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The evolution of digital communications has resulted in new services that require from secure and
robust connections. Nowadays, a signal must be transmitted to distant nodes, and the quality of
the signal deteriorates as the distance between the endpoints increases. Regenerators are special
components that are able to restore the signal, in order to increase the distance that the signal can
travel without losing quality. These special components are very expensive to deploy and maintain
and, for this reason, it is desirable to deploy the minimum number of regenerators in a network. We
propose a metaheuristic algorithm based on the Iterated Greedy methodology to tackle the Regenerator
Location Problem, whose objective is to minimize the number of regenerators required in a network.
The extensive computational experiments show the performance of the proposed method compared
with the best previous algorithm found in the state of the art.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Digital communications are without a doubt an ever increasing
spect of our day to day lives. Due to their fundamental place,
e must strive to improve their reliability, which can prove
hallenging specially if we take into account that the commu-
ication channel must be able to transmit signals through long
istances. Since the signal quality degrades as the distance be-
ween the communicating devices increases, a possible solution
o this problem is given by the use of regeneration technology.

The regeneration of an optical signal is performed by using
special component, called regenerator, which is able to re-

tore the signal to its initial quality [1,2]. The main drawback
f these components is their price, as they are quite expensive.
he Regenerator Location Problem (RLP) [3] addressed in this
ork is intended to minimize the number of regenerators needed
o maintain the quality of the signal transmission in a network
etween each pair of nodes.
A signal in a network can be transmitted between two nodes

ithout quality loss if and only if the length of the shortest
ath between them does not exceed a maximum distance dmax.

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
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Otherwise, it is necessary to add one or more regenerators in
the path to guarantee signal transmission. Therefore, the shortest
path between two nodes is said to be feasible if it does not contain
any subsequence of edges with length larger than dmax without
nternal regenerators. The RLP then consists in determining the
inimum number of regenerators that must be deployed in the
etwork such that every pair of nodes is connected through a
easible path.

Fig. 1 presents an example of a network with six nodes and
ight links, where the number over each link represents the
istance between its endpoints. Considering dmax = 200 in this
xample, it is easy to see a signal can be transmitted from A to C

(through B), since the distance is equal to 150, which is smaller
than dmax. However, it is not possible to transmit a signal from C
to E or F, since the length of the shortest path is 225 in both cases.
n the last example path of Fig. 1, the shortest path from B to E is
B-D-E, with a length of 125, smaller than dmax. Feasible paths are
represented with a (✓) while those whose length exceeds dmax
are represented with a (✗). It is worth mentioning that in this
example we only represent 4 shortest paths, while in a network
with 6 nodes we can find up to 15 shortest paths to connect each
pair of nodes.

In the network depicted in Fig. 1, there are only two pairs
of nodes that are not able to communicate without exceeding
dmax. Specifically, the shortest distance between C and E is 225,
resulting from edges C-B (100), B-D (50), and D-E (75). On the
other hand, the distance between C and F is also 225, derived
from the edges C-B (100) and B-F (125). In order to transmit a
signal without losing quality between these nodes it is necessary

to insert one or more regenerators in the corresponding path.
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Fig. 1. Example of a network where dmax = 200. Some example paths are depicted on the right, with a (✓) if it is feasible or (✗) otherwise.
Fig. 2. Example of the optimal solution for network depicted in Fig. 1 that contains a single regenerator in node B (highlighted in black).
Fig. 2 shows the optimal solution for this network, which
onsists in deploying a regenerator in B. The paths depicted in
he right part of the figure are those which were not feasible in
he original graph, since they exceeded the maximum allowed
istance of 200. However, the deployment of a regenerator in B
estores the signal at that node, allowing it to travel a distance of
00 units starting from B. Considering the path that connects C
nd F, with the regenerator deployed at B, the maximum distance
hat a signal must travel without reaching a regenerator is 125,
esulting from the edges B-D and D-E. This distance is lower than
max, becoming C-B-D-E a feasible path. The same evaluation can
e performed for the path that connects nodes C and F.
In this paper, we propose an Iterated Greedy metaheuristic

lgorithm [4] for solving the RLP. The initial solution is gener-
ted following a Greedy Randomized Adaptive Search Procedure
GRASP) [5]. Then, the solution is partially destructed and later
econstructed, combining diversification in the destruction phase
ith intensification in the reconstruction stage. The reconstructed
olution is then post-processed with a method responsible for
emoving the redundant regenerators. Since the generation of the
nitial solution is randomized, the process generates several initial
olutions, resulting in a multi-start procedure [6], reporting the
est solution found during the search.
The remaining of this paper is structured as follows: Section 2

erforms a complete review of the RLP literature, Section 3 for-
ally defines the considered problem, Section 4 thoroughly de-
cribes the algorithmic approach for the RLP, Section 5 shows the
omputational experiments performed to analyze the proposed
lgorithms and compare them with the best previous methods in
he state of the art. Finally, Section 6 provides some conclusions
erived from the research and presents some ideas for future
ork on the RLP.
2

2. Literature review

The RLP arises for the first time in the context of traffic
engineering with restoration [1]. In the same year, a multipro-
tocol label switching over wave division multiplexing problem
was proposed, with a constraint that forbids paths between two
components larger than a pre-established threshold [2]. The op-
timization problem was formally defined in [3,7], where authors
showed the similarities with the Steiner Arborescence Problem
with a unit degree constraint on the root node, proposing a
branch-and-cut procedure and several heuristics. The RLP has
also equivalences with two other related problems: the Maxi-
mum Leaf Spanning Tree Problem (MLSTP) [8] and the Minimum
Connected Dominating Set Problem (MCDSP) [9]. The first op-
timization problem consists in finding the spanning tree of an
undirected graph with the maximum number of leaves. Specif-
ically, Chen et al. [7] demonstrated that a solution of the RLP
is equivalent to finding a spanning tree in the communication
graph (see Section 3 for further details). Therefore, there is an
isomorphism between minimizing the number of regenerators in
a network and maximizing the number of leafs of a spanning tree
of the communication graph. The MLSTP has been tackled from
a heuristic perspective by considering a parallel variant of the
Variable Neighborhood Search metaheuristic [10].

