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This work presents a novel approach to object detection and tracking in urban environments using
images obtained from a radar network, deployed in an urban environment. The proposed system detects,
tracks and computes the speed of vehicles and generates alerts when vehicles exceed the predefined
road speed limit. The available radar model is a low-cost device oriented to marine environments
rather than terrestrial applications. For this reason, we emphasize in the development of a realistic,
robust, efficient and effective algorithm which deals with the hardware limitations to provide a suitable
overall performance. To reach this objective, we propose dual background subtraction model to detect
objects and a tracking method based on the particle filter algorithm. Furthermore, to ensure real time
restriction even in HD imagery, our method takes advantage in a natural way of multicore systems
and exploits advanced SIMD capabilities available in last multicore processors families. Experimental
results demonstrate that the proposed system is able to detect and track multiple objects and to provide
speeding alarms when needed. It is also capable to handle target occlusions and disappearances derived
from the radar limitations and the noisy urban environment.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Visual target detection and tracking are technically challenging
tasks devoted to the estimation of the position of interesting ob-
jects moving in a scene. Due to the important applications of the
visual detection and tracking, several approaches have been pro-
posed to tackle the problem using different algorithmic techniques
[23,25,13]. Some of the most popular approaches are based on al-
gorithms derived from the particle filter framework [20,17]. Other
proposed methods are based on the use of these strategies such
as Kalman filters [19], combinations of probabilistic and evolution-
ary strategies [22,21,15], etc. Modeling the features of the objects
being tracked (i.e. color, texture, shape, etc.) is another key aspect
to be considered in the context of the problem. These features can
be directly obtained in the spatial domain [12,25], or indirectly
from some domain transformation of the object features, such as
wavelet transform [4,11], among others.

Tracking is usually performed in the context of higher-level ap-
plications like video surveillance [27,30,15], gesture and human
action recognition [28,29,14], augmented reality [31,1], medicine
[16], etc. These potential applications require robust and efficient
tracking algorithms. On the one hand, it is neeeded that an in-
crease in the number of targets does not drastically affect the
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performance of the tracking algorithm. On the other hand, the
tracking algorithm needs to work with the inherent difficulties of
the feature extraction from the images (i.e. noise, occlusions, etc.).

Object detection and tracking are two areas of interest in the
context of radar-assisted remote surveillance, having applications
in the automatic control of aerial and marine traffic. There are sev-
eral papers in the literature which focus on the problem of radar
tracking. An approach for radar tracking and imaging is presented
in [9] based on the target recognition via Radar Cross Section (RCS)
profiles. It creates a database to compare the new RCS captured
in order to identify the target. It also suggests an optimization of
the traditional inverse synthetic aperture approach to form images
with passive radar data results. In [7], a recursive Bayesian solution
to the problem of joint tracking and classification for ground-based
air surveillance is presented. The proposed system is able to han-
dle multiple targets, false alarms and missed detections. It uses the
RCS to create a measurement vector for object classification. Lee
[10] tries to find a matrix representation of the relations between
the measures and the targets in a multi-object radar system. The
problem is formulated as an energy minimization problem. A cog-
nitive radar for tracking applications is presented in [32]. The radar
utilizes the previous measurements and actions to optimize the
transmitted waveform. Simulation results, based on the tracking of
an object falling in space, show a superior performance over a tra-
ditional active radar with fixed waveform. There is also a survey of
radar-based tracking systems in vehicles [5]. In this review, Kalman
Filter and Particle Filter are the most cited techniques. According
to this review, the latter obtains the best results.
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The detection and tracking tasks in radar images have diffi-
culties derived from the probabilistic nature of the measurement
process. For example, the object cannot be characterized by its vi-
sual features as the radar does not work in the visible spectrum
range. In contrast, radar signal consists of reflections of the electro-
magnetic waves sent by the antenna. For that reason, there is not
a direct relationship between the blob size in the image and the
real target size. Another artifact, called jitter, causes that a static
object appears as a moving one. Jittering is a consequence of the
temporal variability in the measure. These artifacts increase the
difficulty of the detection, tracking and association problems, and
make unaffordable an approach based on traditional techniques of
background subtraction used in the context of computer vision.

It is important to remark that most of the existing radar-based
detection and tracking methods in the literature work in aerial or
marine environments, which are mostly free of clutter. A priori,
urban environments are more complex environments, as they con-
tain obstacles which can produce interferences and noise in the
image. Buildings, traffic signals, streetlights, handrails are struc-
tural elements typically found in an urban scenario which interfere
severely with the radar measurement. The objective of this work is
to present a new radar-based target detection and tracking system
to control the speed of vehicles in urban areas. The main highlights
of this work are summarized as follows:

(1) A model to characterize relevant targets (vehicles) in radar im-
ages is proposed.

(2) A detection system based on
• the definition of entering and exiting areas in the image,

taking advantage of the expert knowledge,
• the use of a background model which handles a dual back-

ground. Due to the advantages to handle jitter, dual back-
ground model is also used in the measurement model of
the tracking algorithm and

• the development of an adaptive sliding window algorithm
which detects new objects saving CPU time.

