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ABSTRACT
The graph bandwidth minimization problem is an interesting prob-
lem that has become relevant in a wide range of domains. Networks
communication, VLSI layout designs, parallel algorithms simula-
tions, matrix decomposition, are some of which areas where the
reduction of the bandwidth is very significant. The problem consists
of embedding a graph G into a line with the aim of minimizing
the maximum distance between adjacent vertices. In this paper,
we are focused on the 2D bandwidth minimization variant, which
considers embedding the graph in a two-dimensional grid instead
of in a line. Specifically, we study the problem deeply analyzing its
complexity and considering a survey of different approximate algo-
rithms for graphs. The review concludes outlining the conceptual
basis of the heuristic technique that we plan to apply to this graph
problem.
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1 INTRODUCTION
The problem of minimizing the bandwidth of a matrix (BMP) has
been studied from several perspectives in the literature. It was
firstly defined in the 1950s with the aim of reducing the computing
time for matrix operations such as inversions and determinants [3].
The optimization consists of moving all the nonzero entries of the
matrix into a band around the diagonal by reordering the rows and
columns of the matrix.

The main practical application of the problem resides in solving
large linear systems. For instance, for a matrix of dimension n and
bandwidth b the traditional algorithm for Gaussian elimination
presents a complexity of O (n3) [13]. However, it can be performed
in O (nb2) using matrix bandwidth minimization when b is smaller
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than n. BMP presents several additional applications such as saving
large hypertext media or improving data storage [1], large-scale
power transmission systems, very large scale integration designs,
or geophysics [17], among others.

Let G = (V ,E) be an undirected and connected graph, being V
the set of vertices and E the set of edges, with |V | = n and |E | =m.
A labeling σ of G consists of assigning the integers in the range
[1 . . .n] to the vertices of G, where each vertex v is assigned a
different label σ (v ). Let N (v ) be the set of adjacent vertices to v . If
we now deploy the graph in a horizontal line where is vertex v ∈ V
is located at position σ (v ) the bandwidth of v , denoted as B (v ), is
defined as:

B (v ) ← max
u ∈N (v )

|σ (v ) − σ (u) |

The bandwidth of a graph G with respect to a given labeling
σ , B (G,σ ) is defined as the maximum bandwidth among all the
vertices. More formally,

B (G,σ ) = max
v ∈V

B (v )

The BMP then consists of finding a labeling σ⋆ with the min-
imum value of B (G,σ⋆) among all possible labellings for G. The
resulting permutation indicates the reordering in rows and columns
that must be performed to the original matrix to minimize the band-
width of the matrix.

Figure 1(a) shows an example graph G with 6 vertices and 9
edges and two possible solutions for the BMP. The first one, σ1,
depicted in Figure 1(b), corresponds to a lexicographical distribu-
tion of the vertices in G, while the second one, σ2, corresponds
to a different ordering of the vertices in G. The number under
each vertex represents its bandwidth. For instance, for solution σ1,
B (A) = |Φ(A) − σ (E) | = |1 − 5| = 4, and B (D) = |σ (D) − σ (C ) | =
|2 − 1| = 1. Following this evaluation, the bandwidth of solution σ1
is B (G,σ1) = 4, while the bandwidth of solution σ2 is B (G,σ2) = 3.
Therefore, σ2 is better solution than σ1, since it presents a smaller
bandwidth value.

