
Received 16 March 2016

Accepted 18 June 2016

Efficient Greedy Randomized Adaptive Search Procedure for the Generalized
Regenerator Location Problem

J.D. Quintana 1 , J. Sánchez-Oro 1 , A. Duarte 1

1 Department of Computer Science, Universidad Rey Juan Carlos,
C/Tulipán, S/N,
Móstoles, Spain

E-mail: jd.quintana@alumnos.urjc.es, {jesus.sanchezoro, abraham.duarte}@urjc.es

Abstract

Over the years, there has been an evolution in the manner in which we perform traditional tasks. Nowa-
days, almost every simple action that we can think about involves the connection among two or more
devices. It is desirable to have a high quality connection among devices, by using electronic or optical
signals. Therefore, it is really important to have a reliable connection among terminals in the network.
However, the transmission of the signal deteriorates when increasing the distance among devices. There
exists a special piece of equipment that we can deploy in a network, called regenerator, which is able to
restore the signal transmitted through it, in order to maintain its quality. Deploying a regenerator in a net-
work is generally expensive, so it is important to minimize the number of regenerators used. In this paper
we focus on the Generalized Regenerator Location Problem (GRLP), which tries to find the minimum
number of regenerators that must be deployed in a network in order to have a reliable communication
without loss of quality. We present a GRASP metaheuristic in order to find good solutions for the GRLP.
The results obtained by the proposal are compared with the best previous methods for this problem. We
conduct an extensive computational experience with 60 large and challenging instances, emerging the
proposed method as the best performing one. This fact is finally supported by non-parametric statistical
tests.

Keywords: GRASP, regenerator, telecommunications, metaheuristic, generalized regenerator location
problem

1. Introduction

Last years society has become more and more con-

nection dependent, in such a way that nowadays it is

hard to think in accomplishing a common task with-

out using some kind of connection among two or

more devices. In most cases, we need a reliable con-

nection to transmit information in the form of elec-

tronic or optical signals. For that reason, the correct

transmission of these signals has become an essen-

tial part in our lives. The transmission of a signal

between two points is not usually direct, because

the two endpoints of the communication are usually

rather separated. For that reason, the signal travels

through a dense network of electronic devices, cre-

ating a path between the two endpoints. However,

the strength of the signal is usually deteriorated as it

gets farther from the source, mainly due to attenu-

ation. Then, in order to maintain the quality of the

signal, it is necessary to regenerate it periodically

by using a special type of electronic device in the

network called regenerator 1. These pieces of equip-

ment are usually expensive, so we need to deploy the

International Journal of Computational Intelligence Systems, Vol. 9, No. 6 (2016) 1016-1027

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1016

J.D. Quintana et al. / GRASP for Generalized RLP

lowest number of regenerators in order to reduce the

cost of the signal transmission.

In general, a network is usually modeled with a

graph G = (V,E), where the set of nodes V repre-

sents electronic devices and the set of edges E rep-

resents the link connections between electronic de-

vices. Each edge (u,v)∈ E presents a length duv > 0

which corresponds to the distance between nodes u
and v. The set of nodes is divided into two subsets.

The first one, S ⊆ V , contains the candidate loca-

tions to deploy a regenerator; while the second one,

T ⊆V , represents the set of terminal nodes that must

communicate with each other. Notice that T and S
are disjoint sets (i.e., T ∩S = /0 and T ∪S =V).

Each terminal node must be able to send signals

to the other terminal nodes throughout a path with-

out exceeding a maximum given distance, dmax > 0,

in order to avoid the deterioration of the signal.

Specifically, the path, P, between an origin terminal

to and a destination terminal td through the network

G is defined as the set of nodes that should be tra-

versed in order to reach td starting from to:

Pto,td = {to,vi, . . . ,v j, td},
with vi,v j ∈V . The distance of the path is evaluated

as:

d(Pto,td) = dto,vi + . . .+dv j,td .

If d(Pto,td) � dmax the signal can travel directly

from to to td without the necessity of regenerating

the signal. Therefore, the terminals of a network

are fully connected if the shortest path between each

pair of terminals nodes presents a distance lower

than dmax. In mathematical terms,

d(Pto,td)� dmax ∀to, td ∈ T

Otherwise, in order to assure a proper communi-

cation among terminal nodes, regenerators must be

deployed in one or more nodes in the paths where

d(Pto,td) > dmax. These regenerators are able to re-

store the signal in the node where they are installed,

in such a way that the distance traveled by the signal

starts again from zero after reaching a regenerator in

the path. This behavior allows the signal to be trans-

mitted for longer distances. Therefore, the distance

between two terminal nodes through a path that con-

tains one or more regenerators is evaluated as:
d(Pto,td) = max{d(Pto,r1

),d(Pr1,r2
), . . .d(Prk−1,rk),d(Prk,td)}

where k is the number of regenerators located in the

path between terminal nodes to and td . Figure 1 il-

lustrates the evaluation of a possible path between

terminal nodes A and E. Terminal nodes are repre-

sented using a square, while the candidates to deploy

a regenerator are represented with a circle (nodes

B and C). In Figure 1.a no regenerators have been

deployed yet. Therefore, the distance of the path

is evaluated as the sum of the distances between

each pair of connected nodes in it. In particular,

the path from A to E, denoted as PA,E is computed

as: d(PA,E) = dA,B+dB,C+dC,E = 175. However, the

deployment of a regenerator in node C (highlighted

in black in Figure 1.b) modifies the distance of the

path, since the signal is restored in node C. Specifi-

cally, the distance is now evaluated as the maximum

between the distance from terminal node A to regen-

erator C (where the signal is restored) and the dis-

tance from regenerator C and terminal node E, result-

ing in a total distance of 125. Considering a maxi-

mum distance dmax = 150, it would be necessary to

add the regenerator in C in order to send a signal

from terminal A to terminal E.