(3) A specific and improved radar tracking algorithm based on a
particle filter scheme, which incorporates
• expert knowledge for the diffusion stage and
• a moving average model oriented to be robust to occlusions

produced by the radar measurement process.
(4) A significant overall acceleration by adapting the most de-

manding tracking and detection stages to execute in multicore
platforms using some performance optimization approaches.
The speedup obtained (up to 58×) allows us to tackle com-
plex tracking scenarios where multiple targets are involved.

As a result, we obtain a successful performance of a marine
radar in an urban environment to vehicle detection and tracking.
This is a very competitive solution due to its wide spatial range
and low cost compared to most terrain radar systems. In addition,
radar signal is not affected by light conditions and works in an
angular range up to 360 degrees. The reminder of the paper is
devoted to detail and demonstrate these highlights and it is or-
ganized as follows: Section 2 shows the system overview, from a
hardware and a software perspective; Sections 3, 4 and 5 respec-
tively present our approach for scenario modeling, target detection
and target tracking; Section 6 is devoted to illustrate the system
performance; finally, Section 7 summarizes the conclusions of this
work.

2. System overview

This section presents an overview of the system from both a
hardware and a software perspective. The hardware view is de-
picted in Fig. 1 and consists of two main subsystems: the radar
Fig. 1. System overview.

and camera subsystems. The former is the subject of this paper
and it is highlighted in the aforementioned figure. The radar sub-
system consists of 14 radars placed in different relevant locations
(determined by the local police department) along the city and
2 servers in the control center. Each radar device works in the
9 GHz band, with a range less than 1 km due to a short pulse
transmission feature, and discretizing the analogical signal using 3
bits (8 intensity levels). As shown in Fig. 1, each radar sends im-
ages through a WiMAX dedicated network to the server every 1.25
seconds in polar coordinates. When the velocity of the detected
vehicle exceeds the speed limit of a road, the server sends an alert
to the “Camera network server” via the WiMAX network. The alert
file contains, among other data, the geographical location of the
incumbent radar, needed to associate the camera network to the
location of the offending vehicle. Additionally, servers A and B are
not only devoted to analyze the radar images but they also provide
the interface for configuring each radar parameters. Configuration
settings are sent in an appropriate configuration file to each radar.

Fig. 2 presents the software view of the system. It describes
the relationships among the four main modules: scenario model-
ing, target detection, target tracking and background subtraction
modules. Scenario modeling module provides tools to describe the
geometry of the environment, allowing us to categorize the differ-
ent urban areas. Target detection module is devoted to search new
vehicles entering the scene. Target tracking module tracks each
vehicle detected in the previous stage and computes its speed. Ad-
ditionally, a background subtraction module provides the measure-
ment image used for both the detection and the tracking modules.

3. Scenario modeling

Cities are spatially organized in a structured way. As a conse-
quence, there are regions exclusively dedicated to roads, motor-
ways, car parks, etc. The structure of urban environments can be
considered as permanent, since it is not usually changing over long
periods of time. In our application, we can suppose that radars are
placed in a fixed geographical location. Given these two facts as
hypothesis, the algorithms for vehicle detection and tracking can
take advantage of this knowledge to improve robustness and ef-
ficiency. As the radar will be used to detect vehicles, it is useful
to distinguish the areas in which vehicles are moving (generally
roads) from the areas where it is not possible to find any car
(corresponding to buildings, pedestrian precinct, etc.). We explic-
itly model two different interesting areas:

• In–out areas represent zones where new vehicles are expected
to appear or existing vehicles disappear.

• Transit areas define zones in which vehicles can travel, gener-
ally roads.
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Fig. 2. Software architecture overview.
Fig. 3. Expert knowledge modeling of a roundabout. (For interpretation of the ref-
erences to color in this figure, the reader is referred to the web version of this
article.)

As a result, a third area is implicitly defined which corresponds
to non-interesting zones. The system also provides the option to
blank these regions. In particular, we use the in–out areas to ini-
tialize and finalize our tracking algorithm. In those areas we expect
to detect new entering or exiting vehicles. The transit areas are im-
portant in order to restrict the motion of the targets along them
as we will describe later.

Fig. 3 depicts an expert knowledge scenario model of a round-
about in which blue regions correspond to in–out areas, red re-
gions represent transit areas and, finally, white regions are de-
picted as blanked areas.
4. Background subtraction and target detection

Target detection module searches new vehicles entering the
scene within the in–out areas. It consists of two main subsystems:
(i) a background subtraction method adapted to the probabilistic
nature of the radar signal and (ii) a detection method which intro-
duces the idea of adaptive sliding window to save CPU time.

Dealing with measurement noise is the main difficulty for tar-
get detection in radar images. It is desirable to filter the signal to
preserve the real targets, removing the unsuitable noise. Unfortu-
nately, the considered radar only offers 3 bits of signal (8 intensity
levels), which makes difficult to design a suitable filter. For this
reason, we use a background subtraction model which takes into
account the vehicle kinematics for target segmentation. Traditional
background subtraction methods are only based on a single back-
ground image. These models are not suitable for radar images,
because they contain artifacts (such as high levels of noise, clutter
and jitter) which can be included in the foreground image, result-
ing in a wrong target segmentation. To avoid this problem, we
consider a dual background subtraction [18] which is supported
by two different background images, called as Long Term Back-
ground (BL ) and Short Term Background (B S ). B S and BL differ
in their updating frequency, and the update of both backgrounds
is carried out accumulating the current frame in the correspond-
ing background. Specifically,

B X (x, y, t) =

⎧⎪⎪⎨
⎪⎪⎩

B X (x, y, t − δt(B X )) + 1

if I(x, y, t) > B X (x, y, t − δt(B X ))

B X (x, y, t − δt(B X )) − 1

if I(x, y, t) < B X (x, y, t − δt(B X ))

(1)

where It is the radar image at time t and B X represents both B S

and BL since they are identically updated, except for the updating
period δt(B X ).

