
Chapter 5 
Greedy Randomized Adaptive Search 
Procedure 

Sergio Pérez-Peló, Jesús Sánchez-Oro, and Abraham Duarte 

5.1 Greedy Randomized Adaptive Search Procedure 

Greedy randomized adaptive search procedure (GRASP) is a trajectory-based 
metaheuristic originally proposed in Feo and Resende (1989) for solving the set 
covering problem and then formally defined in Feo et al. (1994). GRASP follows 
a multi-start approach, dividing each iteration into two different processes. The 
first process, named construction, consists of generating a feasible solution for a 
given problem from scratch, while the second process, named local improvement, 
is responsible for finding a local optimum with respect to the constructed solution. 
We refer the reader to Festa and Resende (2009a,b) for a detailed survey on recent 
advances on GRASP and a detailed description of the main variants. Algorithm 5.1 
shows the pseudocode for the complete GRASP algorithm. 

The method requires from three input parameters: V , the set of available elements 
in the context of a diversity problem; . α, which is a parameter of the constructive 
phase which will be later discussed; and . γ , the number of complete iterations of 
GRASP to be performed. As a trajectory-based metaheuristic, GRASP maintains 
only the best generated solution among all iterations (step 1). Then, the method 
performs . γ complete iterations (steps 2–8). In each iteration, a feasible solution 
M is constructed with a greedy randomized constructive procedure GRC (step 3). 
Then, the generated solution is locally optimized with a local improvement method 
LI (step 4) which is usually a local search method, generating a local optimum . M ′. 
Once a complete iteration has been performed, the method evaluates if the new 
solution . M ′ outperfoms the best solution found so far . Mb (step 5), updating the best 
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Algorithm 5.1 . GRASP(V ,α, γ )
1: Mb ← ∅  
2: for i ∈ 1 . . . γ  do 
3: M ← GRC(V , α) 
4: M ′ ← LI(M) 
5: if f (M ′) > f  (Mb) then 
6: Mb ← M ′

7: end if 
8: end for 
9: return Mb 

solution found if necessary (step 6). The method ends returning the best solution 
found after performing . γ iterations (step 9). 

One of the most representative phases of GRASP is the greedy randomized 
constructive (GRC) procedure, which is responsible for the diversity of the meta-
heuristic. The GRC usually follows a traditional greedy procedure scheme but, 
instead of selecting the best candidate in each step, GRC selects one of the most 
promising candidates to be included in the solution, with the aim of generating 
diverse solutions without deteriorating their quality. Algorithm 5.2 shows the 
pseudocode of the standard GRC. 

Algorithm 5.2 . GRC(V ,α)
1: v ← RND(V ) 
2: M ← {v} 
3: CL ← V \ {v} 
4: while not feasible(M) do 
5: gmin ← minc∈CL g(c) 
6: gmax ← maxc∈CL g(c) 
7: µ ← gmax − α · (gmax − gmin) 
8: RCL ← {c ∈ CL : g(c) ≥ µ} 
9: e ← RND(RCL) 
10: M ← M ∪ {e} 
11: CL ← CL \ {e} 
12: end while 
13: return M 

The algorithm requires from two input parameters: V , which represents the set of 
points that can be selected, and . α, which is a parameter that controls the randomness 
of the method. 

With the aim of favor diversity, the method starts by selecting the first element at 
random (step 1), including it in the solution under construction (step 2). Then, the 
candidate list (CL) is created with all the elements that can be eventually included 
in the solution (step 3). The method then iterates until generating a feasible solution 
(steps 4–12). It is worth mentioning that the definition of feasibility strictly depends 
on the problem being tackled.



5 GRASP 95

As a greedy procedure, the constructive method requires from a greedy function 
.g(v) which, given an element v, evaluates its contribution to the solution under 
construction. Since the candidates are evaluated in each iteration, it is recommended 
to consider an efficient greedy function which does not require high computational 
effort. In some cases, even the objective function can be used as greedy function. 
In each iteration the minimum (.gmin) and maximum (.gmax) values for this greedy 
function are computed (steps 5–6). Those values are then used to establish a 
threshold . µ (step 7). Then, the restricted candidate list (RCL) is created with 
those elements whose greedy function value is better than the threshold . µ (step 8). 
Without loss of generality, the pseudocode considers a maximization problem. 
When facing minimization problems, it is only required to replace . ≥ with . ≤ in 
step 8 to include in the RCL those elements whose greedy function value is smaller 
than or equal to the threshold and, additionally, replace symbol . − with . + in step 7. 
Then, the RCL contains the most promising elements to be included in the solution 
under construction. The next element is therefore selected at random from the RCL 
to favor diversity (step 9), including it in the solution (step 10) and removing it from 
the candidate list (step 11). The method ends when reaching a feasible solution, 
returning the constructed solution (step 13). 