A ECB

50 75 50

A ECB

Fig. 1. Evaluation of a path distance when (a) no regenera-

tors are deployed and (b) when a regenerator is deployed in

node C.

This optimization problem has been identified in

the related literature as the Generalized Regenerator

Location Problem (GRLP). The objective function

of this problem is then to find the subset of regen-

erators R ⊆ S with the minimum cardinality that al-

lows the communication among all terminal nodes

without exceeding the maximum distance. In math-

ematical terms:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1017

J.D. Quintana et al. / GRASP for Generalized RLP

GRLP(G,R,T) =min |R|
s. t.

max{d(Pto,r1
),d(Pr1,r2

), . . .d(Prk−1,rk),d(Prk,td)}� dmax

∀to, td ∈ T

r1, . . . ,rk ∈ Pto,td

Regenerator placement problems have been

widely studied in the recent years due to its im-

portance in the area of telecommunications. Yet-

giner and Karasan 2 present one of the first works

in the context of traffic engineering with restoration,

while Gouveia et al. 3 address a multi-protocol la-

bel switching over wave division multiplexing net-

work design. In Chen et al. 4,5,6 several methods for

the Regenerator Location Problem (RLP) are pre-

sented. This optimization problem is a variant for

the GRLP where S = T = V (there are not distinc-

tions between terminal nodes and candidate loca-

tions). More recently, Duarte et al. 6 proposed a

GRASP procedure and a Biased Random Key Ge-

netic algorithm. A strategic oscillation procedure

is presented for the Maximum Leaf Spanning Tree

Problem 7, which presents an isomorphism with

the RLP. Finally, Chen et al. 8 formally defines the

GRLP as a generalization of the RLP. This problem

was proved to be NP-hard by Chen et al. 5 and Flam-

mini et al. 9. In spite of the importance of this prob-

lem in the optical network design and telecommu-

nications, GRLP has been barely ignored from the

heuristic point of view. Specifically, we have only

found one work 10 focused in the GRLP, where au-

thors propose a branch-and-cut algorithm as well as

two heuristics for solving the GRLP.

In this paper we propose an algorithm based on

the Greedy Randomized Adaptive Search Procedure

(GRASP) metaheuristic 11. Specifically, we intro-

duce two constructive procedures and a local search

method within the GRASP methodology. Addition-

ally, we propose two different enhancement for re-

ducing the computing time required by the local

search method, together with a procedure which re-

moves unnecessary regenerators.

The rest of the paper is organized as follows:

Section 2 describes a graph transformation algo-

rithm that simplifies the resolution of the GRLP.

Section 3 describes the algorithm proposal. We se-

lect the best GRASP variant and then compare it

with the current state of the art in Section 4. Finally,

main conclusions are presented in Section 5.

2. Communication graph

The communication graph is introduced as a graph

transformation procedure to convert the original net-

work into a simpler model 10. Specifically, consid-

ering the original graph G = (V,E), with V = S∪T ,

the first step consists of removing all edges with

length larger than dmax. These edges are useless

(from a communication point of view) in the net-

work since it is not possible to send the information

through them. In other words, the signal would not

have not enough quality to be processed at the desti-

nation because of the distance.

For all non-adjacent pairs of nodes, the next step

of this procedure consists of adding an artificial edge

between them. Its associated length is equal to the

length of the corresponding shortest path. As it was

aforementioned, artificial edges with length larger

than dmax are eliminated since it is not possible to

send information through them.

Artificial edges model the situation where an ori-

gin sends information to a destination through sev-

eral intermediate nodes but the total traveled dis-

tance is lower than or equal to the maximum allowed

one. Notice that it is equivalent to send the infor-

mation through the shortest path or, alternatively,

through the artificial added edge. At this step, we

can discard the distance information, resulting in an

unweighted graph, M = (V,E ′).
Figure 2.a shows an example of an original graph

G, where terminal nodes are represented within a

square (A, E, and F) and those which can hold a re-

generator with a circle (B, C, and D). The numbers in

the edges indicates the distance between the linked

nodes. Let us suppose that the maximum distance

that a signal can travel is set to 150. Then, the com-

munication graph is constructed by firstly removing

those edges whose distance is larger than the max-

imum distance. In this example only edge (A,D) is

removed (see Figure 2.b). The next step computes

the shortest path between each pair of nodes. For

the sake of simplicity we only report information

about shortest paths responsible of adding new ar-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1018

J.D. Quintana et al. / GRASP for Generalized RLP

tificial edges (i.e., the corresponding length is lower

than or equal to 150). In particular, the procedure

adds the following edges:

• Edge (A,C), with path:

{dA,B,dB,C}= 50+75 = 125.