Then, we obtain two foreground images for each radar image,
computed as the difference between each background and the cur-
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Fig. 4. Event detection using dual background subtraction.

rent frame. They are stored as Long Term Foreground (I L ) and
Short Term Foreground (I S ), respectively. In mathematical terms,

I L = |I − BL | (2)

I S = |I − B S | (3)

At this point, we check the active regions of the foregrounds
in order to detect different events in the images. Fig. 4 shows all
possible events that can occur using the dual background subtrac-
tion. A blob in I L is interpreted as an object which has not been
there for a long time. This object can be a moving or static one.
I S helps us to distinguish between them. If an object detected in
I L also appears in I S , then the object has recently moved. Other-
wise, the object was moving before but it stopped recently, so it
does not appear in I S . On the other hand, it is assumed that back-
ground objects do not appear in I L . Using I S we can distinguish
between objects recently incorporated to the background (if they
appear in I S ) and objects belonging to the background for a longer
time (if they do not appear in I S ). This scheme can also be used
to model traffic jams or vehicle crashes.

The foreground image (I F ) is generated comparing I L and I S .
The considered interesting pixels in the image are those that
change in I L and I S . In that way, the foreground image will be
a binary image, calculated as follows:

I F =
{

1 if (I L > th) and (I S > th)

0 otherwise
(4)

where th is an experimentally set threshold which is tuned by an
expert according to the scenario conditions. As presented in Sec-
tion 2 we have only 8 levels of intensity available, so it is easy to
set this threshold, as one level up or down will degrade (by ex-
cess or deficiency) the thresholding too much. Whole background
subtraction process is depicted in Fig. 5.

Binary blobs in the image are detected using a sliding window
algorithm in I F . The size (w × h) of such a window is empirically
pre-established according to the expected dimensions of the tar-
gets taking into account the preselected range of the radar. Then,
the search explores the in–out areas by sliding the window. When
the density of pixels in the region enclosed by the window exceeds
a predefined threshold, the region is considered as an object, and
it is added to a list of candidate targets. Defining (xp, yp) as the
center of the window, the weight (π ) of a region is calculated as
the zero-order moment (area) in that binary window:

π =
xp+ 1

2 w∑
x=xp− 1

2 w

yp+ 1
2 h∑

y=yp− 1
2 h

I F (x, y) (5)

4.1. Adaptive Sliding Window (ASW)

In this work, we explore the performance of two different
strategies to slide the window into the in–out areas: (i) the stan-
dard method and (ii) a novel Adaptive Sliding Window (ASW)
method, respectively. The former computes the weight of all the
possible windows belonging to the in–out areas in a sequential
way, as an exhaustive search. This method is very time consuming
and we needed to improve its execution. The ASW method takes
advantage of exploring a binary image. If the weight of a window
in a given location is very low, then it is possible to discard the
exploration of all the consecutive windows which overlap with the
former window (see left side of Fig. 6 and note the horizontal shift
of the window). As we will demonstrate, this strategy results in a
considerable reduction of the computing time. In addition, when a
weight of a sliding window in a given location exceeds a thresh-
old, then we perform a local search to fit the sliding window to the
mode of the distribution of the nearest blob, obtaining its position
(see right side of Fig. 6). After this local search, the sliding process
restarts at the position of the next non-overlapping window.

5. Target tracking

We propose a tracking method based on the Sampling Impor-
tance Resampling (SIR) Particle Filter (PF) framework [6] to track
each target detected in the previous stage. However, the filter
adapts the size of the estimated region of interest using a local
search procedure. More on this local search particle filter variant
(LSPF) can be found in Cabido et al. [3]. It has been adapted to
be suitable for tracking in radar images. This section is devoted to
describe the tracking algorithm in detail.

5.1. Solution structure

Solutions store the set of required variables which describe the
system state and its weight. The solution structure proposed for
a tracked object is a state vector st

i = [(xt
i , yt

i , vxt
i , v yt

i )], where
(xt

i , yt
i ) represents the position of the object i in the image at

time t , and (vxt
i , v yt

i ) corresponds to its velocity vector. The state
st

i has an associated weight π t , which is related to its likelihood
(a more detailed exposition can be found in Gordon et al. [6] and
Zotkin et al. [24]). Besides, many other time-dependent object fea-
tures (such as their orientation or size) could be added to the
solution structure.

5.2. Measurement model and PF evaluation

We consider the binary foreground image I F obtained during
the target detection stage to evaluate the particle weights. Specif-
ically, in our proposed Sampling Importance Resampling particle
filter the weight π t

i at time t assigned to a state st
i is computed

using the measurement image I F and computing the number of
active pixels belonging to the bounding box centered in (xt

i , yt
i ) as

expressed in Eq. (5). The higher the number of active pixels con-
tained in the bounding box associated with the state, the higher
the particle weight is.

