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{juandavid.quintana,jesus.sanchezoro,abraham.duarte}@urjc.es

Abstract. The Maximum Balanced Biclique Problem (MBBP) con-
sists of identifying a complete bipartite graph, or biclique, of maximum
size within an input bipartite graph. This combinatorial optimization
problem is solvable in polynomial time when the balance constraint is
removed. However, it becomes NP–hard when the induced subgraph
is required to have the same number of vertices in each layer. Biclique
graphs have been proven to be useful in several real-life applications,
most of them in the field of biology, and the MBBP in particular can
be applied in the design of programmable logic arrays or nanoelectronic
systems. Most of the approaches found in literature for this problem
are heuristic algorithms based on the idea of removing vertices from the
input graph until a feasible solution is obtained; and more recently in
the state of the art an evolutionary algorithm (MA/SM) has been pro-
posed. As stated in previous works it is difficult to propose an effective
local search method for this problem. Therefore, we propose the use of
Reduced Variable Neighborhood Search (RVNS). This methodology is
based on a random exploration of the considered neighborhoods and it
does not require a local search.
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1 Introduction

Let G(L,R,E) be a balanced bipartite graph where L and R are the two sets
(or layers) of vertices of the same cardinality (i.e., |L| = |R| = n) and E is the
set of edges. As a bipartite graph, L ∩ R = ∅, and an edge can only connect a
vertex v ∈ L with a vertex u ∈ R, i.e., ∀(v, u) ∈ E, v ∈ L∧ u ∈ R. Additionally,
let us define a biclique B(L′R′, E′) as an induced subgraph of G, where L′ ⊆ L,
R′ ⊆ R, such as every vertex v ∈ L′ is connected to all the vertices u ∈ R′. In
other words, B is a complete bipartite graph.

Given a balanced bipartite graph G(L,R,E), this work is focused on solving
the Maximum Balanced Biclique Problem (MBBP), which consists of identifying
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a balanced biclique B!(L′, R′, E′) with the largest number of vertices per layer.
In other words, the objective of MBBP is maximizing the cardinality of sets L′

and R′.
Figure 1 presents an example bipartite graph with 8 vertices and 13 edges

and two possible solutions for the MBBP. Figure 1(b) depicts a solution
B1(L1, R1, E1) with two vertices in each layer. Specifically, L1 = {A, B}, and
R1 = {F, G}. The edges involved in the induced biclique are depicted with con-
tinuous line, while those with an endpoint out of the solution are depicted with
dashed line. Notice that it is not possible to insert new vertices in the solution,
since the resulting induced bipartite graph will not be a balanced biclique. For
instance, adding vertices E or H is not possible because they are not adjacent to
vertices B and A, respectively. Furthermore, it is not possible to add new vertices
just in layer L1 since the induced biclique is not balanced (i.e., |L1| '= |R1|).
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Fig. 1. (a) Bipartite graph with 8 vertices and 13 edges, (b) a feasible solution with 2
vertices in each layer (A and B in L1, F and G in R1), and (c) a different solution with
3 vertices in each layer (B, C and D in L2, F, G, and H in R2)

Figure 1(c) presents a solution B2(L2, R2, E2) of better quality, since it has 3
vertices in each layer. In particular, L2 = {B, C, D}, and R2 = {F, G, H}. Again, no
more vertices can be added without violating the balanced biclique constraint.

This problem has been proven to be NP-hard in various works [2,9,11].
Some theoretical results proposed bounds for the maximum size that the optimal
solution for the MBBP can have [6], and it has been proven to be hard to
approximate within a certain factor [7].

Biclique graphs have been proven to be useful in several real-life applications,
most of them in the field of biology: biclustering microarray data [4,17,18], opti-
mization of the phylogenetic tree reconstruction [14], or identifying common
gen-set associations [5], among others [3,12]. In particular, the MBBP has addi-
tional applications in a diverse set of fields: folding of programmable logic arrays
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in Very Large Scale Integration (VLSI) design [13], or new nanoelectronic sys-
tems design [1,15,16], among others.

