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Abstract. This paper proposes a GRASP algorithm combined with Path Relinking to solve the SumCut 
minimization problem. In the SumCut problem one is given a graph with n nodes and must label the nodes in a 
way that each node receives a unique label from the set{1,2, … ,n}, in order to minimize the sum cut of the 
generated solution. The SumCut problem is really important in archeology (in seriation tasks) and in genetics, 
helping in the Human Genome Project. This problem is equivalent to the Profile problem, because a solution for 
SumCut is reversal solution for Profile problem. Experimental results show that the GRASP and Path Relinking 
methods presented outperform in terms of average percentage deviation the results from the State of the Art using 
shorter CPU time. 
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1. INTRODUCTION 

 Let G = (V, E) be an undirected graph, where V denotes the set of vertices and E the set of edges. Let n = |V| and m = |E|. A layout φ 
of the vertices of G is a one-to-one mapping from the set V onto the integers {1,2, … ,n} where each vertex v � V has a unique label 
φ(v) � {1,2, … ,n}.Given a graph G, and a vertex v placed in position i = φ(v), we define the left set L(i,φ, G) and the right set 
R(i,φ, G) as: 

( , , ) { :  ( ) }L i G u V u iϕ ϕ= ∈ ≤  (1) 

( , , ) { :  ( ) }R i G u V u iϕ ϕ= ∈ >  (2) 
Set L(i,φ, G) contains vertices on the left side of position i, including itself. On the other hand, set R(i,φ, G) stores vertices on the right 
side of position i. Taking into account the definition of these two set, the vertex cut at position i of φ, is computed as: 

( , , ) { ( , , ) : ( , , ) : }i G u L i G v R i G uv Eδ ϕ ϕ ϕ= ∈ ∃ ∈ ∈  (3) 

The SumCut of a layout φ, denoted as SC(φ, G), is calculated as the sum of vertices cut of each position. In mathematical terms: 

1
( , ) ( , , )

n

i

SC G i Gϕ δ ϕ
=

=∑  
(4) 

The SumCut minimization problem then consists of minimizing the value of SC(φ, G) over all possible layoutsΠ� : 

( ) min  ( , )
n

SC G SC G
ϕ

ϕ
∈Π

=  (5) 

The Profile problem, and in the same way the SumCut, were proved to be NP-Complete for cobipartite graphs in Lin et al. [1], and 
they were also proved to be NP-Complete for general graphs in Gibbons et al. [2], Golovach [3] and Yuan and Lin [4]. 

The SumCut is equivalent to the Profile minimization problem as it was stated in Agrawal et al. [5]. Specifically, the reverse solution 
of the SumCut corresponds to a solution of the Profile. Both optimization problems have been extensively studied. See for instance 
[6][7][8]. Practical applications of these problems appear in genetics [9]. The goal of the Human Genome Project consist of 
sequencing the DNA of humans as well as other species with the target of elucidating the genetic information contained therein. In 
order to construct a physical map of a large DNA molecule it is necessary to extract clones from it. Then a fingerprint of each clone is 
obtained. Finally, DNA molecule is reassembled determining how the clones overlap among them. Each clone is a sequence of 
nucleotides drawn from the set {A,C,T,G}, so the reassembly process consists of permuting a linear layout of a graph. 
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In Kendall [10] is described an application in archeology, where it is necessary to serialize different artifacts (fossil, hardware, jewels, 
etc.). The serialization is known in archeology as “seriation” and consists of placing in chronological order different artifacts in the 
same culture using a relative dating method. Specifically, the practical application is based on the re-arrangement of a matrix, which 
can be translated on the reordering of a linear layout of a graph.  

Reducing the profile of a matrix is a relevant problem in mathematics since it leads to a reduction of the amount of space needed for 
some storage scheme. On the whole, it achieves an improvement of the performance of several operations such as Choleski 
factorization of non-singular systems of equations [11]. Recently the profile reduction has been used in new areas like information 
retrieval to browse hypertext [12]. 

The Profile problem was originally proposed as a way to reduce the storage space needed to save sparse matrix [13] but it was proved 
that it is equivalent to the SumCut problem [5]. An important application of the Profile problem arises in clone fingerprinting [9]. 

 Cuthill and McKee proposed the Reverse Cuthill-McKee (RCM) algorithm [14] in order to get the minimum profile of a graph. If we 
want to get a solution for the SumCut problem it is only need to reverse the solution generated.  

 Gibbs et al. solve the SumCut problem using a new algorithm based on the RCM [15]. The paper describes three problems of the 
RCM and presents a new algorithm that solves the described problems. 