5.3. PF selection stage

The selection stage is intended to improve the quality of the
set, letting the best particles survive and replacing the worst ones
by better estimators. We have implemented the SIR PF selection
simulating a roulette wheel selection procedure. Eventually, this
procedure will replace most low-quality particles as, in average,
their weight values would not be very high. However, there should
be some probability for low-quality particles to survive because
they can provide diversity to the set and scape from local minima.

5.4. PF diffusion

The PF diffusion is used to keep the needed diversity in the par-
ticle set. Usually, it consists of a random perturbation of the spatial
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Fig. 5. Dual background subtraction.
Fig. 6. Scheme of the Adaptive Sliding Window computation approach.

Fig. 7. PF diffusion. (a) Same relevance for longitudinal and traversal movement.
(b) Particle diffusion using the scenario knowledge.

coordinates of a given particle. In this problem, we can take advan-
tage of the scenario knowledge. Using the information of where
the roads are placed, we can determine in which road is each ob-
ject, and make the diffusion to fit into the road where the object
is moving. In this way, the longitudinal movement along the road
is more important than the transversal one (see Fig. 7).

Moreover, we also propose the use of heuristic maps in order to
correct possible misaligned maps as well as to ensure a diffusion
(and a later system model application) along the real road. Maps
misalignments may introduce critical errors in the scenario model-
ing described in Section 3. Fig. 8 shows the maps of a predefined
location where a radar device is placed, the heat map of exper-
imentally detected traffic and the overlapping of both maps. The
diffusion stage of the PF is constrained to place new coordinates in
areas of existing roads.

5.5. PF system model

The system model describes the temporal update rule for the
system state [24]. The tracked object state consists of a given
number of spatial coordinates and their corresponding velocities,
deriving in a first-order system model.
{
xt+1 = vt

x�t + xt

yt+1 = vt
y�t + yt (6)

This stage has been also adapted to take advantage of the scenario
knowledge in an equivalent way as in the PF diffusion stage so,
given the heuristic map of a radar device, we restrict the coordi-
nates of next time steps to fall on existing roads, discarding new
states that do not satisfy this assumption and replacing them to
maintain the population.

5.6. Specific PF improvements for radar images

Visual tracking using radar images has to deal with noise and
artifacts derived from the probabilistic nature of the measurement
process. Those artifacts are summarized below:

• Jitter: We call jitter to an unexpected change on the measure
received from the radar at a given time t with respect to the
previous one t − 1. As a consequence, objects in the image
appear slightly displaced in each frame, although the object
has not really changed its position. Therefore, it can produce
errors in the position and velocity estimation.

• Occlusions and disappearances: As in a computer vision prob-
lem a big object placed between the antenna and the tracked
target can produce occlusions. Furthermore, another common
artifact consists of the disappearance of a detected object in
some frames. Obviously, this effect introduces difficulties in
the tracking process.

• Correspondence problem: Two objects moving at the same
speed in the same area appear as only one object in the radar
image. The system should be prepared to distinguish between
them when they split.

• Intensity difference: Each object produces a different signal
intensity based on its shape, materials and distance to the
radar antenna. If a moving object is close to another reflect-
ing object, its intensity will also change, and its detection can
be more difficult.

The system should deal with the aforementioned artifacts to
become a realistic approach for vehicle tracking. The jitter prob-
lem is tackled using the dual background subtraction, since that
strategy allows us to check if an object is moving or its apparent
movement is caused by the jitter phenomena. However, in order
to face problems in which the signal fluctuates or even disappears
(occlusions), we redefine the computation of the particle weight as
an Exponentially Weighted Moving Average (EWMA):

π t = αM00 + (1 − α)π t−1 (7)
i i
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Fig. 8. Heuristic maps construction. (a) Map of a predefined location for a radar device. (b) Detected traffic on location (a) over a period of usage. (c) Heuristic map resulting
from overlapping both maps.
where

M00 =
xt

i + 1
2 w∑

x=xt
i − 1

2 w

yi
t+ 1

2 h∑
y=yi

t− 1
2 h

I F (x, y) (8)

is, as in the detection evaluation stage, the zero-order moment or
area in a binary region given by the position xt

i and yt
i of the

bounding box associated to the particle state coordinates (xt
i , yt

i ).
Therefore, the weight of each particle (π t

i ) is computed consid-
ering two terms. The first term computes the particle weight based
on the measure at time t . The second term takes into account the
influence of the previous weight (π t−1

i ). The experimental param-
eter α is the learning factor and allows us to tune the influence of
both terms in the calculation of the new weight. The assumption
made here is that an object which was in the frame at time t − 1
cannot be completely disappeared at time t . This strategy allows
us to maintain the state of hidden vehicles for some frames.

We face the correspondence problem by the detection system.
When the area of a previously detected object in the image splits
in two different targets, the previous object was actually a pair of
objects moving together. In this case, the previous objects will be
deleted from the list and two new objects will be added.

The intensity difference problem is approached by giving a
range of intensity levels to each target in which it can move during
the frames. In that way, if a target slightly changes its intensity, the
new value will be in the range defined for that target. With that
solution, the target will maintain its identity in spite of the change
of the intensity.

5.7. Alert generation

The final aim of this work is to report alerts of anomalous sit-
uations on the area in which the radar is working. Because of that
it is really important to reduce the number of false positives given
by the tracking system. In order to reduce false alerts, we have set
a condition that helps the system to elucidate if an alert has been
produced either by a real object or by non-filtered noise.