• Edge (A,D), with path:

{dA,B,dB,D}= 50+100 = 150.

• Edge (B,E), with path:

{dB,C,dC,E}= 50+75 = 125.

• Edge (B,F), with path:

{dB,D,dD,F}= 100+50 = 150.

Figure 2.c shows the resulting intermediate com-

munication graph. Finally, in Figure 2.d we show

the final communication graph where the length in-

formation is discarded.

50

75

50

200

150

50

100

A

CB

D

E

F

50

75

50

150

50

100

A

CB

D

E

F

50

75

50

125

150

150
125

150

50

100

A

CB

D

E

F

A

CB

D

E

F

Fig. 2. Construction of the communication graph.

The communication graph is particularly useful

when evaluating the effect of including a new regen-

erator in the network. In particular, if a node s ∈ S
holds a regenerator, the signal can be restored and,

therefore, transmitted to all nodes directly connected

to s (i.e., the set of adjacent nodes, N(s) = {v ∈ V :

(s,v) ∈ E}). This property is reflected in the com-

munication graph as the inclusion of several new ar-

tificial edges between each pair of adjacent nodes to

s. Notice that the actual added artificial edges are

those not previously present in the communication

graph.

Let t1, t2 ∈ T be two non-adjacent termi-

nal nodes in the communication graph and let

s ∈ S ∩ N(t1) ∩ N(t2) be a candidate node to hold

a regenerator adjacent to both, t1 and t2 (see Figure

3.a). In this situation, terminal t1 can share informa-

tion with s. Similarly, s can share information with

t2. However, t1 cannot share information with t2 un-

less we place a regenerator in s to restore the quality

of the signal. Therefore, the inclusion of a regener-

ator in s allows the communication between t1 and

t2, which is equivalent to include an artificial edge

between t1 and t2 in the communication graph. We

illustrate this situation in Figure 3.b by adding a new

edge represented with a dotted line.

t
1

t
2

C

s

t
1

t
2

C

s

Fig. 3. Construction of the communication graph.

As a result, given a graph G = (V,E), and its as-

sociated communication graph, M = (V,E ′), a node

v ∈V can send a signal to another one u ∈V , (with-

out loss of quality) if and only if there exist an edge

(u,v) ∈ E ′. The objective of the GRLP is to con-

nect all terminal nodes among them. Therefore, a

solution R, (i.e., set of included regenerators) is fea-

sible if the associated communication graph has an

edge between each pair of terminal nodes. Let us

illustrate this situation by considering the example

depicted in Figure 2.d. The solution derived from

this communication graph (i.e. R = /0) is not feasi-

ble. More precisely, not all the terminal nodes are

connected, see {(A,E),(A,F),(E,F)}. In order to ob-

tain a feasible solution, it is necessary to insert some

regenerators in the communication graph. For ex-

ample, if we deploy a regenerator in vertex C (which

implies R = {C}) all nodes adjacent to C, (i.e., ver-

tices A, B, and E), become connected. Considering

the set of terminal nodes, the inclusion of a regener-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1019

J.D. Quintana et al. / GRASP for Generalized RLP

ator in C only adds the edge (A,E). As it is shown

in Figure 4.a, this solution is not feasible since not

all terminal nodes are directly connected (see for in-

stance A and F). If we add a new additional regener-

ator in node B, the solution becomes feasible since

all terminal nodes are able to share information (i.e.,

there is an edge between each pair of terminals).

Therefore, the solution is R = {C,B}, whose objec-

tive function value is |R| = 2, which means that we

have deployed two regenerators to connect all termi-

nals in T . Notice that this is not the optimal solution

since we can connect all terminal nodes by deploy-

ing a single regenerator in node B.

A

CB

D

E

F

A

CB

D

E

F

Fig. 4. Communication graph resulting from the insertion

of a regenerator in (a) node C and (b) in node B in the graph

depicted in Figure 2.d. New edges are represented with dot-

ted lines.

Therefore, the objective of the GRLP is based

on connecting those terminal nodes which are not

directly connected in the corresponding communi-

cation graph M. The connections are created by in-

cluding new regenerators in the graph which gen-

erate new edges between pairs of terminal nodes.

The set of non-directly connected terminal nodes

in a given communication graph is denoted as

NDC(M,R). For example, analyzing the communi-

cation graph depicted in Figure 2.d, NDC(M,R) =
{(A,E),(A,F),(E,F)}. The deployment of a regener-

ator in node C as depicted in Figure 4.a eliminates

the pair (A,E) from the NDC set. Finally, the re-

generator deployed in node B removes pairs (A,F)
and (E,F) from the NDC set, resulting in an empty

NDC set and, therefore, in a feasible solution (see

Figure 4.b).

3. Greedy randomized adaptive search
procedure

In this paper we propose an algorithm based on

the Greedy Randomized Adaptive Search Procedure

(GRASP) metaheuristic. GRASP was developed by
12 in the late 80s, but it was not formally introduced

until 1994 11. Recent surveys on the methodology

have been presented 13,14. The main idea behind

GRASP methodology is to iteratively and stochas-

tically sample greedy solutions, and then improve

them to reach a local optimum. This stages are re-

peated until a termination criterion is met. In this

paper we propose two constructive procedures and

an efficient method. The GRASP algorithm selects

a constructive method to generate initial solutions

during a preset number of iterations. For each gen-

erated solution, the algorithm uses the improvement

method proposed to obtain a local optimum. Finally,

the algorithm stores the best solution found during

the exploration. This metaheuristic has been suc-

cessfully applied in several recent NP-hard problems
15,16.