Similarly, the equivalence between RLP and MCDSP is de-
scribed in [11]. This optimization problem consists in finding the
connected dominating set of minimum cardinality (a subset of
vertices of a graph is a dominating set if each edge of the graph
has, at least, one endpoint in it). Notice that given an optimal
connected dominating set for the MCDSP, we can construct a
spanning tree over it resulting in an optimal solution for the
MLSTP and vice versa. The MCDSP was also proved to be NP-
hard in [12], and several approximation algorithms have been
proposed [9,13,14].

A generalized version of the RLP, called Generalized Regen-
erator Location Problem (GRLP) was recently proposed by Chen



J.D. Quintana, R. Martin-Santamaria, J. Sanchez-Oro et al. Applied Soft Computing 111 (2021) 107659

C
n
c
t
d
t
Q
s

a
F
f
a
h
t
t

w
b
w
b
c
a
w
r
e
I
t
T
s
b
s
p
(
n
a
o
D
M

i
p
l
I

3

(
e
t
t
a

d
g
m
b
c
e
h
p
p
c
t

t
c
s
o
a
t
i
o

d
p
e
(
o
A
b
f
i
(
(

R
t
e
l
s
n
f
t
h
b
n
t
f
c
i
i
f
a

t
t
m
a
c
i
c

R

w
c

c
c
h
t
t
a
n
s
n
i
s

et al. [15]. The GRLP has also been proven to be NP-hard by
hen et al. [7] and Flamini et al. [16]. In this problem, not all
odes can host a regenerator and, also, not all nodes must be
onnected. Specifically, the problem divides the set of nodes into
wo disjoint sets: one representing the candidate locations to
eploy a regenerator and another one representing the set of
erminal nodes that must be able to communicate to each other.
uintana et al. [17] recently proposed a heuristic procedure for
olving this problem, becoming the state of the art for the GRLP.
The RLP has been proven to be NP-hard [7,16]. It has been

pproached by considering both exact and heuristic procedures.
rom an exact perspective, the RLP is studied by considering
low-based compact formulations and cut formulations, which
re based on exploring the equivalence between the RLP and the
ub covering location problem with the ‘‘closeness’’ criterion in
he closure graph. See [18] for further details. We refer the reader
o [19] for an extensive survey of exact algorithms for RLP.

First elaborated heuristics (constructive procedures coupled
ith local search methods) were presented in [20], where a
enchmark of 320 instances of randomly generated networks
as also introduced. It is worth mentioning that this set has
ecome the standard testbed for comparing algorithms in the
ontext of RLP. These results were later improved in [21], where
Greedy Randomized Adaptive Search Procedure (GRASP) [5]
as proposed, as well as a Biased Random-Key Genetic Algo-
ithm (BRKGA) [22]. In that paper the authors also reported an
rror in the description of the local search proposed in [20].
n [23] several constructive procedures were presented, where
he authors explored the equivalence of the RLP with the MLSTP.
hese results were further improved in [11], by proposing a tabu
earch algorithm [24]. This method is referred to as tabu search
ased iterated metaheuristic (TSIH) in [11]. Experimental results
howed that TSIH outperformed all state-of-the-art methods. In
articular, it was able to find optimal solutions in 368 instances
out of 480). The authors additionally introduce a set of 150
ew large and challenging instances. Considering the equivalence
mong RLP, MLSTP, and MCDSP, the TSIH method is also tested
ver 41 MLSTP and 220 MCDSP instances (particularized for 1-1-
SP) respectively, finding the optimal solutions in 37 (out of 41
LSTP instances) and 218 (out of 220 MCDSP instances).
Summarizing, TSIH emerges as the most competitive method

dentified in the related literature, obtaining better results than
revious approaches in less computing time. Therefore, we se-
ect this method to conduct the comparison with the proposed
terated Greedy procedure.

. Problem statement

A network is usually represented as an undirected graph G =
V , E), where V is the set of nodes and E is the set of edges. Each
dge (u, v) ∈ E has a weight duv ∈ R, with duv ≥ 0, representing
he distance between nodes u and v, with u, v ∈ V . Considering
he RLP, a signal can traverse a maximum distance of dmax without
ny quality impact, where dmax is a problem constraint.
Chen et al. [7] proposed a transformation of the original graph

erived from the network into the so-called communication
raph. Given the original weighted graph G = (V , E), the transfor-
ation starts by deleting all those edges whose weight (distance
etween its endpoints) is larger than dmax, since those edges
annot be used in none of the possible paths. After that, a new
dge is added between each pair of nodes whose shortest path
as a length smaller or equal than dmax (i.e., those that are feasible
aths), since the communication is allowed between them. At this
oint, the distance information of the edges is not relevant and
an be deleted, since there is an edge between each pair of nodes
hat can communicate without deteriorating the signal. Finally, if
3

he resulting graph, M = (V , E ′), is complete, then every node can
ommunicate with the remaining ones without deteriorating the
ignal, so regenerators are not needed in the network. Otherwise,
ne or more regenerators must be deployed in order to maintain
high quality connection between every pair of nodes. Notice

hat if the resulting graph M is not connected, then the problem
s not feasible, since it is impossible to connect two or more pair
f nodes.
Fig. 3 presents the construction of the communication graph

erived from the network depicted in Fig. 1. Specifically, Fig. 3.a
resents the original weighted network. Then, in Fig. 3.b all
dges with distance larger than dmax = 200 have been removed
i.e., edge A-C). In Fig. 3.c a new edge is added between each pair
f nodes whose shortest path is lower than dmax (i.e., edges A-C,
-D, B-E, C-D, and D-F). At this point, the distance information
ecomes irrelevant and, as a result, it has been removed in the
inal communication graph, depicted in Fig. 3.d. Notice that it
s necessary to add one or more regenerators since pairs (A,F),
C,E), and (C,F) are still unable to communicate between them
i.e., there is no direct link in the communication graph).