Despite of the practical applications of the MBBP, not many efficient algo-
rithms for it has been proposed, mainly due to the difficulty of the problem.
However, if the MBBP does not consider that the solution must be balanced,
the resulting problem is solvable in polynomial time [19], although most of the
solutions obtained are totally unbalanced, making the results not adaptable for
the problem under consideration.

Most of the previous approaches follow a destructive approach where the
initial solution contains all the nodes and the heuristic iteratively removes nodes
from L′ and R′ until the incumbent solution becomes feasible. The algorithms
mainly differ in the order in which the vertices to be removed are selected. In
particular, [15] selects the vertices with the largest degree, while [1] removes the
vertex with the largest number of minimum degree nodes in the other layer.
Additionally, some algorithms have tried to combine both criteria [20,21]. The
best algorithm found in the literature consists of a evolutionary algorithm [22]
that proposes a new mutation operator as well as a new local search method to
improve the quality of the solutions generated.

The remaining of the paper is organized as follows: Sect. 2 describes the
algorithmic proposal for the MBBP; Sect. 3 presents the experiments performed
to evaluate the quality of the proposal; and Sect. 4 draws some conclusions on
the research.

2 Reduced Variable Neighborhood Search

Variable Neighborhood Search (VNS) [10] is a metaheuristic framework based on
systematic changes of neighborhoods. As a metaheuristic algorithm, it does not
guarantee the optimality of the solutions obtained, but it is focused on obtaining
high quality solutions in reasonable computing times. The constant evolution of
VNS has resulted in several variants, among which we can highlight Basic VNS,
Reduced VNS, Variable Neighborhood Descent, General VNS, Skewed VNS,
Variable Neighborhood Decomposition Search, among others.

Most of the variants differ in the way of exploring the considered neighbor-
hoods. Specifically, Variable Neighborhood Descent (VND) considers a totally
deterministic exploration of the solution space, while the exploration performed
by Reduced VNS (RVNS) is totally stochastic. Some other variants combine
both deterministic and stochastic changes of neighborhoods (e.g., Basic VNS,
General VNS).

As stated in previous works [21,22], designing a local search method for the
MBBP is a very difficult task mainly due to the complexity of maintaining a
feasible solution (i.e. a balanced biclique) after removing or adding vertices to a
previous solution. In other words, the MBBP is not suitable for designing local
search methods in order to find a local optimum with respect to a given solution.
Therefore, this work proposes a Reduced VNS algorithm, which is based on a
random exploration of the considered neighborhoods.
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RVNS is a VNS variant useful for large instances in which local search is very
time consuming, or for those problems in which it is not easy to design a local
search method. Algorithm 1 presents the pseudocode of RVNS.

Algorithm 1. RVNS (B, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: B′ ← Shake(B, k)
5: k ← NeighborhoodChange(B,B′, k)
6: end while
7: until CPUTime() ≤ tmax

8: return B

The algorithm requires three input parameters: B, the initial feasible solu-
tion, that can be randomly generated or using a more elaborated constructive
procedure; kmax, the maximum neighborhood to be explored; and tmax, the maxi-
mum computing time in which RVNS is allowed to explore the search space. Each
RVNS iteration starts from the initial neighborhood (step 2). Then, the method
explores each one of the considered neighborhoods (steps 3–6) as follows. Firstly,
the method generates a random solution B′ in the current neighborhood k of
the incumbent solution B using the Shake method (step 4). Then, the Neighbor-
hoodChange method (step 5) is responsible for selecting the next neighborhood
to be explored. Specifically, if the new solution B′ is better than the incumbent
one B, then it is updated (B ← B′), restarting the search from the initial neigh-
borhood (k ← 1). Otherwise, the search continues with the next neighborhood
(k ← k + 1). A RVNS iteration ends when reaching the maximum predefined
neighborhood kmax. It is worth mentioning that the maximum neighborhood
considered in RVNS is usually small due to the random nature of the Shake
method, since a large value for kmax would produce the same result as restart-
ing the search from a new initial solution. The RVNS method is executed until
reaching a maximum computing time tmax.