3.1. Constructive procedures

Starting from scratch, a classical GRASP construc-

tive procedure iteratively builds a solution adding an

element at each step. The set of eligible elements are

usually denoted as Candidate List (CL). In the con-

text of the GRLP, all the nodes in S are candidates

to hold a regenerator. Therefore, at the beginning

of the process CL = S. Then, each node v ∈ CL is

evaluated with a greedy function. In this paper, we

introduce a greedy function, named g1, which is de-

fined as the number of terminal nodes connected to

v. The rationale behind this idea is that regenerators

should be deployed in those nodes which are con-

nected to the maximum number of terminal nodes,

creating several artificial edges between them. In

mathematical terms:

g1(v) =
∣
∣{u ∈ T : (v,u) ∈ E ′}∣∣

The constructive procedure then creates a Re-

stricted Candidate List (RCL) with the subset of

the most promising nodes, according to its g1-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1020

J.D. Quintana et al. / GRASP for Generalized RLP

evaluation. Specifically, RCL contains all elements

in CL whose greedy function value is higher than or

equal to a given threshold th, computed as:

th = gmin +α (gmax −gmin)

where α is a parameter of the algorithm, which con-

trols the greediness/randomness of procedure. Val-

ues gmax and gmin are respectively the maximum and

minimum values of those elements in CL evaluated

with g1. Figure 5 presents the pseudocode of the

constructive method proposed, called C1.

1: function C1(M = (S,T),α)

2: R ← /0

3: CL ← S
4: while NDC(M,R) 	= /0 do
5: gmin ← min

v∈CL
g1(v)

6: gmax ← max
v∈CL

g1(v)

7: th ← gmax −α (gmax −gmin)
8: RCL ←{v ∈ CL : g1(v)� th}
9: v ← SelectRandom(RCL)

10: R ← R∪{v}
11: UpdateCommGraph(M,v)
12: CL ← CL\{v}
13: end while
14: return R
15: end function

Fig. 5. Algorithm C1.

The procedure starts by creating the CL with the

nodes that can host a regenerator (step 3). Then,

in each step, the RCL is constructed as described

above (steps 5-8). In step 9, a node is selected at ran-

dom from the RCL, and added to the solution (step

10). Finally, the communication graph is updated,

by adding new edges between each pair of adjacent

nodes to v (step 11). The CL is also updated by re-

moving v (step 12). The procedure continues adding

new nodes to the solution until the NDC associated

to the communication graph becomes empty (steps

4-13). In this case, the procedure returns the con-

structed solution R.

We propose a second constructive procedure

(C2) whose main difference with respect to the pre-

vious one is the greedy function used to evaluate

the nodes in the CL. In this case, the greedy func-

tion g2 is intended to promote those nodes which

create the maximum number of edges between non-

directly connected terminal nodes when holding a

regenerator. More formally,
g2(v) = |{(u,w) ∈ NDC(M,R) : (v,u) ∈ E ′ ∧ (v,w) ∈ E ′}|

We do not include a pseudocode for the second

constructive procedure since it is equivalent to the

one presented in Algorithm 5, but using g2 instead

of g1 in steps 5, 6, and 8.

The solutions constructed using the proposed

procedures may contain some nodes which do not

need to actually hold a regenerator in order to have

a feasible solution. Let us illustrate this situation

with the example depicted in Figure 3.b. The de-

ployment of a genenerator in node C creates an edge

between A and E, while the regenerator in B includes

the same edge (A,E) and other additional edges be-

tween terminal nodes {(A,F),(E,F)}. Therefore, we

can remove node C from the solution, keeping it fea-

sible, and producing a better solution with only one

regenerator deployed in node B.

Given a communication graph M and a solution

R, we propose a procedure clean(M,R) which iter-

ates over every node v ∈ R. For each node, the pro-

cedure checks whether the solution remains feasible

when removing the regenerator or not. In case the

solution remains feasible, the regenerator is defini-

tively removed from the solution. Otherwise, it is

included again on it. The clean procedure is per-

formed for each constructed solution, in order to re-

move redundant regenerators.

3.2. Improvement method

The second phase of a GRASP algorithm consists of

improving the constructed solution until reaching a

local optimum. Before proposing a local search pro-

cedure, it is necessary to define which moves are al-

lowed during the search. In the context of GRLP, we

propose two different and complimentary moves: in-

sert and remove. The insert move consists of adding

a new node to the solution, deploying a regenera-

tor in it, while the remove one consists of deleting a

node from the current solution, removing its corre-

sponding regenerator.

The local search proposed in this work (LS) tries

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1021

J.D. Quintana et al. / GRASP for Generalized RLP

to reduce the number of regenerators contained in a

given solution by performing an exhaustive search.

Specifically, in each iteration, the method tries to re-

move two regenerators, deploying only a new one. If

the resulting solution is still feasible, the number of

regenerators would have been reduced in one unit,

improving the original solution. Figure 6 presents

the pseudocode of the proposed method.