Lewis also describes a method to re-order sparse matrices in order to reduce their profile [16] using the Gibbs-King algorithm to 
improve the results from the RCM algorithm. 

The previous algorithms are used in Profile and SumCut problems and also in Bandwidth problem, with differences only in the last 
step: the numbering of the nodes. 

Until now, the best heuristic proposed to obtain better solutions in the SumCut problem is presented in Lewis [17]. It uses the 
Simulated Annealing to reduce the profile of a matrix. The algorithm starts with a previously calculated solution and it improves the 
solution by using the Simulated Annealing technique. The original solution is calculated using either the RCM algorithm or the Gibbs-
King algorithm, and the instances used are a subset of the Harwell-Boeing graphs set. 

 

2. GRASP 

The GRASP metaheuristic was developed in the late 1980s [18] and the acronym was coined in Resende et al. [19]. GRASP can be 
divided into two phases. The first one consists of constructing a solution and then, in the second phase, improves the incumbent 
solution with a local search procedure. In this section we describe two constructive procedures and two local search methods for the 
SumCut problem. Figure 1 illustrates the pseudo-code for the GRASP algorithm. 

begin GRASP(G, nIter) 
 bestSolution =∅ ; 
 for i=1:nIter 
  solution = construct(); 
  improve(solution); 
  if (SC(bestSolution) < SC(solution)) 
   bestSolution = solution; 
  endif 
 endfor 
end 

Figure 1. Pseudo-code for GRASP algorithm 
 

2.1 Construction procedures 

We have designed two constructive algorithms C1 and C2 for the SumCut problem. C1 implements a typical GRASP construction 
where each candidate element is initially evaluated by a greedy function to construct a Restricted Candidate List (RCL) and one 
element is selected at random from the RCL. C1 assigns the smaller available label to the selected vertex.  
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The constructive procedure C1 starts by creating the set of unlabelled vertices U (initially U = �V) and the set of labelled vertices 
L = V\U. The constructive procedure labels one vertex in each iteration. The first node u0 is selected according to its degree. 
Specifically, the vertex with the minimum degree is selected (ties are broken at random). The vertex u0 is labeled l0=1. Then sets U and 
L are properly updated (i.e, U = U\{u0} and L=  LU {u0}). 

Once the first label l0 is assigned to vertex u0, C1 constructs the candidate list CL with the vertices adjacent to u0, not previously 
labeled (i.e. v � L).Then, all the vertices in the CL are evaluated with a greedy function g. For this problem we propose the following 
equation: 

( ) ( ) ( )L Ug v N v N v= −  (6) 

where |NL(v)| indicates the number of vertices adjacent to v that has been already labeled and |NU(v)|  is the number of vertices 
adjacent with vthat has not been labeled yet. The constructive procedure stores in gmin and gmax, respectively, the minimum and 
maximum value calculated with the greedy function. The next step consists of constructing the Restricted Candidate List, RCL with all 
the unselected vertices in CL having a value of the greedy function greater than or equal to a specified cutoff value, th. In 
mathematical terms: 

{ : ( ) }RCL v CL g v th= ∈ >  (7) 

Where min 1 max min( )th g g gα= + ⋅ −  (8) 

And min maxarg min{ ( )} and arg ax{ ( )} 
u CL u CL

g g u g m g u
∈ ∈

= =  (9) 

The C1 procedure randomly selects an element u from the RCL and assigns the next label to it. After that, it updates the CL with the 
adjacent vertices of u. This method ends when all the vertices are labeled. 

We now consider the constructive algorithm C2, based on another strategy where randomization and greedy selection are interchanged. 
This strategy was introduced in Werneck and Resende [20] and recently used in Werneck and Resende [21], Duarte et al. [22] and 
Martí et al. [23]. Specifically, in C2 we first randomly choose candidates from the CL (defined as above) and then evaluate them 
according to the same greedy function. More formally, RCL is constructed by selecting at randomα2 � |CL| elements from CL. Then, 
the vertex u � RCL with the largest value of g is selected to become part of the solution under construction.C1 and C2 have two search 
parameters, α1 and α2. 

 

2.2 Local search procedures 

A solution to the SumCut problem can be represented with a permutation. This kind of solution representation has associated two 
different types of moves: interchange and insertion. The first one consists of swapping the labels of two different vertices. That is, 
given two verticesu, v � V, the operator interchange(u, v) assigns the label φ(u) to vertex v and the label φ(v) to vertex u obtaining a 
new labeling φ′.  