2.1 Constructive Method

The initial solution for VNS can be generated at random or with a more elab-
orated constructive procedure. This work proposes a constructive procedure
based on the Greedy Randomized Adaptive Search Procedure (GRASP) [8].
This methodology considers a greedy function that evaluates the importance of
inserting a vertex in the solution under construction. Algorithm2 presents the
pseudocode of the constructive method proposed.

The method starts by randomly selecting a vertex from layer L (step 11),
inserting it in the corresponding layer L′ of the solution (step 12). Then, two
candidate lists (CL) are created, one for each layer of the graph (steps 13–14).
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Algorithm 2. Construct(G = (L,R,E),α)
1: function UpdateLayer(CL1,CL2,α)
2: gmin ← minv∈CL1 g(v)
3: gmax ← maxv∈CL1 g(v)
4: µ ← gmin + α · (gmax − gmin)
5: RCL ← {v ∈ CL1 ; g(v) ≤ µ}
6: v ← Random(RCL)
7: CL1 ← CL1 \ {v}
8: CL2 ← CL2 \ {u ∈ CL2 : (v, u) /∈ E}
9: return v
10: end function
11: v ← Random(L)
12: L′ ← {v}
13: CLL ← L \ {v}
14: CLR ← {u ∈ R : (v, u) ∈ E}
15: while CLL %= ∅ and CLR %= ∅ do
16: vr ← UpdateLayer(CLR,CLL,α)
17: R′ ← R ∪ {vr}
18: vl ← UpdateLayer(CLL,CLR,α)
19: L′ ← L ∪ {vl}
20: end while
21: return B = (L′, R′, {(v, u) v ∈ L′ ∧ u ∈ R′})

Notice that each candidate lists only contains those vertices from each layer
that can be selected maintaining the solution feasible (i.e., the solution is a
compete bipartite graph). On the one hand, in this first step, CLL contains all
the vertices from L excepting the selected vertex v. On the other hand, CLR

contains all adjacent vertices to v in R, since otherwise the solution would not
be a bipartite complete graph. Then, the method iterates adding a vertex in
layer R′ and then in layer L′, while there are still candidate vertices in both
layers (steps 16–19).

The selection of the next vertex is described in function UpdateLayer that
requires from three parameters: the candidate list from which the vertex must
be selected, CL1, the candidate list of the other layer, CL2, and the α parameter
that determines the greediness/randomness of the selection. A greedy function
g that evaluates the quality of a candidate vertex v must be defined. In this
work, we propose the number of adjacent vertices in the oppositive candidate
list. More formally,

g(v,CL) = |{u ∈ CL : (v, u) ∈ E}|

The first step to select the next vertex consists of evaluating the minimum
(gmin) and maximum (gmax) values for the greedy function value (steps 2–3).
Then, a Restricted Candidate List (RCL) is constructed (step 5) with those
vertices whose objective function value is larger or equal than a previously eval-
uated threshold µ (step 4). The values for the α parameter are in the range
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0–1, where α = 0 implies that the method is totally random, and α = 1 trans-
forms the algorithm in a completely greedy method. The next vertex is selected
at random from the RCL (step 6), updating the corresponding candidate lists.
In particular, CL1 is updated by removing the selected vertex v from it, while
CL2 is updated by removing those vertices that are not adjacent to v, since
they cannot be selected in further iterations maintaining the feasibility of the
solution.

2.2 Shake

The Shake method is a stage inside VNS methodology designed to escape from
local optima found during the search. It consists of randomly perturbing a solu-
tion with the aim of exploring a wider region of the solution space. This phase
of the VNS methodology is focused on diversifying the search.