1: function LS(M = (S,T),R)

2: for u ∈ R do
3: R ← R\{u}
4: for v ∈ R do
5: R ← R\{v}
6: for w ∈ S\R do
7: R ← R∪{w}
8: if NDC(M,R) = /0 then
9: go to 2 // Improvement

10: end if
11: R ← R\{w}
12: end for
13: R ← R∪{v}
14: end for
15: R ← R∪{u}
16: end for
17: return R
18: end function

Fig. 6. Algorithm LS.

The local search method iterates over each pair

of regenerators already deployed in the solution

(steps 2-16 and 4-14, respectively). In each itera-

tion, two regenerators are removed from the solu-

tion R (steps 3 and 5). Then, the procedure iterates

over the list of possible regenerators (steps 6-12).

For each potential node to hold a regenerator, LS

inserts it in the solution (step 7). If the new solution

is feasible (step 8), i.e., all terminal nodes are con-

nected, then an improved solution has been found,

restarting the search (step 9). Otherwise, the method

restores the solution by removing the included re-

generator (step 11), and including the previously re-

moved ones (steps 13 and 15). The procedure ends

when no improvement is found, returning the best

solution found in the search.

The exhaustive nature of the proposed local

search method makes it computationally intensive in

terms of CPU time. Therefore, we propose two dif-

ferent enhancements which make the search more

efficient without loss of quality. The first enhance-

ment, denoted as LSpred, is intended to avoid per-

forming those moves which leads to unfeasible so-

lutions. Before inserting the next node in the so-

lution (step 7), it is possible to predict whether the

insertion will result in a feasible solution or not. The

insertion of a node v produces a feasible solution if

and only if each node which appears in the NDC

is adjacent to v. The rationale behind this idea is

that deploying a regenerator in v will generate an

edge between each pair of adjacent vertices to it and,

therefore, the corresponding pair in the NDC will

be removed. In other words, if the regenerator is

able to connect all pairs in the NDC, the solution

remains feasible. More formally, given a commu-

nication graph M and an unfeasible solution R, the

inclusion of a regenerator in v makes R feasible if

∀u ∈ NDC(M,R) ∃ (v,u) ∈ E ′. In order to include

this enhancement, the insertion of a new node in the

solution (step 7 of Algorithm 6) is modified by con-

sidering only those ones that result in a feasible so-

lution.

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

Fig. 7. Result of deploying a regenerator in F in different or-

der: (b) the first regenerator and (c) second one. New edges

created by F are represented with dotted lines.

The second enhancement introduced in this pa-

per, named LSstack, is intended to increase the effi-

ciency of the search by reducing the computing time

of updating the communication graph after remov-

ing a regenerator (see steps 3 and 5 of Algorithm 6).

In order to do that, we need to determine the regen-

erator responsible of including new artificial edges

in the communication graph. It is worth mention-

ing that these edges depends on the order in which

regenerators were included in the solution. Let us

illustrate this fact by considering the example de-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1022

J.D. Quintana et al. / GRASP for Generalized RLP

picted in Figure 7. Specifically, we show in Figure

7.a the original communication graph. If we firstly

deploy a regenerator in F then three new edges are

created, (C,D),(C,E), and (D,E). See Figure 7.b,

where the new added edges are represented with dot-

ted lines. However, if the first regenerator has been

deployed in C, and then we deploy a regenerator in F

(Figure 7.c), then three additional edges are created,

(A,D),(B,D) and (A,E).

We can conclude that the edges created by the

insertion of a regenerator in a solution not only de-

pends on the node itself, but also on the previously

introduced ones. Therefore, in a straightforward im-

plementation, if we eliminate a regenerator, we must

reconstruct the communication graph from scratch,

since it is not possible to isolate the effect of remov-

ing a single regenerator from the solution. However,

if we consider the order in which the regenerators

were introduced in the solution, we can significantly

reduce the number of operations needed to update

the communication graph.

Say for instance that we want to remove the re-

generator in v. In order to do that, we firstly elimi-

nate all regenerators that were added after it. Then,

we actually remove v, and finally insert again, in the

same order, the removed regenerators (those origi-

nally inserted after v). Following these three steps,

we can assure that those edges created by the regen-

erators added after v, which were originally created

due the previous deployment of a regenerator in v,

have been effectively removed from the communi-

cation graph.

Figure 8 shows an example of the removal of a

regenerator. Let us assume that this solution was

constructed by firstly deploying a regenerator in C

and then in F. As it can be easily tested, it is a fea-

sible solution with two regenerators (black colored),

since all terminals (represented with a square) are

connected. The first step to remove C consist of

eliminating those regenerators that were inserted af-

ter it. Since F was inserted after C, then we need

to remove it from the communication graph, along

with the associated edges (represented with dotted

line) that were created due to its insertion (see Fig-

ure 8, 1 - Remove F). In the next step (Figure 8,

2 - Remove C), renegerator in node C and its asso-

ciated edges (represented with dotted line) are re-

moved from the graph. Finally, we need to insert

again those regenerators that were removed in the

first step. In this case, we only need to deploy a re-

generator in F, creating the edges (C,D),(C,E) and

(D,E) during the process.