In this paper we focus on a different variant of the problem,
named two-dimensional bandwidth (2DBMP) [4, 11]. Specifically,
we consider that the nodes of the graph needs to be located in a two-
dimensional square grid of size p×p instead that in a horizontal line.
Given a graph G, a solution φ for the 2DBMP consist of assigning,
to each vertexv ∈ V , a pair of integer values (i, j ), with 1 ≤ i, j ≤ p,
where each vertex v is assigned to a different label φ (v ). In this
variant, we need to define a new distance function to evaluate the
bandwidth of each vertex. As stated in previous works [12], we
consider the rectilinear distance, also known as L1-norm. Let v be
the vertex located at position φ (v ) = (vx ,vy ), and vertex u the

DOI: 10.1145/3230905.3230953

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


LOPAL’18, Mayo 2018, ENSIAS, Rabat, Morocco M.A. Rodríguez-García, A. Duarte, and J. Sánchez-Oro

A

C D

B EF

A C DB E F

4 4 2 1 4 4

A E FB C D

2 3 3 2 3 3

(b)

(c)

(a)

Figure 1: (a) Example graph with 6 vertices and 9 edges and (b)(c) two possible linear layouts with the bandwidth of each vertex
depicted under it.

one located at position φ (u) = (ux ,uy ), the L1-norm distance is
evaluated as:

d (v,u) = |vx − ux | + |vy − uy |

The bandwidth of a vertex is evaluated analogously to the linear
variant of the problem:

B (v ) ← max
u ∈N (v )

d (v,u)

Finally, the 2DBMP consists of finding a labeling with the mini-
mum bandwidth value, as in the linear variant.

Figure 2(a) depicts the same example graph as the one presented
in Figure 1(a). Figures 2 (b) and (c) illustrates two possible solutions
for the 2DBMP, φ1 and φ2, respectively. The bandwidth for each
vertex is represented with a number close to it. For example, the
bandwidth for vertex A is B (A) = d (A,E) = |1 − 2| + |1 − 2|, since
φ1 (A) = (1, 1) and φ1 (E) = (2, 2). Then, the bandwidth of solution
φ1 is equal to 3 while the bandwidth of solution φ2 is equal to 2,
meaning that φ2 is a better solution, since the bandwidth is smaller.

This problem has been mainly ignored from a heuristic point of
view. Two different models for the problem are presented in [12],
while [14] studies the square-root rule for the 2DBMP in order to
improve the evaluation of the bandwidth in typical graphs. The
problem has several applications in Very Large Scale Integration
(VLSI) design [15] and there exist some bounds for specific types
of graphs [6].

The rest of the paper is structured as follows: Section 2 presents
the heuristic algorithms (constructive method and local search)
proposed for obtaining high quality solutions in the 2DBMP; Sec-
tion 3 describes the Greedy Randomized Adaptive Search Procedure
developed in order to improve the heuristic algorithms; and finally
Section 5 gathers the conclusions derived from the research and
suggests some future lines of work for this problem.

2 HEURISTICS FOR THE 2DBMP
Heuristic procedures are designed for solving problems throughout
an intuitivemethod inwhich the problem structure can be leveraged
and exploited in order to obtain solutions of a reasonable quality,
usually requiring small computing times [16]. This Section presents
two heuristic methods for the 2DBMP: a constructive method and
a local search.

2.1 Constructive method (C1)
Constructive methods are designed for generating a feasible solu-
tion for a given problem. The method proposed in this work starts
from an empty solution where no vertex has a position assigned
and iteratively assigns an available position to each vertex.

Algorithm 1 Constructive(G )

1: φ = ∅
2: CL← V
3: v ← SelectRandom(CL)
4: φ ← φ ∪ {v}
5: CL← CL \ {v}
6: while CL , ∅ do
7: u ← argminu ∈CL д(u,φ)
8: φ ← φ ∪ {u}
9: CL← CL \ {u}
10: end while
11: return φ

Algorithm 1 presents the pseudocode of the proposed greedy
constructive method. The method starts by constructing an empty
solution φ (step 1). Then, the list of candidate vertices CL is created
containing all the vertices of the graph (step 2). The first vertex is
selected at random among all candidates (step 3), adding it to the
solution and removing it from CL (steps 4-5). It is worth mentioning
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Figure 2: (a) Example graph with 6 vertices and 9 edges and (b)(c) two possible grid layouts with the bandwidth of each vertex
depicted close to it.