Chen et al. [7] described several interesting properties of the
LP. We will now focus on Lemma 2: Any minimal solution for
he RLP on M can be represented as a spanning tree with regen-
rators at all internal nodes of the tree. As an implication of this
emma, they pointed out that the RLP can be solved by finding a
panning tree over the communication graph with the smallest
umber of internal nodes. As both problems are equivalent, a
easible solution for the RLP can be represented as a spanning
ree over the communication graph where all the internal nodes
ost a regenerator. Furthermore, the solution representation can
e simplified since the evaluation of the objective function does
ot depend on the structure of the resulting tree, but in counting
he internal nodes. Therefore, a solution for the RLP consists in
inding the minimum connected set of nodes that covers the
ommunication graph M [25]. A set of nodes is a covering for M
f and only if each node in M either belongs to the covering or it
s adjacent to a node in the covering. We refer the reader to [26]
or a detailed description of the equivalence of solving the MLSTP
nd the Minimum Connected Dominating Set Problem.
It is worth mentioning that all the algorithms presented in

his paper represent the solution as a set of nodes that covers
he communication graph. In this representation, a regenerator
ust be deployed in every node belonging to the covering C
nd, therefore, the objective function value is evaluated as the
ardinality of the covering, |C |. Finally, the objective of the RLP
s to find the smallest cardinality covering among all possible
overings for a given communication graph:

LP(M) = argmin
C∈CM

|C | (1)

here CM is the set of all possible coverings over the communi-
ation graph M .
Fig. 4 shows two possible connected sets for the communi-

ation graph constructed in Fig. 3.d. The nodes belonging to the
onnected set are highlighted in black, while the ones covered are
ighlighted in light gray. White nodes are those not covered by
he selected connected set of nodes. Fig. 4.a shows a feasible solu-
ion, since all nodes are either in the connected set, or adjacent to
node in it. However, the connected set of Fig. 4.b, conformed by
ode A, is not a covering and, therefore, not a feasible solution,
ince node F is not covered (i.e., it neither belongs to the con-
ected set nor is adjacent to a node in the covering). In this case
t would be necessary to add a new regenerator to the connected
et in order to make the solution feasible.
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Fig. 3. Construction of the communication graph of the network presented in Fig. 1.
Fig. 4. Example of a connected set that covers the complete graph (a) and another set that does not cover the graph (b).
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. Algorithmic approach

This work tackles the RLP from a metaheuristic point of view.
pecifically, we follow the Iterated Greedy (IG) methodology [4,
7]. This metaheuristic framework was originally proposed by
uiz and Stützle in 2007 for solving a scheduling problem, but
t has been successfully applied to different optimization prob-
ems in the last years [28,29]. However, the success of IG in the
iterature is not limited to scheduling problems. Recently, an IG
ith a Variable Neighborhood Search post-processing for solving
multi-objective waste collection problem with a real application
n the city of Málaga (Spain) was proposed [30]. Even in a rather
ifferent field such as sentiment classification and analysis IG has
roven its validity, providing a feature selection algorithm based
n IG for this task [31]. Finally, IG has been also be applied in
he context of facility location problem, specifically for locating
bnoxious facilities solving the p-median problem for this kind
f special facilities [32].
The main idea behind IG metaheuristic is exploring the search

pace by iteratively applying two main phases: destruction and
econstruction. Algorithm 1 presents the pseudocode of Iterated

reedy.

4

Algorithm 1 IteratedGreedy(S, β)

1: while not StoppingCriterion do
2: S ′ ← Destruct(S, β)
3: S ′′ ← Reconstruct(S ′)
4: if f (S) < f (S ′′) then
5: S ← S ′′
6: end if
7: end while

The initial solution S is obtained by a constructive procedure,
hich is described in detail in Section 4.1. Then, IG enters in the
estruction phase (step 2), which basically consists of remov-
ng some of the solution components present in S. The number
f removed solution components is controlled by parameter β ,
hose effect in the algorithm results is studied in Section 5. The
olution resulting from the destruction phase is usually infeasible,
ince the destruction phase does not control feasibility during the
emoval of solution components. Therefore, the reconstruction
hase (step 3) is responsible for adding new components to the
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solution until it becomes feasible again. Finally, the best solution
found during the search is updated if a better solution has been
found (steps 4–6). The IG algorithm iterates until a stopping
criterion is met (steps 1–7), returning the best solution found
during the search.

In this work we propose a Multi-Start Iterated Greedy (MSIG)
lgorithm. MSIG performs several iterations of the previously
escribed Iterated Greedy algorithm, starting from a different so-
ution in each iteration. The initial solution is generated using the
onstructive procedure described in Section 4.1. Then, we apply
he complete IG algorithm described above, whose destruction
nd reconstruction phases are described in detail in Sections 4.2
nd 4.3, respectively. Each independent IG execution is performed
maximum number of iterations, which is used as a stopping
riterion. Then, the procedure starts again from a new initial so-
ution and applies again the destruction and construction phases
onsecutively. The method stops when a predefined number of
nitial solutions have been generated, returning the best solution
ound during the search.

.1. Constructive procedure

The constructive procedure proposed for the RLP follows a
lassical Greedy Randomized Adaptive Search Procedure (GRASP)
pproach [5]. This methodology has led to several successful
esearch, either using it isolated or hybridized with other meta-
euristic algorithms, usually with combination methods like Path
elinking [33,34].
The method starts by selecting at random the first node to host

regenerator. Then, it creates a candidate list (CL) with all the
odes adjacent to the first node selected. The rationale behind
reating the CL with the adjacent nodes instead of using all pos-
ible nodes is to maintain the connectivity in the solution under
onstruction. This idea allows us to save the computing effort
f checking, in every step, that the solution is still connected,
voiding the generation of infeasible solutions.
Nodes in the CL are ordered by a greedy function that es-

imates the effect (in terms of number of nodes covered) of
eploying a regenerator in each one of them. Specifically, the
reedy function used in this work is defined as the number of
odes that will be covered if a regenerator is deployed in a given
ode. A node is considered covered if it is either a regenerator
r it is directly connected to a regenerator. Given the communi-
ation graph M and the solution under evaluation S, the greedy
unction for a given node v is then defined as:

g(v, S,M) = |{u ∈ NM (v) : ({u} ∪ NM (u)) ∩ S = ∅}| (2)

where NM (v), and symmetrically NM (u), represent the adjacent
odes to v and u, respectively, in the communication graph M .
The function g(v, S,M) calculates how many new nodes we

re covering by selecting node v as a regenerator. Let us illustrate
ow the greedy function works by considering the communica-
ion graph M depicted in Fig. 4. If we consider the vertex A, and
an empty initial solution S = {}, the greedy function g(A, {},M) is
equal to 5. Similarly, g(F , {A},M) would be 1, as the other nodes
would already be covered.