A

E

D

C

B

F

1 - Remove F 3 - Insert F2 - Remove C

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

A

E

D

C

B

F

Fig. 8. Removal of the regenerator deployed in C consider-

ing the order of insertion [C,F].

Considering the aforementioned situation, the

number of operations required to update the com-

munication graph depends on the order in which it

was inserted. In particular, the sooner the regener-

ator was deployed, the larger the complexity of the

corresponding update when removing it. However if

we store the regenerators in a specific data structure

that keeps information about the time in which they

were specifically included in the solution, we could

reduce the computing time employed in updating the

communication graph. This data structure is usually

known as stack, where the last element included in it

(operation called push) is extracted in the fist place

(operation called pop), following the Last-In First-

Out (LIFO) strategy. In the context of the GRLP,

if we want to remove a regenerator v from the so-

lution, it is only needed to iteratively pop elements

from the stack until removing v, and then push them

again (excluding v) in to the stack. Then, all edges

created by regenerators included before v does not

require any update operation, saving a considerable

computing time.

The local search that incorporates this enhance-

ment is called LSstack. It traverses the regenerators

to be removed from the solution by following the or-

der of the stack. Specifically, it starts by removing

regenerators close to the top of the stack (resulting

in faster removals), while the regenerators that are at

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1023

J.D. Quintana et al. / GRASP for Generalized RLP

the bottom of the stack and, therefore, those which

requires more computing time, are the last ones to be

explored. In the next section we will experimentally

evaluate the performance of the proposed enhance-

ments.

4. Computational experiments

This Section presents the computational experi-

ments performed to test the quality of the proposed

algorithms for the GRLP. They were implemented

in Java SE 8 and the experiments were conducted on

an Intel Core i5 2410M CPU (2.30 GHz) and 8GB

RAM. Three different sets of instances where intro-

duce in Chen et al. 10. However, the exact procedure

propose in the same paper finds the optimal solu-

tion in some of them in less than an hour. There-

fore, we exclude these instances since they are not

an actual challenge for heuristic methods. We then

consider the subset of 60 instances where the opti-

mum is unknown. Each one is parametrized by the

number of nodes (n) and the percentage of terminal

nodes (p). The benchmark presents 10 instances for

each value of n and p in the range n ∈ {400,500}
and p ∈ {0.25,0.50,0.75}.

The experiments are divided into two different

parts: preliminary and final experimentation. The

former is intended to (i) select the best variant

among our proposed methods and (ii) evaluate the

influence of each proposed strategy over the final

performance. The objective of the latter is to con-

duct a comparison between our best algorithm with

the best one found in the literature 10.

4.1. Preliminary experimentation

We have selected a subset of 18 representative in-

stances (3 from each value of n and p) for the pre-

liminary experimentation in order to avoid over-

training. For each experiment, we report the follow-

ing statistics: average number of regenerators de-

ployed, Avg.; computing time measured in seconds,

Time (s); average percentage deviation with respect

to the best solution found in the experiment, Dev

(%); and the number of times that a given procedure

matches the best solution found in the preliminary

experimentation, # Best.

The first experiment is designed to select the

best constructive method by comparing C1 and C2

(see Section 3.1). We consider different values for

the α parameter to evaluate how it influences the

performance of each variant. Specifically, we set

α = {0.25n,0.50n,0.75n}, where n is the number of

nodes in the instance. The variation in the α parame-

ter allows us to study the influence of the balance be-

tween diversification and intensification in the con-

structive procedure 17. As it is customary in GRASP,

we execute 100 independent times each construc-

tive method, reporting the best solution found. Ta-

ble 1 presents the results obtained by the aforemen-

tioned variants. These results show that C2 is slower

than C1, but obtaining considerably better results in

terms of objective function value, average deviation

and number of best solutions found. Specifically, C2

with α = 0.75 is the best constructive method found,

with a deviation of 0.12% with respect to the best so-

lution.

It is worth mentioning that the computing time is

unexpectedly large for a constructive procedure. In

order to reduce this time, we decrease the number

of independent executions, from 100 to 5. However,

this strategy produces, as a side effect, lower quality

solutions. With the objective of compensate this loss

of quality, we include the clean method proposed in

Section 3.1, whose goal is to eliminate the unneces-

sary regenerators after constructing a solution. Table

2 presents the results obtained by the constructive

coupled with the clean procedure. These results

show that the impact of this strategy has different

effects in C1 and C2. Specifically, the computing

time of variants based on C1 is increased. However,

the solutions found present considerably larger qual-

ity. In the case of C2, the reduction in the CPU time

is remarkable, while maintaining or even increasing

the quality of the constructed solutions. Analyzing

these results, C2 with α = 0.75 emerges as the best

method. We then select it for the rest of the experi-

mentation.