On the other hand, the insertion move consists of inserting a vertex in a different position. That is, given a vertex v and a position 
i,insertion(v, i) assigns the label i to vertex v (i.e., after the move�φ(v) = i ) and all the nodes between u and v will change their labels 
as: 

( ) f  ( ) 1
( )

( ) f  ( )1
j

v or i j vj
v

v or i j vi

ϕ ϕ

ϕ
ϕ ϕ

< ≤ +
= 

> ≥ −

 

 
(10) 

 
The local search procedure based on interchanges, LS_Interchange, has two input arguments (i.e., the constructed solution, φ, and the 
graph, G). This procedure is illustrated in Figure 2. The algorithm performs moves while improving (see steps 2 to 16). Vertices are 
scanned at random. First of all, the algorithm selects a starting node s (step 4). After that, the local search procedure starts scanning the 
solution in order starting at position φ(s). In each step a vertex v  placed in a position φ(v) is selected (step 6). Then, the vertex u (step 
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8) is the one placed in position φ(v) + 1. The remaining vertices are explored in order taking into account that after exploring the 
vertex in position n, it is explored the vertex in position 1. 

The procedure tries to perform the corresponding interchange (step 9). If this move reduces the objective function (step 10), the 
original solution is updated (step 12). Otherwise, the method performs moves until no further improvement is reached.  

begin LS_Interchange(φ,G) 
1 improve = true; 
2 while (improve) do 
3    improve = false; 
4    s = random(n); 
5    for i = 1 to n do 
6       v = (φ(s) + i) mod n;  
7       for j = 1 to n do 
8          u = (φ(v) + j) mod n; 
9          φ’ = interchange(u,v); 
10          if SC(φ’,G) < SC(φ,G) then 
11             improve = true; 
12             φ = φ’; 
13          end 
14       end  
15    end 
16 end 

end 
Figure 2. Pseudo-code for Local Search 

 
The local search procedure based on insertions is quite similar. Specifically, instruction in step 6 is substituted by φ′ = insert(u,φ(v)). 

The SumCut and Profile are problems in which a simple movement in a solution generated may change the objective function value, 
because as the solution is based on the sum of the cut of all vertices, each vertex will contribute to the objective function. For that 
reason the selection of a vertex that will improve the global objective function value is a challenge for solution methods based on 
heuristic optimization. 

 

3. PATH RELINKING 

Path Relinking (PR) was firstly introduced in 1977 [24] and updated in 1998 [25]. This algorithm generates new solutions by exploring 
trajectories that connect high-quality solutions by starting from one of these solutions, called the initiating solution, and generating a 
path in the neighborhood space that leads toward the other solutions, called guiding solutions. This is accomplished by selecting moves 
that introduce attributes contained in the guiding solutions, and incorporating them in an intermediate solution initially originated in 
the initiating solution. In this section we explore two different adaptations of PR to the SumCut problem. 

Let φX = � (4, 2, 3, 5, 1)  and φY = � (3, 4, 5, 1, 2)  be two solutions for the SumCut problem. Given these solutions, the PR method 
operates over the set D of vertices that are not allocated in each solution in the same position. Considering the solutions φX and φY the 
set D� = � {1,2,3,4,5} since all the elements are allocated in different positions. D is thus considered the candidate of vertices to be 
examined. To create a path from X to Y, we search in X for the vertex u with label φX(u) �= �φY(v) and perform interchange(u, v), 
where each interchange generates a different intermediate solution. Then the vertex v is removed from D and the next vertex is 
selected from D. PR performs a greedy selection in each step, i.e., PR evaluates all possible movements interchange(u, v) for all v � V 
and performs the best one in terms of objective function. Figure 3 shows an example of PR execution. 

In this paper we propose two different Path Relinking algorithms. Specifically, Static Path Relinking (SPR) and Dynamic Path 
Relinking (DPR). 
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Figure 3. Example of Path Relinking where the best solution in the path is highlighted. 