The Restricted Candidate List (RCL) is created with the most
promising candidates to host a regenerator. In particular, given
the CL sorted in descending order with respect to the greedy
function, the RCL is conformed by those candidate nodes whose
greedy function value is larger than or equal to a threshold µ,
which is evaluated as:

µ = gmax − α · (gmax − gmin) (3)

The value of parameter α in the constructive procedure is
in the range [0, 1]. Notice that when α receives the value 0,
5

the constructive procedure becomes purely greedy, and only the
nodes with the highest greedy function value can be selected.
On the other hand, when α = 1, the constructive procedure is
entirely random, and any node in the CL can be selected (i.e., RCL
= CL). Section 5 performs a deeper analysis on the best value for
this parameter.

Once the RCL has been constructed with the most promising
nodes, the next node to host a regenerator is selected at random
from it. This random selection is performed in order to generate
different and diverse solutions in each construction, due to the
multi-start nature of our IG algorithm. Having selected the next
node, it is added to the solution as a regenerator, and the CL is up-
dated. This update is performed by inserting in the CL those nodes
that are adjacent to the selected one that neither have been added
to the solution nor belong to the CL yet. The procedure continues
adding nodes to the solution until the set of connected nodes in
it becomes a covering (i.e., a feasible solution is obtained).

It is worth mentioning that it is not necessary to check the
connectivity constraint at every step, since the candidate list
is always updated with nodes adjacent to at least one node
in the solution, which reduces the computational effort of the
constructive procedure.

4.2. Destruction phase

The destruction phase proposed for the Iterated Greedy algo-
rithm is intended to diversify the search by randomly removing
some regenerators deployed in a feasible solution. Considering
that the covering in a feasible solution is always minimum, the
removal of some node of a given solution will eventually lead to
infeasible solutions. The infeasibility of a solution after perform-
ing the destruction phase can be due to two different reasons: the
solution is not a covering any more, or the nodes in the solution
are not connected.

With the aim of reducing the computing time required by the
algorithm, we only allow the destruction phase to remove those
nodes that may produce a solution that is not a covering but it
is always a connected set of nodes. Therefore, it is not necessary
to execute a connectivity detection algorithm in every step of the
search.

The nodes whose removal breaks the connected set into two
or more connected components are called articulation points [35].
The most efficient algorithm to detect articulation points in a
graph has O(|V | + |E|) complexity. It was originally proposed by
Tarjan for finding biconnected components in undirected graphs,
and strongly connected components in directed graphs [36]. We
use this algorithm, based on performing a depth first search over
the graph, in order to identify which are the articulation points
of a given connected set of nodes.

As it was aforementioned, the magnitude of the destruction
phase is determined by the parameter β . Specifically, this method
consists of randomly removing β · |S| regenerators. Notice that
only those regenerators that are not articulation points are con-
sidered for its removal from the solution to maintain it connected.
Therefore, if the number of articulation points in the solution
under destruction is larger than (1−β) · |S|, it will not be possible
to remove β · |S| nodes, resulting in the removal of a smaller
number of nodes.

Fig. 5.a illustrates a feasible solution with regenerators at
nodes B, D, and E. Additionally, Figs. 5.b and 5.c show the solution
resulting from the removal of regenerators in nodes D and E,
respectively.

As it was aforementioned, the destruction phase does not
allow to remove a node that produces a disconnected set in the
solution. Therefore, the removal of the regenerator in node D
(Fig. 5.b) would not be considered in the procedure, because it is
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Fig. 5. (a) Example solution before the destruction phase and solutions resulting from the removal of regenerators (b) D and (c) E. Notice that solution in (b) does
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n articulation point that splits the solution into two connected
ets: {B} and {E}. On the other hand, the removal of node E
roduces a solution which maintains the connectivity, so it can
e considered in the destruction phase of solution depicted in
ig. 5.a.
Notice that, although the method only allows the removal

f those nodes that result in connected solutions, this phase
an produce solutions that are not feasible, since the remaining
egenerators may not form a covering over the communication
raph. In this case, the reconstruction phase is responsible for
ompleting the covering and generating a feasible solution.

.3. Reconstruction phase

The reconstruction phase is devoted to intensifying the search,
ecovering the feasibility of the solution derived from the destruc-
ion phase. Specifically, this phase iteratively adds new regen-
rators to the solution, stopping when the incumbent solution
ecomes a covering for the communication graph, making it
easible.

The reconstruction phase follows a greedy criterion in order to
inimize the number of regenerators needed to form a feasible
olution, in contrast to the destruction phase, where the regener-
tors were selected at random. The selected greedy criterion for
dding new regenerators is the one presented in the constructive
rocedure (see Section 4.1). The rationale behind using the same
reedy criterion is due to the fact that trying to maximize the
umber of nodes covered in each iteration will minimize the
umber of regenerators needed, which will eventually lead to
etter solutions.
Using the same greedy criterion would easily result in the

olution used as an input in the destruction phase. In order to
void this behavior and increase the portion of the solution space
xplored, the regenerators removed at the destruction phase are
ot considered in the first step. Instead, the method firstly consid-
rs adding as a regenerator those nodes that do not belong to the
riginal solution. Finally, if it is not possible to reconstruct a feasi-
le solution without using the nodes removed in the destruction
hase, they are considered as regenerators.
 n

6

Notice that, in order to maintain the connectivity of the cov-
ering and thus reduce the computational effort of the phase, the
candidate nodes to host a regenerator are initially those which are
adjacent to the ones already in the solution. In each step, nodes
adjacent to the selected one are included in the candidate list
to be considered in further iterations. This criterion ensures that
the inclusion of any node of the candidate list as a regenerator
in the solution maintains it as a connected set of nodes. The
method stops once the solution conforms a covering, since any
additional regenerator would only deteriorate the quality of the
solution, increasing the cardinality of the connected dominating
set unnecessarily.