that adding a vertex to a solution means that this vertex receives the
first available location in the grid, following a left to right and top-
down approach, i.e., the first one receives label (1,1), the second one
label (1,2), and so on. Then, the method iterates until all vertices
has been assigned to a position in the grid (steps 6-10). In each
iteration, the constructive procedure selects the best candidate to
be assigned following a greedy function value (step 7). The greedy
function selected as the evaluation of the objective function if the
vertex is added to the solution. More formally,

д(v,φ) ← B (φ ∪ {v})

Then, the vertex with the smallest greedy function value (i.e.,
the one that produces the best solution) is added to the solution and
removed from the candidate list (steps 8-9). The method ends when
the candidate list becomes empty, returning a feasible solution for
the 2DBMP (step 11).

2.2 Local search
The main aim of a local search procedure is to find a local optimum
with respect to a given feasible solution that has been generated
using a constructive method. The local optimum is usually found
by performing basic movements over the initial solution that leads
to improved solutions. In this paper, we propose two local search
methods that differ in the type of movement performed over the
incumbent solution.

The first one, named LS1, is based on insertion moves. The move
insert (φ,vi , j ) consists of removing vertex vi from its current posi-
tion in solution φ and inserting it at position j. More formally, if
the initial solution is represented as:

φ = {v1,v2, ...,vi−1,vi ,vi+1, ...,vj−1,vj ,vj+1vn }

the move insert (φ,vi , j ) will result in the following solution φins :

φins = {v1,v2, ...,vi−1,vi+1, ...,vj−1,vi ,vj ,vj+1vn }

The second local search procedure focuses on interchange moves.
The move interchange(φ,vi ,vj ) consists of moving the vertex vi
to the position of vertex vj and vice versa. Specifically, starting
from the same initial solution φ, the solution φint resulting from
performing the move interchange(φ,vi ,vj ) is represented as:

φ = {v1,v2, ...,vi−1,vj ,vi+1, ...,vj−1,vi ,vj+1vn }

Additionally, we can define the neighborhood of a given solu-
tion for each move aforementioned. Specifically, neighborhoods
Nins (φ) and Nint (φ) contains all the solutions that can be reached
by insertion and interchange moves, respectively. More formally,

Nins (φ) = {φ ′ ← insert (φ,vi , j ) ∀vi ∈ V , 1 ≤ j ≤ n}
Nint (φ) = {φ ′ ← interchange(φ,vi ,vj ) ∀vi ,vj ∈ V }

Both neighborhoods are explored following a first improvement
approach. In particular, the search starts exploring the correspond-
ing neighborhood randomly. The search only accepts improvement
moves, so every time a better solution is found in the neighbor-
hood, the movement is performed, restarting the search from the
improved solution. Both local search procedures stops when no
improvement move is found in the complete neighborhood.

3 GREEDY RANDOMIZED ADAPTIVE
SEARCH PROCEDURE

Heuristic methods easily get stuck in local optima, becoming a
difficult task to escape from them, since they are oriented to per-
form moves that lead only to better solutions. Metaheuristics are
high-level methodologies with the ability to lead and modify other
heuristics in order to explore a larger portion of the search space
[9].
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Greedy Randomized Adaptive Search Procedure (GRASP) is a
population-based metaheuristic that was firstly introduced by Feo
and Resende [7] and formally defined in Feo et al. [8]. GRASP has
been successfully applied in several hard optimization problems in
recent years [2, 5]

GRASP is a multi-start metaheuristic with two well-differenced
stages: solution construction and local search. The former consist
of a greedy, randomized, and adaptive construction of a solution,
while the latter is based on locally improving the solution generated
in order to obtain a local optima. Both stages are repeated until
reaching a stopping criterion, which is usually a predefined number
of iterations, returning the best solution found during the search.

The constructive stage proposed in this work is a modification
of the constructive procedure proposed in Section 2.1, while the
local search stage is the one previously presented in Section 2.2.