Given a neighborhood k, the Shake method proposed in this work removes
k elements at random from each layer. The resulting solution is feasible but the
value of the objective function is always smaller, since it reduces the number of
vertices selected.

Considering the constraints of the problem, if a vertex v is included in the
solution, then all the vertices of the opposite layer that are not adjacent to v
cannot be included in future iterations, since the resulting solution would not
be a biclique. However, the removal of some vertices in the Shake method can
eventually allow new vertices to be included in the solution (i.e., those that were
not adjacent to any of the vertices removed).

Therefore, we propose a reconstruction stage that is executed after each Shake
method. In particular, the reconstruction phase tries to add new vertices to the
solution, from those that were not feasible to add before executing the Shake
method.

The reconstruction stage always improves the quality of the solution or, at
least, maintains the quality of the solution produced by the Shake method.
Notice that the reconstructed solution outperforms the initial one if and only if
reconstruction stage is able to insert more than k vertices in each layer.

The random nature of this procedure makes it difficult to improve the quality
of the solution. In order to mitigate this effect we consider four variants for the
Shake method. These differ in how the destruction and reconstruction phases are
performed. Each stage can be either random (R) or greedy (G), which leaves us
with four variants shown in Table 1. For instance, the Shake variant GR firstly
destroys the solution with a greedy selection of vertices and then reconstructs it
randomly.

The reconstruction stage follows the same idea that the constructive method
described in Sect. 2.1, with the parameters α = 0 for the random construction (R)
and α = 1 for the greedy one (G). For the destruction stage we use a template
similar to the constructive method, where we evaluate all candidates with a
heuristic function, in this case those vertices already included in the solution,
and then choose one of the more promising vertices. We need to define a new
heuristic function g′ that allows us to score the candidates for removal. Without
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Table 1. Summary of the four variants considered for the Shake procedure.

Variant Destruction Reconstruction

RR Random Random

RG Random Greedy

GR Greedy Random

GG Greedy Greedy

loss of generality, for a given vertex v ∈ S located in layer L, we calculate g′(v) as
the number of vertices in the opposite layer R not connected to v. More formally,

g′(v, S) = |{u ∈ R : (u, v) /∈ E}|

3 Computational Results

In this section we present two sets of experiments: the preliminary experiments,
performed to tune the parameters of the proposed algorithm; and the final exper-
iment designed to test the quality of our proposal and compare it with the current
state of the art. All the algorithms have been coded in Java 8 and were executed
on a computer with an Intel i7 (7660U) CPU with 2.5GHz and 8GB RAM.

We use the same data set presented in [22], which consist of 30 instances with
sizes n = {250, 500} and different densities. This data set is used to compare the
performance of our algorithm with the current state of the art.

In these experiments we report: the average size of the largest balanced
biclique obtained, Avg. Size; the average execution time per instance, Avg. Time
(s); the average percentage deviation to the best solution found in the experi-
ment, %Dev.; and the number of times an algorithm reaches the best solution
found for a given instance in the current experiment, # Best.

3.1 Preliminary Experiments

The following experiments are designed to select the best variant for the proposed
algorithm. A small group of 6 representative instances, selected from the original
30, was used in these experiments to avoid overfitting the parameters to the data
set in the final experiment.

The first experiment is designed for testing the effect of the α parameter in
the constructive procedure, considering α = {0.25, 0.50, 0.75,RND}. The RND
value means that we will use a different α-value, selected randomly, in each
iteration. The results in Table 2 show us that the best performance is achieved
when alpha is selected randomly in each iteration. The procedure obtains on
average a balanced biclique of 52.67 vertices and finds the best solutions among
this experiment for all 6 instances. The results obtained shows that considering
small values of α (i.e., increasing the randomness of the method) always results
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Table 2. Comparison of the constructive method when considering different values
for α.