 
3.1 Static Path Relinking 

The first step of Static Path Relinking (SPR) is the creation of the reference set (RefSet). Specifically, the GRASP procedure is 
executed for maxIter iterations generating a pool p of different solutions (|p| ≤ maxIter). The SPR then selects b (with |RefSet| �= �b) 
solutions from p where b/2 are selected according to its quality (objective function) and the b/2 are selected according to its diversity 
(distance function). The distance between two solutions is computed as the sum of the differences (in absolute value) between each 
pair of labels in the corresponding labeling. In mathematical terms: 

1 2 1 2( , ) ( ) ( )
i

d i i
ϕ

ϕ ϕ ϕ ϕ
∈

= −∑  (11) 

After that, the SPR procedure generates a path for each pair of solutions in the RefSet. The algorithm ends when all the pairs of 
solutions have been combined. Figure 4 shows the pseudo-code for SPR algorithm. 

begin SPR(G,p,b) 
1 refSet = ∅; 
2 for i=1:p do 
3    sol = construct(); 
4    improve(sol); 
5    addIfBest(sol,refSet,b/2); 
6    addIfDiverse(sol,refSet,b/2); 
7 endfor 
8 for each src � refSet do 
9    for each dst � refSet do 
10       if (src <> dst) then 
11          bestCombination = combine(src,dst); 
12          updateBest(bestCombination); 
13       endif 
14    endfor 
15 endfor 

end 
Figure 4. Pseudo-code for SPR algorithm 

 
After that, the SPR procedure generates a path for each pair of solutions in the RefSet. The algorithm ends when all the pairs of 
solutions have been combined. Figure 4 shows the pseudo-code for SPR algorithm. 
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3.2 Dynamic Path Relinking 

Dynamic Path Relinking (DPR) generates the RefSet by executing the GRASP and the selecting the first b different solutions. Once 
the RefSet has been generated, a new solution is created using GRASP algorithm, which will be the initiating solution. Then, a 
solution is selected at random from the RefSet, which will be the guiding solution. DPR generates a path from the initiating to the 
guiding solution, returning the best solution found in the path. Finally, DPR tests if the returned solution qualifies to enter in the 
RefSet. Specifically, to test if a solution should enter into the RefSet it is necessary to check three statements: 

1. If the solutions is better than the best in the RefSet (in terms of objective function), sis admitted in the RefSet. 
2. If the solutions is worse than the worst solution in the RefSet (in terms of objective function), sis not admitted in the RefSet 
3. Otherwise, if the solution s is different enough (in terms of the distance function), sis admitted in the RefSet. 

Given solution,φ1 constructed with the GRASP and a solution φ2 � RefSet we say that these two solutions are different enough, if d  
(

1ϕ ,
2ϕ )>dth, where the distance threshold is computed as dth = δ � dmax,and dmax is the maximum distance between two solutions, 

that can be evaluated as follows:  

1

max ( 1)
i n

d i n i
< <

= − − +∑  (12) 

Finally, if the solution is able to enter into the RefSet, it will replace the most similar solution of the RefSet among the set of solutions 
that are worse than the new one. It is important to remark that “similarity” is evaluated with the distance function described above. 
Figure 5 shows the pseudo-code for the Dynamic Path Relinking algorithm. 

begin DPR(G, p, b) 
1 refSet = ∅; 
2 while size(refSet) < b do 
3    sol = construct(); 
4    improve(sol); 
5    addIfDifferent(sol,refSet); 
6    p = p – 1; 
7 endfor 
8 for i=1:p do 
9    solution = construct(); 
10    improve(solution); 
11    refSetSol = selectRandom(refSet); 
12    bestCombined = combine(solution,refSetSol); 
13    checkIfEnter(bestCombined,refSet); 
14 endfor 

end 
Figure 5. Pseudo-code for DPR algorithm 

 

4. COMPUTATIONAL RESULTS 

This section describes the computational experiments performed to test the efficiency of the GRASP heuristic. We implemented the 
methods in Java and the experiments were carried out on an Intel Core 2 Duo E4800 computer running at 3.00 Ghz with 3 GB of RAM. 

 We used one set of test problems in our experiments. A total of 22 instances were considered. The set of instances are derived from 
the Harwell-Boeing Sparse Matrix Collection [26]. This collection consists of a set of standard test matrices arising from problems in 
lineal systems, least squares, and eigenvalue calculations from a wide variety of scientific and engineering disciplines. The problems 
range from small matrices, used as counter-examples to hypotheses in sparse matrix research, to large matrices arising in applications. 
Graphs are derived from these matrices as follows. Let Mij denote the element of the i-th row and j-th column of the n� � n sparse 
matrix M. The corresponding graph has n vertices. Edge (i, j) exists in the graph if and only if Mij ≠ 0. 
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The computational experiments are divided into two parts. In the first one, we evaluate the performance of the proposed strategies. We 
use a subset of the set of instances of 10 representative examples (i.e., different sizes and densities). Then, one time we have identify 
the best combination of search strategies we compare it with the state-of-the-art. 