In order to escape from local optima, GRASP introduces some
randomness in the constructive method. Specifically, instead of
selecting the best vertex to be added to the solution (step 7 of
Algorithm 1), the method selects one vertex at random among the
most promising ones available. Specifically, the procedure evaluates
the vertices with the minimum (дmin) and maximum (дmax ) value
of the greedy function as follows:

дmin ←minv ∈V д(v,φ)

дmax ←maxv ∈V д(v,φ)

Then, a threshold th is evaluated to limit which vertices are the
most promising ones as follows:

th← дmin + α × (дmax − дmin)

where α is a parameter of the algorithm that controls its greediness
/ randomness, which is in the range 0 ≤ α ≤ 1. On the one hand,
if α = 0, the method is completely greedy (as in Section 2.1) since
only the most promising vertex can be selected. On the other hand,
if α = 1, then the method is totally random since any vertex can be
selected.

The method then constructs a Restricted Candidate List (RCL)
with the most promising nodes of the CL. The RCL contains all
the vertices in CL that presents a greedy function value smaller or
equal than the previously evaluated threshold. More formally,

RCL← {v ∈ CL : д(v ) < th}
Finally, the next vertex to be added to the solution is randomly

selected from the RCL.
The GRASP algorithm proposed in this work performs a prede-

fined number of iterations, which is a parameter of the algorithm.
In each iteration, the algorithm construct a new solution using
the aforementioned constructive method. Then, the solution is im-
proved with the local search method in order to obtain a local
optima. Finally, the algorithm returns the best solution explored
among all the constructions and improvements.

4 RESULTS
As far as we know, there is no previous heuristic approaches for
the 2DBMP. Therefore, in order to test the quality of the proposal,
we have considered a set of instances for which the optimal value

is known by construction. In particular, we have considered bidi-
mensional grids, whose optimal objective function value is always
equal to one, as stated in [12]. The benchmark instances consists
of several grids whose size ranges from 3x3 from 20x20. All the
algorithm have been implemented in Java 8, and the experiments
have been conducted in a 3.20 GHz Intel i5-3470 CPU with 8 GB
1600 MHz DDR3 RAM.

The experiment is intended to analyze the performance of the
constructive procedure coupled with each local search method pro-
posed. Furthermore, the constructive procedure requires from an α
parameter that controls the greediness / randomness of the method,
sowe have considered the following values forα = {0.25, 0.50, 0.75}.
Notice that the randomness of the method increases with the value
of α parameter, being α = 1 totally random and α = 0 completely
greedy. Table 1 summarizes the results obtained in the experiment
regarding to the average objective function value of the solutions
discovered, OF; the execution time measured in seconds, Time (s);
the average deviation with respect to the best solution found in the
experiment, Dev(%); and, finally, the number of times that a method
reaches the best solution of the experiment.

The obtained results provide clear evidence about how the ran-
domness affect directly the quality of the solutions obtained. Both
local search techniques have reached worst results in the exper-
iments when we established the α level to 0.25 that restrict the
algorithm’s behavior. On the contrary, higher values that provide
more randomness have collected better results reducing the exe-
cution time and delivering better results. This is mainly because
increasing the randomness of the search allows the algorithm to
explore further regions of the search space, where the local search
is able to find better solutions.

5 CONCLUSIONS AND FUTUREWORK
This paper tackles the two-dimensional bandwidth minimization
problem by means of two heuristic procedures and a metaheuristic
algorithm that helps them to escape from local optima. The algo-
rithm proposed is able to obtain high-quality solutions in short com-
puting times, which makes it suitable for the considered problem.
The randomization of the constructive method inside the GRASP
framework is able to outperform the results obtained by the purely
greedy constructive procedure, showing the relevance of the meta-
heuristic.

Future lines of research are focused on evaluating the algorithm
in instances in which the optimal value is known by construction
in order to test the quality of the proposal. Furthermore, it would
be interesting to evaluate different kind of metaheuristics (trajecto-
rial, bioinspired, etc.) to check which one is better adapted to the
problem.
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