The condition needed to generate an alert is the continuity of
the vehicle in the image with a feasible trajectory, according to
the roads located in the area. In that way, an alert is generated
only if an object maintains its trajectory for a predefined number
of frames, F .

The way to check if a vehicle is following a feasible trajectory is
based on its position and speed. On one hand, we use its position
to check if the vehicle is actually moving along a road in the image.
On the other hand we use its velocity vector to check that the
speed in consecutive frames has not changed in an abrupt way.

With those measures it is possible to filter the false positives
and avoid in a great manner false alerts.
Table 1
Parameter settings for the proposed system.

Symbol Description Value

δt(B S ) Short term background update period 2 frames
δt(B L) Long term background update period 5 frames
w Bounding box width 100 pix.
h Bounding box height 100 pix.
α Learning factor 0.75
F #frames/alarm 3 frames
N #particles/PF 100

Table 2
Experimentation for short (δt(B S )) and long (δt(B L)) term background update pe-
riod selection. Sequence 1 presents 37 real targets while Sequence 2 presents 19.

Update period (frames) Sequence 1 Sequence 2

δt(B S ) δt(B L) TP FP TP FP

2 3 30 12 18 76
2 4 31 23 18 88
2 5 26 8 18 82
2 6 28 23 17 81
2 7 31 12 17 81
2 8 31 16 17 87

3 4 30 21 16 104
3 5 30 17 17 106
3 6 34 24 16 119
3 7 33 22 17 115
3 8 34 25 16 115

4 5 30 26 19 119
4 6 34 32 18 122
4 7 34 34 18 117
4 8 36 72 19 130

6. Experimental results

This section is devoted to describe the results obtained by the
detection and tracking system. The experiments were performed
on an Intel Core 2 Duo E8400 3 GHz with 3 GB of RAM and Win-
dows 7 32 bits OS, and radar images were supplied by a low-cost
radar device MDC-2000 oriented to marine applications offering 8
discrete levels of intensity. Several video sequences and results of
our proposal are available at: http://www.gavab.etsii.urjc.es/capo/
dsp_radarTracking.

The proposed system was developed in C, using the OpenCV 2.1
(Open Source Computer Vision) library. System parameters have
been experimentally set and selected values are summarized in Ta-
ble 1. In particular, the number of video frames for the short/long
term background update period selection are shown in Table 2. We
choose the combination that performs best, giving the less num-
ber of false positives, that is, 2 and 5 video frames for δt(B S ) and
δt(BL), respectively.

http://www.gavab.etsii.urjc.es/capo/dsp_radarTracking
http://www.gavab.etsii.urjc.es/capo/dsp_radarTracking
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Fig. 9. Background subtraction stage. Active pixels belong to the foreground. (a) Foreground of consecutive video frames belonging to Sequence 1. (b) Foreground of consecutive
video frames belonging to Sequence 2.
The bounding box size (w and h parameters in Table 1) is orig-
inally taken 100 pixels by 100 pixels. However, a local search is
performed once the region of interesting pixels is located. Then,
the size of the window is refined to the one that contains only
foreground pixels.

The EWMA learning factor (α in Table 1) weights the region
of interest against its history for the computation of the particle
weight. In our experiments a learning factor of 0.75 performed
slightly better than 0.25 and 0.5 when handling occlusions, so we
chose it. The number of frames (F in Table 1) taken in order to
send an alert is selected depending on the maximum speed of
the road. Taking into account that the frame rate of the radar is
1 frame every 1.25 seconds (0.8 fps), waiting 3 frames is enough
for a vehicle to travel about 50–100 meters. We can get a close
idea of the kind of alert (if any) in such a long distance. The num-
ber of the considered particles for the PF (N in Table 1) is set to
100, as we got reasonable quality and performance results. They
will be described in Sections 6.3 and 6.4. Note that each new tar-
get detection in an in–out area creates a new particle filter in the
system.

Once the parameters are selected, the proper experimental re-
sults for the detection and tracking tasks are divided in three
different sections. In the first place, the target detection method
is tested. We use different radar sequences and compare the ob-
tained results with the ground truth given by a human expert.
Secondly, performance results are showed. The adaptive sliding
window proposal lets us accelerate the detection stage, showing
significant speedups. Moreover, multiple particle evaluation per-
formed in the tracking stage can exploit multicore platforms fa-
cilities. Performance results show how the proposed method can
benefit from using parallel computation. Finally, we measure the
tracking method accuracy in the last section and present the vi-
sual results obtained in different scenarios.

6.1. Background subtraction and object detection

Fig. 9 shows the results obtained by the dual background sub-
traction for two different radar sequences. Sequence 1 represents
an ideal scenario, where there are not bridges or buildings which
can cause high levels of noise in the images. Thus, most fore-
ground pixels correspond to the two targets labeled by an expert
(see Fig. 9(a)). However, some noise remains active after the back-
Table 3
Analysis of the objects detected and tracked in the two sequences. Columns describe
the number of frames per sequence, real objects in the scene (RO), true detections
(TD), and false detections (FD).

Length RO TD FD

Sequence 1 37 2 2 0
Sequence 2 24 5 5 0
Sequence 3 43 5 5 2
Sequence 4 57 2 2 1
Sequence 5 33 9 7 1
Sequence 6 72 5 5 1

ground subtraction. These noisy pixels will be discarded in the
tracking stage using a density thresholding.