Fig. 6 shows a possible reconstruction from an initial solution
with a single regenerator located in F (Fig. 6.a). Notice that the
et of nodes covered by this solution is {B, D, E, F}, since those
odes are the ones either belonging to the solution (i.e., node
) or adjacent to a node in the solution (i.e., nodes B, D, and E).
herefore, it does not conform a feasible solution, since nodes A
nd C are not covered yet.
Then, the list of candidate nodes to be added to the solution

n the next reconstruction step consists of those nodes that are
djacent to node F, which is the one already in the solution
i.e., nodes B, D, and E). Analyzing the nodes covered by each
andidate, we can see that both nodes B and E would cover nodes
and C if they hosted a regenerator, while node E would only

over node A. Therefore, it is interesting to select one node among
hose with the largest number of nodes covered (i.e., nodes B or
), since they would allow us to find a feasible solution with less
odes in the covering. Ties are broken at random, so in this case
ode D is selected to generate the solution depicted in Fig. 6.b,
btaining a feasible solution.

.4. Post-processing

The reconstruction phase described in Section 4.3 can even-
ually lead to solutions with more regenerators than necessary,
s can be seen in Fig. 6.b. Specifically, regenerator deployed in

ode F is not necessary, since all its adjacent nodes are already
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Fig. 6. Reconstruction of solution S = {F} by adding a single regenerator in node D.
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overed by node D. This result is mainly due to the insertion order
f regenerators in the solution, since a regenerator in F is only
eeded if there is no previous regenerator in D.
We then propose a post-processing phase in order to remove

ll those redundant regenerators, thus improving the quality of
he solutions. The post-processing method is based on verifying,
or each regenerator r, that both r and its adjacent nodes are
overed only by r itself. If so, the regenerator in r is strictly
ecessary. Otherwise, all nodes covered by r are also covered by
ther regenerators, so r is a candidate to be removed.
Finally, a candidate can be effectively removed if and only if

ts removal maintains the connectivity of the set of regenerators.
n particular, a regenerator can only be removed if it is not an
rticulation point of the regenerators set. This method is executed
fter the reconstruction of a solution in each step of the Iterated
reedy algorithm.
The complexity of verifying the covering of each node in a

iven solution is O(|V | · |E|) since, for each node, it is necessary to
heck all its adjacent nodes. In order to reduce this complexity,
e propose a map-based data structure which keeps information
bout the covering of each node. Specifically, the map stores, for
ach node of the communication graph, a key–value pair, where
he key is a node and the value is a set with all the nodes covering
t. Notice that using a set allows us to have constant complexity
hen checking if a node is covered by a particular regenerator.

. Computational experiments

This Section reports and analyzes the computational experi-
ents performed for validating the effectiveness and efficiency
f the Iterated Greedy algorithm proposed in this work. All the
lgorithms proposed in this work have been implemented in
ava SE 11 and all the experiments have been conducted on a
orkstation with 16 vCPUs (2.7 GHz) and 8 GB RAM.
In this paper, we consider several benchmark instances pre-

iously used in the related literature. In order to facilitate future
omparisons, all of them are publicly available at https://grafo.
tsii.urjc.es/rlp/. Additionally, we also report individual results
er instances and the corresponding CPU time.
Set1: This set contains 41 instances introduced in [37]. These

nstances were generated as follows. First, a Hamiltonian path
s constructed by determining a random permutation for n ver-
ices and linking them using n − 1 edges, which ensures its
onnectivity. Then, edges are randomly introduced in the graph
by considering a uniform distribution) until reaching a defined
ensity (denoted with ρ).
Set2: This set is introduced in [11] and contains 200 instances

evised for the 1-1-DSP problem. Each instance is constructed
s indicated in [38]. Specifically, nodes are randomly located on
7

1000 × 1000 square area and the transmission range of all
sensors is equal to 350. For each network size, 10 instances were
generated.

Set3: This set, originally introduced in [7], contains 200 in-
stances. Each one is parametrized by: n, the number of nodes
(from 40 to 100); and p, the percentage of non-connected nodes
(from 10% to 90%). For each pair n and p, 10 randomly generated
networks and constructed.

Set4: This set was also introduced in [7] and contains 200
nstances constructed with the same generator. The number of
odes (n) and the percentage of non-connected nodes (p) ranges
rom 200 to 500 and from 10% to 90%, respectively. As in Set1,
here are 10 instances for each pair n and p.

Set5: This set was introduced in [11] and contains 150 in-
tances constructed with the same generator than Set3 and Set4.
n this benchmark, the number of nodes (n) and the percentage of
on-connected nodes (p) ranges from 600 to 1000 and from 10%
o 90%, respectively. As in Set3 and Set4, there are 10 instances
or each pair n and p.

Set6: This set is introduced in this work to provide a new
hallenging benchmark for future comparisons. It contains 250
nstances constructed with the NetworkX library [39], using the
ast GNP Random Graph generator. In this benchmark, the num-
er of nodes (n) and the percentage of non-connected nodes (p)
anges from 1200 to 2000 and from 75% to 95%, respectively.
pecifically, as in Set3, Set4 and Set5, there are 10 instances for
ach pair (n, p) with n ∈ {1200, 1400, 1600, 1800, 2000} and
∈ {75%, 80%, 85%, 90%, 95%}.
The experiments performed are divided into a preliminary

xperimentation and the final one. The preliminary experimen-
ation is intended to select the best parameters for both the
onstructive procedure and the Iterated Greedy algorithm. In
hese experiments, we consider a set of 41 representative in-
tances (approximately 8% of the full set of instances) extracted
rom Set3 and Set4, in order to avoid overtraining. On the other
and, the final experimentation is devoted to comparing the
esults obtained by the best configuration with the best previous
ethod found in the state of the art for the RLP [11]. This method

s referred to as tabu search based iterated metaheuristic (TSIH).