α Avg. size Avg. time (s) %Dev. #Best

0.25 46.17 375.00 11.67 0

0.50 48.33 375.00 8.16 0

0.75 51.83 375.00 1.40 2

RND 52.67 375.00 0.00 6

in worse quality solutions. However, the RND value allows us to diversify the
search by considering both small and large values of α, thus obtaining the best
results in terms of average objective function value, average deviation, and total
number of best solutions found. Therefore, in the following experiments we will
use this configuration for the α parameter in our proposal.

Table 3. Comparison of the RVNS algorithm for a fixed neighborhood Kmax = 50 and
different variations of the shake procedure.

Shake Avg. size Avg. time (s) %Dev. #Best

RR 48.83 375.00 9.59 0

RG 54.17 375.00 0.00 6

GR 49.50 375.00 8.48 0

GG 53.17 375.00 2.07 0

The next experiment is designed to select the best variant for the shake
procedure. We assume a kmax = 0.5 ·n and consider the four variants of the shake
procedure according the type of destruction, random (R) or greedy (G), and the
type of reconstruction, random (R) or greedy (G), as presented in Sect. 2.2. We
can see in Table 3 the results for this experiment and how the variant RG, random
removal with greedy reconstruction, has the best performance. It achieves an
average size of 54.14 and find better solutions than all other variants in all 6
instances. Notice that the best results are obtained when considering a greedy
reconstruction, but the inclusion of the random destruction is able to reach better
quality solutions than the greedy destruction.

In the last preliminary experiment we want to measure the impact of the
maximum neighborhood explored in our algorithm. We use the best configu-
ration of the previous experiments and test different neighborhoods kmax =
{0.10, 0.20, 0.30, 0.40, 0.50} for our RVNS framework. It is important to remark
that a neighborhood k removes k · n vertices of the solution. In this experi-
ment we can see that expanding the size of the neighborhood generally allows to
reach better solutions as the %Dev. decreases. However, this improvement stag-
nates after kmax = 0.40 where the algorithm reaches its maximum performance
(Table 4).
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Table 4. Comparison of the RVNS algorithm when considering different values for
Kmax .

Kmax Avg. cost Avg. time (s) %Dev. #Best

0.10 53.50 375.00 1.45 2

0.20 53.50 375.00 1.17 2

0.30 53.83 375.00 0.62 4

0.40 54.17 375.00 0.00 6

0.50 54.17 375.00 0.00 6

Analyzing the preliminary experimentation, the best algorithm is configure
with α = RND for the constructive procedure, the shake variant RG which con-
siders random destruction and greedy reconstruction, and a maximum neighbor-
hood of kmax = 0.40.

3.2 Final Experiment

In the last experiment we compare our proposal with the best algorithm found in
the state of the art [22] using the same set of 30 instances. In particular, it consists
of a memetic algorithm that considers a local search based on structure mutation.
RVNS is executed iteratively until reaching a time limit in seconds equal to three
times the size of the current instance. Table 5 shows the results obtained when
comparing the best variant of RVNS with the memetic algorithm (EA/SM). As it
can be derived from the table, RVNS is able to find (on average) bicliques of just
one node less than the bicliques obtained by the memetic algorithm. However,
it has an execution time that is roughly half of the memetic algorithm.

Table 5. Comparison of the RVNS algorithm with the best in the state of art.

Avg. size Avg. time (s) %Dev. #Best

EA/SM 55.10 2075.11 0.04 29

RVNS 54.33 1125.00 1.71 10

4 Conclusions

This work analyzes the performance of Reduced VNS for generating high quality
solutions for the Maximum Balanced Biclique Problem efficiently. Specifically,
we propose an intensified shaking stage which is conformed by a destruction
and reconstruction phase. The experiments performed show the relevance of
performing these phases in a random or greedy manner. The results obtained
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show the possibilities of the RVNS proposal, obtaining, on average, solutions
that are really close to the best ones found in the state of the art. Furthermore,
the absence of a local search in the proposed algorithm allows it to require half
of the computing time of the best algorithm found in the literature.
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