Dual background subtraction was tested in more complex
scenarios. Fig. 9(b) shows the foreground extracted for the Se-
quence 2. This sequence contains different urban structures which
introduce higher levels of noise in the resulting image. Noise ar-
eas, as the one which appears at the bottom of the image, could
not be discarded in the tracking stage, resulting in a false positive
detection. As we discuss in Section 5.7, false positives are filtered
by assuming a continuity premise.

The object detection stage was tested using different real se-
quences obtained from the radar network. In order to test the
stages, a ground truth measurement was created by an expert.
For each scene, the number of objects detected and their posi-
tions are stored. Then, expert information is used to analyze the
performance of the automatic detection stage.

Table 3 shows the performance of the detection stage. Specif-
ically, the system detects (true detections, TD) the 92.9% of all
objects labeled by an expert as real objects (RO). On the other
hand, urban structures introduce noise in the resulting image. This
situation produces false detections (FD). The system detects one
false object per sequence on average. Please note that we denote
here as “object” to one that appears as a blob (or is eventually oc-
cluded) along the entire sequence maintaining the correspondence,
not the number of apparitions frame by frame.

6.2. Adaptive sliding window performance

In this section, we measure the performance benefit obtained
by using the Adaptive Sliding Window (ASW) approach described
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Table 4
Adaptive sliding window performance results (time and speedup) for different configurations.

Resolution Window size Method Speedup

Std (ms) ASW (ms) Average Maximum

640 × 640 10 × 10 3.75 1.08 3.60× 5.32×
20 × 20 10.04 0.98 10.22× 14.70×
40 × 40 15.82 0.85 17.88× 24.72×

800 × 800 10 × 10 6.09 1.64 3.77× 4.89×
20 × 20 17.04 1.45 11.63× 15.55×
40 × 40 31.76 1.31 23.83× 31.15×

1024 × 1024 10 × 10 9.97 2.46 4.20× 5.95×
20 × 20 30.20 2.12 14.18× 18.36×
40 × 40 63.91 1.97 32.05× 43.36×
in Section 4.1. Experiments were developed taking into account
different radar image resolutions and window sizes. Performance
results are computed by executing the detection stage for each se-
quence (Sequence 1–6). Table 4 shows the average times per frame
obtained with (ASW) and without (Standard) the sliding window
approach. In most demanding configurations (1024 × 1024 radar
images) we get upper bound speedups between 5.9×–43.3× (rep-
resented by the maximum speedup column in the table) while in
a real execution we get an average of about 70%–74% of the upper
bound. Note that for increasing window sizes, the standard method
consumes more time in their evaluation (in the same way as a con-
volution with larger kernels) while the ASW method can perform
in less time due to faster runs for large windows (especially in ab-
sence of noise) for computing the entire frame.

6.3. High performance PF evaluation

In visual tracking methods like particle filters, particles weight
computation stage is one of the most computationally demanding
tasks [26]. However, modern architectures provide multicore pro-
cessors and vector registers that can be exploited in time consum-
ing applications, typically including image and signal processing
ones. In this section, we propose a shared-memory parallel ap-
proach for multiple particle evaluation.

OpenMP is a shared-memory parallel API and its directives can
be used to simplify thread creation and management while par-
allelizing at core level. Additionally, SIMD instructions (Single In-
struction Multiple Data) supported by consumer architectures can
be included in order to exploit fine grain data parallelism. Intel
x86 SIMD registers are available since the introduction of the 64-
bit XMM registers and their MultiMedia eXtensions (MMX) in 1995
for integer data types. After that, the Streaming SIMD Extensions
(SSE) family for 128-bit floating point data was included in 1999
to enhance the SIMD capabilities for 3D content. The width of
the registers remained constant until the recent Intel Sandy Bridge
architecture was released in 2011 with the Advanced Vector eXten-
sions (AVX). The AVX registers are 256-bit wide for floating point
arithmetic (supporting integer data types in the recent 22nm In-
tel Ivy Bridge family) capable of processing up to 8 32-bit floating
point values simultaneously or any other 256-bit combination.

Our experimental platform for this performance evaluation is
based on a Sandy Bridge Intel Core i7-2600 at 3.4 GHz with 2 GB
RAM. Parallel particle evaluation was developed using OpenMP API
and different sets of SIMD instructions. Fig. 10 shows the per-
formance results obtained when different number of targets are
tracked (1–32). Note that the number of needed particles increases
with the number of targets. In particular, for this experimentation
our system evaluates 128 particles per object instead of 100 in or-
der to better align the memory and fill the registers size. Trying to
reduce the computational load of the evaluation stage, up to four
parallel approaches have been developed and compared against an
Fig. 11. Tracking results. (a) Trajectories followed by two vehicles in Sequence 1.
(b) Trajectories and false positives detected in Sequence 2.

equivalent single-threaded version (called as Serial). SSE and AVX
approaches exploit 128-bit and 256-bit wide registers respectively,
while OMP+SSE and OMP+AVX versions can also take advantage
from multicore computation to evaluate multiple ROIs in parallel.

Fig. 10 also depicts the best speedup obtained for each ob-
ject configuration. We can see how most demanding configurations
(16–32 targets) show important speedups between 28–50× (see
Fig. 10).