The next experiment is intended to analyze the

influence of the proposed enhancements for the local

search method described in Section 3.2. In particu-

lar, we evaluate the behavior of each enhancement

isolated and then combine them in the same local

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1024

J.D. Quintana et al. / GRASP for Generalized RLP

Table 1. Comparison of constructive methods when considering
different values for α

C1 C2

α 0.25 0.50 0.75 0.25 0.50 0.75

Avg. 31.38 62.82 103.69 22.42 19.36 17.18

Time (s) 51.21 78.58 79.66 2769.23 2182.54 2031.72

Dev (%) 0.98 3.22 6.63 0.48 0.27 0.12

Best 0 0 0 0 1 7

Table 2. Comparison of constructive methods when applying
the clean procedure after each construction

C1 C2

α 0.25 0.50 0.75 0.25 0.50 0.75

Avg. 19.73 19.13 19.13 19.62 18.76 17.31

Time (s) 268.54 534.09 570.92 805.17 661.46 556.08

Dev (%) 0.31 0.27 0.26 0.30 0.24 0.14

Best 0 2 2 0 1 1

search variant. Figure 9 shows the computing time

needed to execute the local search method with each

corresponding enhancement. Specifically, LS refers

to the local search with no enhancements, LSpred in-

cludes the first enhancement proposed, and LSstack

considers the second enhancement. Finally, LScomb

corresponds to the local search method which con-

siders both enhancements at the same time.

LS
co

m
b

LS
pr

ed
LS

st
ac

k
LS

Time (s)

0 1000 2000 3000 4000 5000

Fig. 9. Performance comparison of the proposed enhance-

ments for the local search procedure.

Given two algorithms whose computing time is

time1 and time2, respectively, the speedup is defined

as S = time1/time2. If S > 1 then we can conclude

that the first compared algorithm is faster than the

second one. Obviously, if S < 1, the conclusion

is just the opposite. The results depicted in Fig-

ure 9 show that the use of a stack (LSstack) reduces

the computing time in 500 seconds approximately,

achieving a speedup of 1.14, which means that this

variant is 14% faster than the basic approach. LSpred

is able to reduce the computing time in 3900 sec-

onds, obtaining a speedup of 7.70 with respect to the

basic approach. Finally, the combination of both en-

hancements, LScomb, is able to obtain a speedup of

13.13 with respect to LS. Therefore, we select this

variant for the final version of the algorithm.

4.2. Final experimentation

The final experiment is intended to evaluate the per-

formance of our best proposal compared with the

best methods found in the state of the art 10. In

particular, our best proposal is a GRASP algorithm

which is configured with C2 (α = 0.75) coupled

with the clean method and the local search with

the combined enhancements, LScomb, as the improv-

ing strategy. In order to have a fair comparison, our

proposal has been executed for the same computing

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1025

J.D. Quintana et al. / GRASP for Generalized RLP

Table 3. Comparison of our GRASP algorithm with the best
previous heuristics found in the state of the art, GH1 and GH2,
and with an exact procedure, B&C

B&C GH1 GH2 GRASP

n p(%) UB LB Avg. Time (s) Avg. Time (s) Avg. Time (s)

400

25 21.90 13.30 22.40 7.40 22.40 8.90 20.90 6.85

50 19.60 11.10 19.80 20.30 20.00 18.80 18.30 19.53

75 14.40 9.50 14.70 4.70 14.40 6.00 13.90 4.62

500

25 24.80 12.10 25.00 21.60 24.80 28.40 23.40 18.25

50 21.40 8.80 21.40 20.30 21.40 33.20 19.60 19.19

75 12.70 7.60 12.70 32.40 15.00 28.20 12.40 29.82

Average 19.13 10.40 19.30 17.80 19.70 20.60 18.10 16.40

time as the best previous methods for the GRLP, i.e.,

the two heuristics (GH1 and GH2) presented in 10.

For the sake of completeness, we also include the

results of the branch-and-cut method (B&C) to have

an estimation about the quality of the heuristic solu-

tions. Specifically, we include the upper bound (UB)

and lower bound (LB) that establishes the interval in

which the optimal solution is located. This method

has been executed for a maximum computing time

of one hour.

Table 3 reports, for each size n and percentage

of terminal nodes p, the results averaged over 10 in-

stances. For each method (column), we show the

average number of deployed regenerators, Avg., and

the CPU time in seconds, Time (s). The last row

shows the average results over the whole set of 60

instances.

As it can be observed in this table, the proposed

GRASP method clearly outperforms previous meth-

ods in the state of the art (the best results are high-

lighted with bold fonts). It consistently produces

better outcomes for each couple of n and p values. In

particular, the improvement with respect to previous

method ranges from 2.42 % (n = 500 and p = 75)

to 9.18 % (n = 500 and p = 50). Notice that our

method needs, in general, shorter computing times

than GH1 and GH2 to find these results.

We apply the Friedman test to the raw data ob-

tained in the previous experiment. This test ranks

each method for each instance in the data set. That

is, for each instance, the method that performs the

best is assigned the rank 1, followed by the second

best (rank 2), and finally the worst method receives

the rank 3. Then, an average ranking is calculated

for each method. A small p-value associated with

this test indicates that the averages are indeed sig-

nificantly different. In this experiment, we obtain a

p-value lower than 0.008 indicating significant dif-

ferences among the methods. Additionally, the test

provides the ranking, where the best method is our

GRASP with an average ranking of 1.00, followed

by GH1 and GH2 both with the same ranking (2.50).

