Oro et al. / Computers & Operations Research 52 (2014) 209-219 219

Analyzing the results obtained by BestPrev, we can determine
that this procedure is not suitable when facing large instances. The
algorithm starts improving at the very beginning (60 s). After that
the method gets stuck until reaching 1000 s, mainly because the
local search method is slower than the ones proposed in this
paper. As a consequence, this method presents the worst perfor-
mance (at least in these instances).

Finally, we analyze the results of this experiment by consider-
ing the Friedman's test. Specifically, we apply a Friedman's test in
four different time stamps: 1 min, 10 min, 20 min, and 30 min.
Table 6 shows the rankings when considering the 10 largest (and
hardest) instances of the HB set. The resulting p -value in all the
considered time stamps indicates that the differences are statisti-
cally significant. Specifically, for 1 min GVNS and MS_VND emerge
as the best methods (with a ranking 1.90), followed by BestPrev
(3.05) and RVNS (3.15). When considering the results after 10 and
20 min, the GVNS improves its ranking as well as RVNS. It is
interesting to mention that MS_VND and BestPrev seem to be
stuck so their ranking get worse. Finally, after 30 min, the GVNS
even increases more the difference with respect to the other
algorithms (1.50). MS_VND holds the second position according
to the ranking value (2.45), but closely followed by the RVNS (third
method with ranking 2.60). Finally, BestPrev systematically pro-
duces the worst results, which led it to the last position of the
ranking with a value of 3.45.

5. Conclusions

In this paper, we propose different methods based on the
Variable Neighborhood Search methodology to deal with the
Vertex Separation problem. We provide an extensive experimental
comparison among them and with best previous method in
the state of the art. In more detail, we propose a constructive
procedure, four shake methods (with different balance between
intensification and diversification), two new neighborhood struc-
tures (and efficient strategies to explore them), and an extended
version of the objective function for the considered problem which
allows the comparison of solutions beyond the original objective
function. We embed these strategies in a Reduced Variable
Neighborhood Search (RVNS), a Variable Neighborhood Descent
(VND) and a General Variable Neighborhood Search (GVNS). We
performed an extensive computational testing over a set of 162
instances, considering different time horizons. Experimental
results show that the proposed algorithms outperform the best
method identified in the state of the art. We also proved statistical
tests to confirm the significance of the obtained results, and GVNS
emerges as the best algorithm in terms of quality in any set of
instances and time horizon.

According to our experimentation, the Grids and Trees
instances can be considered “easy to solve”. In our opinion,
these instances should no longer be considered for future studies
since they do not allow us to evaluate the actual performance of
the compared methods. On the contrary, the Harwell-Boeing
instances are actually a real challenge for modern heuristic
methods. Therefore, we recommend this set of instances to be
used as the benchmark for further experimental studies.

Of particular interest in our work has been testing the combi-
nation of diversification and intensification strategies in the
context of VNS. Through extensive experimentation, we have been
able to determine the benefits of this combination. We purpose-
fully added these mechanisms in order to measure their effects
and studied the combinations that resulted in effective solution
procedures with improved outcomes. We believe that our findings

can be translated to other combinatorial problems and it will help
in the development of more elaborated VNS methods.

Acknowledgments

This research has been partially supported by the Spanish
Ministry of “Economia y Competitividad”, Grants ref. TIN2011-
28151, TIN2012-35632-C02, and the Government of the Community
of Madrid, Grant ref. S2009/TIC-1542.

References

[1] Bodlaender HL, Mohring RH. The pathwidth and treewidth of cographs. In:
Proceedings of the second Scandinavian workshop on algorithm theory.
SWAT'90; 1990. p. 301-9.

[2] Bodlaender HL, Kloks T, Kratsch D. Treewidth and pathwidth of permutation
graphs. SIAM] Discrete Math 1995;8(4):606-16.

[3] Bodlaender HL, Gilbert JR, Hafsteinsson H, Kloks T. Approximating treewidth, path-
width, frontsize, and shortest elimination tree.] Algorithms 1995;18(2):238-55.

[4] Bodlaender HL, Gustedt], Telle JA. Linear-time register allocation for a fixed
number of registers. In: Proceedings of the symposium on discrete algorithms;
1998. p. 574-83.

[5] Bollobas B, Leader I. Edge-isoperimetric inequalities in the grid. Combinatorica
1991;11:299-314.

[6] Diaz], Petit], Serna M. A survey of graph layout problems. ACM Comput Surv
2002;34(3):313-56.

[7] Duarte A, Marti R, Resende MGC, Silva RMA. GRASP with path relinking
heuristics for the antibandwidth problem. Networks 2011;58(3):171-89.