6.4. Object tracking

Fig. 11 shows tracking results obtained for Sequence 1 and Se-
quence 2. The former constitutes an ideal scenario where radar
images present low levels of interferences. Thus, using the binary
foreground image described in Section 5.2, the particle filter al-
gorithm is able to track the targets. Fig. 11(a) shows trajectories
followed by the two targets. Identities are preserved during the
tracking.
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Fig. 10. Performance comparison between serial and parallel particle evaluation. Times were computed for different number of targets.
Table 5
Comparison of the tracking quality of the Particle Filter (PF) with 100 particles and
the Kalman Filter (KF) for the six video sequences. Columns represent ground truth
(g), miss-detections (m), false positives (fp), identity switches (mme) and the MOTA
score (higher is better).

Method g m fp mme MOTA

Sequence 1 PF 37 2 0 0 0.946
KF 37 4 0 0 0.892

Sequence 2 PF 19 2 7 0 0.526
KF 19 2 8 0 0.474

Sequence 3 PF 25 0 15 0 0.400
KF 25 1 13 0 0.440

Sequence 4 PF 5 0 1 0 0.800
KF 5 0 1 0 0.800

Sequence 5 PF 20 0 9 0 0.550
KF 20 2 12 0 0.300

Sequence 6 PF 11 0 0 0 1.000
KF 11 0 4 0 0.636

On the other hand, Sequence 2 shows a challenging scenario in
Fig. 11(b), where the radar signal presents higher levels of noise.
In the tracking stage, noisy measures are translated into false pos-
itives, which are mostly filtered using a continuity criterion.

To evaluate the tracker, the Multiple Object Tracking Accuracy
(MOTA) measure is used [2] as:

MOTA = 1 −
∑

t (cm(mt) + c f ( f pt) + cs(mmet))∑
t gt

(9)

where gt is the number of ground truth detections, mt the number
of miss-detections, f pt the false positive count, mmet the num-
ber of instantaneous identity switches and t corresponds to each
time step. This MOTA score takes into account the quality per-
formance of the tracker in terms of the involved parameters, so
the best MOTA value would give a value of 1 (no miss-detections,
false positives or identity switches). According to [8], the weight-
ing functions are set to cm = cf = 1, and cs = log10.

To better understand the performance of the different algo-
rithms, we then compute the three individual components of
MOTA: m, f p, mme. The results of the particle filter (PF) tracker
using 100 particles are compared to a more traditional Kalman Fil-
ter (KF) tracker and are shown in Table 5. The PF system obtains
a MOTA score of 0.7 on average while the KF is 0.59 on average
(higher is better). For the proposed system this is a very accept-
able result, as it is a very important issue to avoid false positives.

Finally, visual tracking results for both, KF and PF, trackers ob-
tained for Sequence 1 and Sequence 2 are presented in Fig. 12.
Tracking results are also acceptable, taking into account the high
level of noise present in the images. A target represented as a
cross symbol (“×”) corresponds to a false positive. In Sequence 1
(Fig. 12(a)) the Kalman filter (top row) temporally looses the first
target (it is temporally associated to an occluded state) as the esti-
mated velocity at initialization is slightly lower than the real one.
Later, in this case it corrects its estimated position (and then be-
comes tracked) but in others it looses targets and cannot recover
them. In Sequence 2 (Fig. 12(b)) the Kalman filter (top row) looses
the first target (and does not recover it), and also shows some
inaccuracies in the estimation of target 2 (frames #18 and #19).
Overall, the KF shows more false positives (see Table 5), although
in this segment of the sequence it presents less false positives than
the particle filter tracker.

7. Conclusions

In this paper we have presented a radar-based visual tracking
system oriented to road-traffic monitoring. The use of radar tech-
nology makes the system be robust against lighting or weather
conditions. The system allows to model urban areas and detect,
track and compute the speed of vehicles in urban environments.
The detection module consists of a dual background subtraction
model for the segmentation of vehicles and an adaptive sliding
window procedure to determine the initial position of entering
vehicles. On one hand, experimental results demonstrate that the
dual background subtraction model is suitable for noisy radar im-
ages, thus making the detection and tracking affordable. On the
other hand, the sliding adaptive window procedure has proven
to be substantially more efficient than the standard method, ob-
taining equivalent results in terms of quality. The proposed track-
ing module is based on the particle filter algorithm. This module,
in conjunction with the detection module enables to handle en-
tering and exiting vehicles from the scene. Experimental results
revealed that the tracking precision is high enough to compute
vehicle speeds and detect potential speeding offenses. Our per-
formance optimization approaches allow us to obtain significant
speedups over the non-optimized method. These speedups enable
the system to execute the application for seven radars in only
one computer, so we could distribute fourteen radars using two
servers. Nowadays, the proposed system is being used in a real
urban environment, showing a suitable performance to end-user
expert opinion.
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Fig. 12. Visual tracking results for Kalman Filter (KF) and Particle Filter (PF). (a) Sequence 1: KF tracking is shown in the first row, PF in the second row. (b) Sequence 2: KF
tracking is shown in the first row, PF in the second row.
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[22] I.K. Yalćin, M. Gökmen, Integrating differential evolution and condensation al-
gorithms for license plate tracking, in: Proc. of the 18th International Confer-
ence on Pattern Recognition, ICPR’06, 2006, pp. 658–661.