We conduct a Wilcoxon test for pairwise com-

parisons to complement this experiment. This sta-

tistical test answers the question: do the two sam-

ples (GRASP vs. GH1 and GRASP vs. GH2 in

our case) represent two different populations? The

resulting p-value lower than 0.03 clearly indicates

that the values compared come from different meth-

ods (using a typical significance level of a α = 0.05

as the threshold for rejecting or not the null hypoth-

esis). Therefore, this statistical test establishes that

there are significant differences among compared al-

gorithms, confirming the superiority of GRASP over

the previous methods in the performed experiments.

5. Conclusions

In this paper we have tackled the Generalized Re-

generator Location Problem from a heuristic point

of view. Specifically, we have proposed two con-

structive procedures and a local search method com-

bined into a GRASP metaheuristic. Additionally,

we have introduced two different enhancements for

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1026

J.D. Quintana et al. / GRASP for Generalized RLP

reducing the computing time required by the local

search method, together with a procedure which re-

moves unnecessary regenerators. The best algorithm

proposed have been compared with the best heuris-

tics found in the state of the art. We have used the

same benchmark proposed by previous works, but

discarding those instances in which an exact proce-

dure is able to find the optimal value. Computational

results have shown that our GRASP method outper-

forms the previous algorithm when considering the

same computing time. These results are also sup-

ported by Friedman and Wilcoxon test, emerging the

proposed GRASP as the current state of the art for

the GRLP.

Acknowledgment

This research has been partially supported by the

Spanish Ministry of “Economı́a y Competitividad”,

grants ref. TIN2012-35632-C02 and TIN2015-

65460-C2-2-P, and by the local government of

Madrid, grant ref. S2013/ICE-2894.

References

1. B. Mukherjee. WDM optical communication net-
works: progress and challenges. IEEE Journal on Se-
lected Areas in Communications, 18 (10): 1810–1824,
2000.

2. E. Yetginer and E. Karasan. Regenerator Placement
and Traffic Engineering with Restoration in GMPLS
Networks. Photonic Network Communications, 6 (2):
139–149, 2003.

3. L. Gouveia, P. Patricio, A.F. De Sousa, and R. Val-
adas. MPLS over WDM network design with packet
level QoS constraints based on ILP models. In INFO-
COM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications. IEEE
Societies, volume 1, pages 576–586 vol.1, March
2003.

4. S. Chen and S. Raghavan. The Regenerator Loca-
tion Problem. In Proceedings of the 2007 Inter-
national Network Optimization Conference (INOC
2007), 2007.

5. S. Chen, I. Ljubić, and S. Raghavan. The regenerator
location problem. Networks, 55 (3): 205–220, 2010.

6. A. Duarte, R. Martı́, M.G.C. Resende, and R.M.A.
Silva. Improved heuristics for the regenerator location
problem. International Transactions in Operational
Research, 21 (4): 541–558, 2014.

7. J. Sánchez-Oro and A. Duarte. Beyond Unfeasibil-
ity: Strategic Oscillation for the Maximum Leaf Span-
ning Tree Problem, volume 9422, pages 322–331.
Springer, 2015.

8. S. Chen, I. Ljubić, and S. Raghavan. The generalized
regenerator location problem. In Proceedings of the
2009 International Network Optimization Conference
(INOC 2009), 2009.

9. M. Flammini, A. Machetti, G. Monaco, L.
Moscardelli, and S. Zaks. On the complexity of
the regenerator placement problem in optical net-
works. IEEE/ACM Transactions on Networking, 19
(2): 498–511, 2011.

10. S. Chen, I. Ljubić, and S. Raghavan. The Generalized
Regenerator Location Problem. INFORMS Journal on
Computing, 27 (2): 204–220, 2015.

11. T.A. Feo and M.G.C. Resende. A Greedy Random-
ized Adaptive Search Procedure for Maximum Inde-
pendent Set. Operations Research, 42 (5): 860–878,
1994.

12. T.A Feo and M.G.C. Resende. A Probabilistic Heuris-
tic for a Computationally Difficult Set Covering Prob-
lem. Oper. Res. Lett., 8 (2): 67–71, 1989.

13. M.G.C. Resende and C.C. Ribeiro. Greedy Random-
ized Adaptive Search Procedures: Advances, Hy-
bridizations, and Applications. In M. Gendreau and
J.Y. Potvin, editors, Handbook of Metaheuristics,
volume 146 of International Series in Operations
Research & Management Science, pages 283–319.
Springer US, 2010.

14. M.G.C. Resende and C.C. Ribeiro. GRASP: Greedy
Randomized Adaptive Search Procedures. In E.K.
Burke and G. Kendall, editors, Search Methodologies,
pages 287–312. Springer US, 2014.

15. V. Campos, R. Martı́, J. Sánchez-Oro, and A. Duarte.
GRASP with path relinking for the orienteering prob-
lem. Journal of the Operational Research Society, 65
(12): 1800–1813, 2014.

16. A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F.
Glover, and R. Martı́. Greedy randomized adaptive
search procedure with exterior path relinking for dif-
ferential dispersion minimization. Information Sci-
ences, 296 (1): 46 – 60, 2015.

17. J. Sánchez-Oro, J.J. Pantrigo, and A. Duarte. Com-
bining intensification and diversification strategies in
VNS. An application to the Vertex Separation prob-
lem. Computers & Operations Research, 52, Part B:
209 – 219, 2014.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1027

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