[8] Duarte A, Escudero LF, Mart R, Mladenovic N, Pantrigo]J, Snchez-Oro J.
Variable neighborhood search for the vertex separation problem. Comput
Oper Res 2012;39:3247-55.

[9] Dujmovi¢ V, Fellows MR, Kitching M, Liotta G, Mccartin K, Nishimura N, et al.
On the parameterized complexity of layered graph drawing. Algorithmica
2008;52(2):267-92.

[10] Ellis JA, Sudborough IH, Turner JS. The vertex separation and search number of
a graph.] Inf Comput 1994;113:50-79.

[11] Ellis JA, Markov M. Computing the vertex separation of unicyclic graphs. Inf
Comput 2004;192(2):123-61.

[12] Fellows MR, Langston MA. On search, decision and the efficiency of
polynomial-time algorithms.] Comput Syst Sci 1994;49(3):769-79.

[13] Friedman M. A comparison of alternative tests of significance for the problem
of m rankings. Ann Math Stat 1940;11:86-92.

[14] Hansen P, Mladenovic N, Moreno JA. Variable neighbourhood search: methods
and applications. Ann Oper Res 2010;175(1):367-407.

[15] Hansen P, Mladenovic N, Brimberg], Moreno-Pérez JA. Variable neighbour-
hood search. Handbook of Metaheuristics 2010;146:61-86.

[16] Aleksandar Ili¢, Dragan Urosévic', Jack Brimberg, Nenad Mladenovic. A general
variable neighborhood search for solving the uncapacitated single allocation
p-hub median problem. Eur] Oper Res 2010;206(2):289-300.

[17] Kinnersley NG. The vertex separation number of a graph equals its path-width.
Inf Process Lett 1992;42(6):345-50.

[18] Kirousis M, Papadimitriou CH. Interval graphs and searching. Discrete Math
1985;55(2):181-4.

[19] Kirousis M, Papadimitriou CH. Searching and pebbling. Theory Comput Sci
1986;47(2):205-18.

[20] Leiserson CE. Area-efficient graph layouts (for VLSI). In: Proceedings of the
[EEE symposium on foundations of computer science; 1980. p. 270-81.

[21] Lewis JG. The Gibbs-Poole-Stockmeyer and Gibbs-King algorithms for reor-
dering sparse matrices. ACM Trans Math Software 1982;8:190-4.

[22] Mladenovi¢ N, Hansen P. Variable neighborhood search. Comput Oper Res
1997;24:1097-100.

[23] Pantrigo]J, Marti R, Duarte A, Pardo EG. Scatter search for the cutwidth
minimization problem. Ann Oper Res 2012;199:285-304.

[24] Peng SL, Ho C-W, Hsu TS, Ko MT, Tang CY. A linear-time algorithm for
constructing an optimal node-search strategy of a tree. In: Proceedings of
the 4th annual international conference on computing and combinatorics,
COCOON '98; 1998. p. 279-88.

[25] Pinana E, Plana I, Campos V, Marti R. GRASP and Path relinking for the matrix
bandwidth minimization.] Oper Res 2004;153:200-10.

[26] Raspaud A, Schréder H, Sykora O, Torok L, Vrt'o 1. Antibandwidth and cyclic
antibandwidth of meshes and hypercubes. Discrete Math 2009;309:3541-52.

[27] Rodriguez-Tello E, Jin-Kao H, Torres-Jimenez J. An effective two-stage simu-
lated annealing algorithm for the minimum linear arrangement problem.
Comput Oper Res 2008;35(10):3331-46.

[28] Skodinis K. Computing optimal strategies for trees in linear time. In: Proceedings
of the 8th annual European symposium on algorithms; 2000. p. 403-14.

[29] Wilcoxon F. Individual comparisons by ranking methods. Biometrics
1945;1:571-95.

http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref2
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref2
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref5
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref5
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref7
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref7
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref10
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref10
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref14
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref14
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref15
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref15
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref16
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref16
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref18
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref18
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref19
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref19
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref20
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref20
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref22
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref22
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref26
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref26
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref27
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref27
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00321-3/sbref30

	Combining intensification and diversification strategies in VNS. �An application to the Vertex Separation problem
	Introduction
	Variable Neighborhood Search
	Random exploration of neighborhoods
	Deterministic exploration of neighborhoods
	Mixed exploration of neighborhoods

	Algorithm approach
	Constructive procedure
	Neighborhood structures
	Shake
	Neighborhood change
	Efficient implementation of insert moves
	Local search methods

	Computational experience
	Conclusions
	Acknowledgments
	References