.1. Preliminary experimentation

We report the same metrics for all the preliminary experi-
ents. Specifically, the average number of regenerators needed,
R; the average computing time in seconds, Time (s); the average
ercentage deviation with respect to the best solution found in
he experiment, Dev(%); and the number of times that a method
atches the best solution found in the experiment, #Best.
The first experiment is devoted to choosing the best value for

arameter α of the constructive method. It controls the balance

https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
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Table 1
Comparison of effect of parameter α in the constructive method proposed. Best
values are highlighted with bold fonts.
α NR Time (s) Dev(%) #Best

RND 5.02 0.92 2.43 33
0.25 6.34 1.43 20.68 19
0.50 5.68 1.21 14.14 21
0.75 4.83 0.78 1.42 39

Table 2
Comparison of the effect of parameters %d and IGit in the Iterated Greedy
lgorithm. Best values are highlighted with bold fonts.
β it NR Time (s) Dev (%) #Best

0.1
10 4.73 4.88 4.54 32
25 4.68 4.68 3.79 34
50 4.54 5.59 0.22 40

10 4.66 10.48 2.20 35
25 4.63 10.33 1.76 360.25
50 4.54 13.01 0.16 40

0.50
10 4.61 20.10 1.67 37
25 4.61 20.98 1.45 37
50 4.54 24.52 0.16 40

of the greediness/randomness of the corresponding construc-
tion, in such a way that the value of 0 corresponds to a totally
greedy algorithm while the value of 1 corresponds to a com-
pletely random method. In this experiment, we consider values
α = {0.25, 0.50, 0.75} and, additionally, we test a variant (RND)
in which the value of α is selected at random for each iteration,
i.e., a different value of α is obtained at random from a uniform
distribution in range [0,1] for each construction. As it is customary
in GRASP methodology, the constructed procedure is executed
for 100 independent iterations for each instance, returning the
best solution found. Table 1 shows the results of this experiment,
averaging them over the subset of 41 instances.

We can clearly see that all of them present similar values of
computing time. However, if we analyze the average deviation
and the number of best solutions found, α = 0.75 emerges as the
best value (highlighted with bold font in Table 1). Furthermore,
the average number of regenerators needed is smaller when
compared with the others. Therefore, we use α = 0.75 for the
remaining experimentation.

The next experiment is intended to obtain the best combi-
nation of the Iterated Greedy algorithm parameters: the per-
centage of destruction and the number of iterations. Specifically,
for the percentage of destruction, β , we consider the following
values: β = {10%, 25%, 50%}, while the number of iterations,
it, is selected among it = {10, 25, 50}. Table 2 presents the
omparison among different values for β and it parameters. It is
orth mentioning that the results are obtained when executing
he algorithm for 100 different solutions generated with the con-
tructive method previously described, following the multi-start
pproach described in Section 4.
The first conclusion that can be extracted from the results is

hat, as expected, the larger the value of it, the larger the com-
uting time. Analyzing the average deviation and number of best
olutions found, the best results are obtained when performing
0 destruction–reconstruction phases of the IG algorithm.
It is worth mentioning that an increment in the percentage

f solution destructed does not lead to better results, but to a
onsiderably larger computing time. Specifically, best results are
btained when considering a destruction of 25%, obtaining the
ame results than β = 50% but requiring half of the computing
ime. Therefore, we select it = 50 and β = 0.25 as the best
arameters for the Iterated Greedy algorithm (highlighted in bold
n Table 2).
8

5.2. Final comparison

The goal of the final experiment is to validate the results of
the proposed Multi-Start Iterated Greedy (MSIG) algorithm when
compared with the current state-of-the-art procedures in the
context of RLP. On the one hand, we consider the Integer Linear
Programming (ILP) model described in [40]. The model has been
implemented using the general-purpose solver Gurobi 9.1. We
have limited the execution time of ILP to 1800 s since heuristic
procedures are quite fast algorithms (i.e., the total execution time
is below a dozen of seconds). As a consequence, if the reported
time of ILP is shorter than the considered time horizon, Gurobi
guarantees the optimality of the solutions found. Symmetrically,
an execution time of 1800 s (marked with an asterisk) means that
Gurobi is not able to certify the optimality of the solution in that
time.

On the other hand, we include in the comparison the best pre-
vious heuristic identified in the related literature. This procedure
is referred to as TSIH [11]. It generates an initial solution using
a greedy constructive procedure which considers the degree of
the nodes to generate a solution based on a spanning-tree. After
that, a regenerator reduction method is applied which consists
in a local search that tries to replace every pair of regenerators
with a single one. Finally, the solution obtained is improved with
a tabu search metaheuristic.

It is worth mentioning that these experiments are conducted
over the whole set of instances. Specifically, we first consider Set1
and Set2 (see [11,37] for further details) originally designed for
MLSTP and 1-1-DSP, respectively. As was aforementioned, TSIH
finds the optima in almost all instances in very reduced com-
puting times. Similarly, our algorithm also reaches the optimal
solution in those instances. Therefore, for the sake of brevity,
we omit them. Indeed, we suggest to not include them in future
comparisons since they could be considered as ‘‘easy to solve’’.

Table 3 shows the performance of the three compared al-
gorithms over Set3 (small-size instances). Notice that, to ease
further comparisons, we report the same metrics than those used
in previous works. Specifically, we show for each method the
average number of regenerators, NR. Then, for the ILP (executed
in our own computer) we report the total CPU time, Time (s);
for the TSIH, we indicate the required computing time to reach
the best solution, TTB (s) (the authors do not report the total
computing time [11]); finally, for our method, we show both,
TTB(s) and Time (s). Notice that Gurubi uses the 16 CPU cores
available in our computer, while TSIH and MSIG are executed in
a single core.