[23] A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Computing Sur-
veys 38 (4) (2006).

[24] D.N. Zotkin, R. Duraiswami, L.S. Davis, Joint audio-visual tracking using particle
filters, EURASIP Journal on Applied Signal Processing 2002 (1) (2002) 1154–
1164.

[25] L. Zhu, J. Zhou, J. Song, Tracking multiple objects through occlusion with online
sampling and position estimation, Pattern Recognition 41 (2008) 2447–2460.

[26] D.A. Gomez, P. Horain, M.K. Rajagopal, S.K. Karri, Real-time particle filtering
with heuristics for 3D motion capture by monocular vision, in: Proc. of the
IEEE International Workshop on Multimedia Signal Processing, MMSP 2010,
pp. 139–144.

[27] C. Stauffer, W. Eric, L. Grimson, Learning patterns of activity using real-time
tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence 22
(2000) 747–757.

[28] H. Uemura, S. Ishikawa, K. Mikolajczyk, Feature tracking and motion compen-
sation for action recognition, in: Proc. of BMVA British Machine Vision Confer-
ence, BMVC’08, 2008.

[29] R. Messing, C. Pal, H. Kautz, Activity recognition using the velocity histories
of tracked keypoints, in: Proc. of 2009 IEEE 12th International Conference on
Computer Vision, ICCV’09, 2009, pp. 104–111.

[30] B. Benfold, I. Reid, Stable multi-target tracking in real-time surveillance video,
in: Proc. of 2011 IEEE 13th International Conference on Computer Vision, IC-
CV’11, 2011, pp. 3457–3464.

[31] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, Real-time
detection and tracking for augmented reality on mobile phones, IEEE Transac-
tions on Visualization and Computer Graphics 16 (3) (2010) 355–368.

[32] S. Haykin, A. Zia, Y. Xue, I. Arasaratnam, Control theoretic approach to tracking
radar: First step towards cognition, Digital Signal Processing 21 (5) (2011) 576–
585.
J. Sánchez-Oro was born in 1987, in Madrid (Spain). He is MSc in Com-
puter Science, MSc in Computer Vision at Universidad Rey Juan Carlos
and Ph.D. candidate advised by Dr. Duarte and Dr. Martí. He is currently
working at the CAPO research line (Computación de Altas Prestaciones y
Optimización) at the GAVAB group of Universidad Rey Juan Carlos. His re-
search interests include computer vision, image and video processing and
meta-heuristic optimization.

D. Fernández-López was born in 1985, in Madrid (Spain). He is MSc
in Computer Science, MSc in Computer Vision at Universidad Rey Juan
Carlos and Ph.D. candidate advised by Dr. S. Montemayor and Dr. Pantrigo.
He is currently working at the CAPO research line (Computación de Altas
Prestaciones y Optimización) at the GAVAB group of Universidad Rey Juan
Carlos. His research interests include computer vision, image and video
processing, intelligent transport systems and parallel programming.

Raúl Cabido was born in Madrid (Spain) on July 11th, 1980. He re-
ceived the BSc Degree in Computer Science from Universidad Rey Juan
Carlos (URJC) in 2004, and the Ph.D. in Computer Science in 2010 from
URJC. Nowadays, he is an Assistant Professor at URJC and the member
of the GAVAB and CAPO research groups in the Department of Computer
Science (DCC). His research interests focus on Computer Vision and GPU
Computing. In particular, he uses GPUs to accelerate methods related to
3D/2D motion tracking, medical image reconstruction, image registration,
face recognition, high-definition depth maps computation, image segmen-
tation, super-resolution, acceleration of heuristics and metaheuristics pro-
cedures, etc.

A.S. Montemayor was born in 1975, in Madrid, Spain. He received his
MS degree in Applied Physics at Universidad Autónoma de Madrid in 1999
and Ph.D. degree at Universidad Rey Juan Carlos in 2006. He is currently
an Associate Professor at Universidad Rey Juan Carlos and the main leader
of the CAPO research line at the GAVAB group. His research interests in-
clude soft-computing, computer vision, image and video processing and
real-time implementations.

Juan J. Pantrigo was born in 1975, in Cáceres, Spain. He is currently
an Associate Professor at Universidad Rey Juan Carlos. He received his MS
degree in Fundamental Physics at Universidad de Extremadura in 1998
and Ph.D. at Universidad Rey Juan Carlos in 2005. His research interests
include heuristic and exact optimization, computer vision, metaheuristics
and hybrid approaches.

http://dx.doi.org/10.1155/2008/197875

	Radar-based road-trafﬁc monitoring in urban environments
	1 Introduction
	2 System overview
	3 Scenario modeling
	4 Background subtraction and target detection
	4.1 Adaptive Sliding Window (ASW)

	5 Target tracking
	5.1 Solution structure
	5.2 Measurement model and PF evaluation
	5.3 PF selection stage
	5.4 PF diffusion
	5.5 PF system model
	5.6 Speciﬁc PF improvements for radar images
	5.7 Alert generation

	6 Experimental results
	6.1 Background subtraction and object detection
	6.2 Adaptive sliding window performance
	6.3 High performance PF evaluation
	6.4 Object tracking

	7 Conclusions
	Acknowledgments
	References