In the first experiment we compare our 2 proposed constructive methods in order to determine the best constructive procedure. Both 
procedures construct 100 different solutions, recovering the best one of all constructions. Parameters α1 and α2 have been set randomly 
for each iteration, in order to boost the diversity of the generated solutions. Table 1 shows the comparison between our constructive 
methods (C1 and C2), and the Cuthill-McKee algorithm (RCM), described in Cuthill and Mckee [14], which is one of the most used 
algorithms in the SumCut problem, and the Gibbs-King algorithm (GK), described in Lewis [16]and Poole, Stockmeyer and Gibbs[15]. 
We report for each method the average percentage deviation with respect to the best know solution (Dev.), the number of times that 
each method matches the best known solution (#Best) and the CPU time (Time) in seconds. Regarding RCM and GK we directly use 
the values published by the authors. 

Table 1. Comparison of constructive methods 

 
Dev #Best Time 

C1 25.64% 1 0.33 
C2 13.32% 2 0.36 
RCM 19.73% 2 * 
GK 15.08% 1 * 

 
Table 1 clearly shows that the best constructive procedure is C2 (13.32%) followed by GK (15.08%) method. It is important to realize 
that that the CPU time of GK and RCM were not published in the corresponding papers. 

 In our second experiment we study how the local search procedures interact with the constructive methods. Specifically, we compare 
constructive C1 coupled with local search based on Interchanges, C1+LS1, C1 with local search based on insertions, C1+LS2 and the 
same for the C2 procedure (i.e., C2+LS1 and C2+LS2).In order to prevent really long running time, all the algorithms are stopped after 
a maximum time of 1000 seconds. Table 2 shows the performance of the four considered methods considering the same statistics than 
above. 

Table 2. Comparison between local search methods 

 
Dev #Best Time 

C1+LS1 13.21% 2 228.52 
C1+LS2 13.42% 1 291.87 
C2+LS1 8.05% 1 205.97 
C2+LS2 8.46% 2 264.33 

 
Table 2 shows that the best algorithm is C2+LS1 in terms of the objective function and CPU time. However, C2+LS2 obtains a larger 
number of best solutions. 

In the next experiment we compare our best GRASP procedures (i.e., GRASP1(C2+LS1) and GRASP2(C2+LS2)) using all the 22 
instances.. As we said before, Table 2 shows that the best algorithm is C2+LS1 in terms of the objective function and CPU time, but 
we have choose to include C2+LS2 because it finds more best solutions than the C2+LS1. 

Table 3. Comparison between Local Search and Simulated Annealing 

 
Dev #Best Time 

GRASP1 8.02% 2 283.78 
GRASP2 8.63% 4 357.36 

 
We can see in Table 3 that although GRASP2 achieves better solutions more times, GRASP1 have a lower average percentage 
deviation. It is remarkable to say that GRASP1 also achieves a better CPU time than GRASP2. 

The main objective of the next experiment is to compare the Static Path Relinking (SPR) and the Dynamic Path Relinking (DPR) with 
the best method identified in related literature. Specifically, they are compared with the Simulated Annealing, SA, presented in Lewis 
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[17]. In this case, we have executed both algorithms to improve the results of the GRASP1 algorithm. We have also compared both 
SPR and DPR with SA, which can be analyzed in Table 4. 

Table 4. Comparison between Path Relinking and Simulated Annealing 

 
Dev #Best Time 

SPR 1.48% 11 63.22 
DPR 1.06% 14 45.57 
SA 1.68% 16 179.62 

 
Table 4 shows that our Path Relinking strategies clearly outperforms the best method identified in previous papers. Specifically, SPR 
and DPR obtain a deviation with respect to the best-known solutions of 1.48% and 1.06%, while SA obtains 1.68%. Additionally, the 
CPU time of our proposed procedures is considerable shorted than time of the SA procedure. On the other hand, the number of best 
solutions found by SA compares favorably to our two procedures. Specifically, SA found 16 best solutions (out of 22) while our best 
procedure obtains 14 (out of 22). 

 

5. CONCLUSIONS 

In this paper we present two different constructive methods for the SumCut problem as well as two local searches, deriving into four 
possible GRASP procedures and two post-optimization strategies based on the Path Relinking methodology. Experimental results 
show that our two best methods outperform to the previous Simulated Annealing in terms of average percentage deviation and CPU 
time. On the other hand, Simulated Annealing finds more times the best solution but much of merit seems to be related to GK 
constructive method. 

 We propose as future work the efficient computation of the objective function, so we can evaluate a solution faster. This improvement 
drives the procedure to perform more movements in the same time, which seems to end in a better solution. We are also trying to 
develop new local search methods in order to move only the more suitable nodes based in the characteristics of the solution. 
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