As we can observe in this experiment, ILP is able to find the
optimal values in all instances in very reduced computing times.
Our method is able to find the optima in all subsets except in
those with p = 90. Notice that in these subsets, MSIG matches the
optima in 24 out of 40 instances (see detailed results in https://
grafo.etsii.urjc.es/rlp/). Therefore, in the whole Set3 we found 184
optima out of 200. Regarding the performance of TSIH, we can
conclude that this method does not obtain strictly better results
than MSIG in any of the instances included in Set3. In fact, MSIG
outperforms TSIH in four subsets of instances: (n = 60, p = 70),
(n = 80, p = 90), (n = 100, p = 70), and (n = 100, p = 90).

As can be derived from the table, this set can be also consid-
ered as ‘‘easy to solve’’ since both heuristic methods are able to
obtain the optima in almost all instances by spending negligible
CPU time.

We now present in Table 4 the comparison in the performance
of the three algorithms when considering Set4 (medium-size
instances). These instances are a real challenge for the exact algo-
rithm mainly due to their size and percentage of non-connected
nodes (sparsity). These results demonstrate that these instances

https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
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Table 3
Comparison among ILP, TSIH and MSIG for instance Set3. Best results are
highlighted with bold font.
n p ILP TSIH MSIG

NR Time (s) NR TTB (s) NR TTB (s) Time (s)

40

10 1.40 0.02 1.40 0.00 1.40 0.00 0.05
30 2.00 0.02 2.00 0.00 2.00 0.00 0.04
50 3.00 0.02 3.00 0.00 3.00 0.00 0.04
70 4.30 0.05 4.30 0.00 4.30 0.00 0.05
90 8.30 0.01 8.90 0.00 8.90 0.00 0.08

60

10 1.90 0.04 1.90 0.00 1.90 0.00 0.04
30 2.00 0.04 2.00 0.00 2.00 0.00 0.06
50 3.00 0.08 3.00 0.00 3.00 0.00 0.08
70 4.80 0.21 4.90 0.00 4.80 0.00 0.09
90 9.90 0.04 10.20 0.07 10.20 0.00 0.16

80

10 1.90 0.07 1.90 0.00 1.90 0.00 0.07
30 2.30 0.34 2.30 0.00 2.30 0.01 0.10
50 3.20 0.28 3.20 0.01 3.20 0.00 0.11
70 5.00 0.35 5.00 0.00 5.00 0.00 0.15
90 10.80 0.21 11.20 0.09 11.10 0.01 0.24

100

10 2.00 0.11 2.00 0.00 2.00 0.00 0.10
30 2.70 1.05 2.70 0.00 2.70 0.00 0.15
50 3.90 1.25 3.90 0.00 3.90 0.01 0.14
70 5.20 1.41 5.30 0.03 5.20 0.01 0.18
90 11.50 0.92 12.10 0.03 11.90 0.02 0.31

Table 4
Comparison among ILP, TSIH and MSIG for instance Set4. Best results are
highlighted with bold font. An asterisk indicates that the ILP solver has not
been able to certify the optimality in 1800 s.
n p ILP TSIH MSIG

NR Time (s) NR TTB (s) NR TTB (s) Time (s)

200

10 2.00 0.75 2.00 0.00 2.00 0.01 0.37
30 3.00 8.98 3.00 0.00 3.00 0.00 0.38
50 4.00 12.26 4.00 0.01 4.00 0.01 0.49
70 6.30 254.01 6.40 0.07 6.70 0.04 0.57
90 14.30 439.69 14.70 0.41 14.90 0.03 0.89

300

10 2.00 1.92 2.00 0.00 2.00 0.01 0.66
30 3.00 59.23 3.00 0.01 3.00 0.01 0.76
50 4.20 861.55 4.50 1.03 4.50 0.08 0.79
70 7.00 1694.67 7.10 0.11 7.00 0.03 0.94
90 16.40 1800.00* 17.40 0.73 17.00 0.22 1.50

400

10 2.00 5.37 2.00 0.00 2.00 0.01 1.13
30 3.00 139.96 3.00 0.01 3.00 0.06 1.25
50 5.00 1800.00* 4.90 0.07 4.90 0.13 1.23
70 8.00 1800.00* 8.00 0.32 7.90 0.12 1.42
90 18.10 1800.00* 19.00 3.05 18.20 0.59 2.25

500

10 2.00 11.52 2.00 0.00 2.00 0.02 2.10
30 3.00 272.08 3.00 0.03 3.00 0.30 1.94
50 5.00 1800.00* 5.00 0.16 5.00 0.02 2.00
70 8.00 1800.00* 8.10 0.60 8.00 0.06 2.31
90 20.10 1800.00* 20.30 4.72 19.90 0.31 3.08

are ‘‘harder to solve’’ than those considered so far. Specifically, the
ILP approach is only able to prove the optimality in the smallest
and densest instances (see detailed results in https://grafo.etsii.
urjc.es/rlp/). For the heuristic procedures, results shown in this
table are in line with those described in Table 3. In particular, the
MSIG is consistently better than TSIH. In addition, our method
seems to be even better when considering the most challenging
instances (i.e., large values of both, n and p). Furthermore, the
ime required to reach the best solution is smaller than a second
or MSIG in all cases, being a couple of seconds for TSIH in the
ost demanding instances.
Table 5 shows the results over Set5 (large-size instances),

here the number of nodes ranges from 600 to 1000. Analyzing
hese results, we can observe that ILP is only able to find the
ptima in the densest subsets (with p = 10). In addition, for
he largest instances (n = 1000), Gurobi is unable even to
tore the mathematical model in the memory of our computer
marked with ′−′). When considering the heuristic procedures,
9

able 5
omparison among ILP, TSIH and MSIG for instance Set 5. Best results are
ighlighted with bold font. An asterisk indicates that the ILP solver has not
een able to certify the optimality in 1800 s. A hyphen indicates that the
athematical model does not fit in memory, and therefore cannot be solved.
n p ILP TSIH MSIG

NR Time (s) NR TTB (s) NR TTB (s) Time (s)

600

10 2.00 15.83 2.00 0.05 2.00 0.06 3.79
30 3.50 1219.58 3.50 55.83 3.50 0.59 3.33
50 5.00 1800.00* 5.00 0.26 5.00 0.09 3.15
70 8.90 1800.00* 8.70 35.14 8.10 0.96 3.07
90 21.00 1800.00* 21.20 7.76 20.90 0.32 4.38

800

10 2.00 67.01 2.00 0.01 2.00 0.16 7.72
30 4.00 1800.00* 4.00 0.19 4.00 0.07 6.48
50 5.80 1800.00* 5.90 0.87 5.60 1.20 5.33
70 9.00 1800.00* 9.10 2.65 9.00 0.10 5.29
90 23.10 1800.00* 23.20 5.68 22.10 3.14 6.45

1000

10 – – 2.00 0.02 2.00 1.54 16.52
30 – – 4.00 0.40 4.00 0.17 13.58
50 – – 6.00 1.56 6.00 0.13 10.02
70 – – 9.90 6.81 9.60 0.72 7.58
90 – – 24.40 10.46 23.80 0.57 9.01

MSIG emerges as the best algorithm for the RLP, reducing the
number of required regenerators in a considerably small comput-
ing time. It is worth mentioning that, in some cases, MSIG is able
to reach the best solution in a hundredth of the time required by
TSIH. Even more, in some cases, the average total time of MSIG is
even faster than their time to best.

We perform the well-known non-parametric statistical test for
pairwise comparisons, in order to validate these results. Specifi-
cally, we use the Wilcoxon test [41], which answers the question:
do the solutions generated by both MSIG and TSIH represent two
different populations? This test has been applied independently
to the results obtained in small, medium, and large sets of in-
stances. On the one hand, the p-value for theWilcoxon test results
in 0.205 and 0.059 for Set3 and Set4, respectively, indicating that
there are not statistically significant differences between MSIG
and TSIH. On the other hand, when applying the test over the
set of challenging 150 large instances, the p-value is smaller than
0.05, indicating that the proposed algorithm is significantly better
than the previous one.

We finally propose in this paper a new set of much harder
instances than those proposed in the related literature so far
(Set6). This new set can be publicly downloaded from https://
grafo.etsii.urjc.es/rlp/. These instances are notably sparse (with
p ranging form 0.95 to 0.75) which become a real challenge for
modern heuristics. We report in Table 6 the average number of
regenerators together with the time to best and the total time for
MSIG.

6. Conclusions

In this paper, we have presented an algorithm based on the
Iterated Greedy framework to tackle the Regenerator Location
Problem from a heuristic perspective. The performance of the
proposed algorithm is compared throughout extensive computa-
tional experiments with the best previous method in the state of
the art, which corresponds to a Tabu Search algorithm.

The proposed Iterated Greedy (IG) method is based on iter-
atively destructing and reconstructing a solution until reaching
a stopping criterion. We present a destruction and reconstruc-
tion method for the RLP as well as a post-processing method
which improves the reconstructed solution. Furthermore, the IG
algorithm is embedded in a multi-start approach, for which we
propose a greedy randomized constructive procedure based on
GRASP methodology.

https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
https://grafo.etsii.urjc.es/rlp/
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Table 6
MSIG results for the new proposed set of instances, summarized by size and
density.
n p NR TTB (s) Time (s)

1200

75 12.00 0.89 74.09
80 14.00 6.06 60.32
85 18.00 3.78 40.65
90 25.00 6.95 24.26
95 43.40 5.14 18.06

1400

75 12.00 3.01 119.72
80 14.70 10.99 82.49
85 18.80 5.99 59.13
90 26.00 5.90 42.19
95 45.00 6.62 22.58

1600

75 12.20 45.88 149.57
80 15.00 8.54 128.54
85 19.10 23.80 59.38
90 27.00 3.88 51.14
95 46.60 3.60 26.50

1800

75 13.00 3.00 141.29
80 15.50 35.66 103.62
85 20.00 4.09 98.01
90 27.70 14.52 61.59
95 47.90 9.91 34.05

2000

75 13.00 5.73 227.53
80 16.00 3.46 161.62
85 20.00 30.76 106.15
90 28.00 30.64 72.89
95 48.90 11.48 39.75

The algorithm requires to configure only three parameters:
, which controls the randomness/greediness of the construc-
ive method; β , which represents the percentage of regenerators
emoved in the destruction phase; and it, which indicates the
umber of destruction–reconstruction phases to be applied.
The intensive computational results presented show the su-

eriority of our proposal, which is supported by Wilcoxon non-
arametric statistical test. According to our experimentation, we
uggest using only Set5 and Set6 to find significant differences
hen comparing modern heuristics in future comparisons. The
ther instances might still be useful for validation purposes. We
o believe that our experimental findings, algorithms, and bench-
ark instances can be useful for the scientific community as a

ramework to compare both, new exact and heuristic proposals.
Future lines of research should be focused on designing an

fficient and effective local search procedure for this problem.
he structure and constraints of the RLP make traditional local
earch procedures not suitable for it, so it would be interesting to
valuate the impact of new local search procedures in the quality
f the produced solutions.
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Appendix. Acronyms

• BRKGA: Biased Random-Key Genetic Algorithm
• CL: Candidate List, a component of the GRASP constructive

method.
• GRASP: Greedy Randomized Adaptive Search Procedure.
• GRLP: Generalized Regenerator Location Problem.
• IG: Iterated Greedy, a metaheuristic algorithm.
• ILP: Integer Linear Programming, a linear programming

model where at least one variable must take a boolean or
integer value.
• MCDSP: Minimum Connected Dominating Set Problem.
• MLSTP: Maximum Leaf Spanning Tree Problem.
• MSIG: Multi-Start Iterated Greedy, the approach presented

in this paper.
• NR: Number of Regenerators.
• RCL: Restricted Candidate List, a component of the GRASP

constructive method.
• RLP: Regenerator Location Problem.
• TSIH: Tabu Search Iterated Metaheuristic, as the previous

work refers to its algorithm.
• TTB: Time To Best, in other words, how much time is re-

quired to reach the stated solution.
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