The threshold that limits the elements included in the restricted candidate list 
strongly depends on the value of . α, which is an input parameter of the constructive 
procedure. The domain of this parameter is in the range [0,1] and it is responsible 
for controlling the randomness and greediness of the method. In particular, when 
considering .α = 1, the threshold takes the value of .gmin, resulting in a totally 
random method, since all the candidates always have a greedy function value 
larger than or equal to .gmin. On the contrary, when .α = 0, the threshold takes 
the value of .gmax, becoming a totally greedy method since the only candidates 
whose greedy function value is larger than or equal to .gmax are those whose greedy 
function value is exactly .gmax. Therefore, the value of . α must be experimentally 
set depending on the necessity of diversification and intensification of the problem 
under consideration. Figure 5.1 illustrates this behavior. 

In the graphical example, the elements entering in the RCL are limited by a 
dashed line, which depends on the value of . α: the line will move to the left when 
increasing the value and to the right if it gets decreased. This is the randomized 
phase of GRASP which allows the method to generate different solutions. 

The solution generated with GRC in the first phase of GRASP is not necessarily 
a local optimum with respect to any neighborhood, mainly due to the randomization 
included in the construction with the aim of increasing the diversity of the search. 
Therefore, the second phase of GRASP consists on a local improvement that guides 
the initial solution to a local optimum with respect to a certain neighborhood that 
strongly depends on the problem being considered. This local improvement phase is 
usually accomplished by a local search method, but more complex heuristics or even 
a complete metaheuristic can be considered to further improve the quality of the 
solutions found. In traditional GRASP designs, it is customary to consider a simple 
yet effective local search method to reduce the computational effort required to find



96 S. Pérez-Peló et al.

gmin gmax (gmax – gmin) 

g(c) 

RCL 

a gmax– ,  

Fig. 5.1 Process of candidate selection depending on the value of . α

a local optimum, since the local search will be performed over every constructed 
solution. 

Several alternatives to the GRC have been proposed, but one of the most extended 
variants of GRC considers the interchange of the random and greedy phases. 
Specifically, instead of greedily selecting the most promising elements and then 
randomly selecting the next one, the method randomly selects a set of elements to 
be selected and then it selects the one with the largest greedy function value among 
them. 

The local search explores a certain neighborhood, which strictly depends on the 
problem under evaluation. A neighborhood is conformed with a set of solutions 
that can be reached by performing a single movement operator of the incumbent 
solution. There are two main strategies to traverse the neighborhood which are 
commonly used: first improvement and best improvement. Both strategies differ 
in which movements are accepted in each step of the search. In a first improvement 
approach, the search performs the first movement that leads to an improved solution, 
while in best improvement the search performs the movement that results in the 
best solution of the explored neighborhood. Notice that when considering a first 
improvement approach, the order in which the neighborhood is explored is relevant, 
since it determines the direction followed by the search. We refer the reader to 
a recent empirical study Hansen and Mladenović (2006) comparing the effect of 
considering both strategies in the local search phase. 

Although GRASP presents a general scheme that can be easily adapted to several 
hard optimization problems, there are some steps that must be specifically defined 
for each problem in order to generate high-quality solutions. In particular, the greedy 
function value of the GRC and the local search phase are completely dependent 
on the problem under consideration. Section 5.2 presents the most recent advances
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in GRASP design for diversity problems and Section 5.3 proposes a simple yet 
effective GRASP algorithm specifically designed for solving diversity problems. 

5.2 A Review on GRASP for Solving Diversity Problems 

Since its proposal in 1989, GRASP has been continuously evolving and it has 
attracted the attention of the scientific community, mainly due to its simplicity 
and versatility to adapt to any kind of hard optimization problem. Although it 
was originally proposed for solving the set covering problem by Feo and Resende 
(1989), GRASP has been widely studied in the context of diversity. 

Even more, one of the first research works related to diversity, tackled by Hart and 
Shogan (1987), which was published 10 years before the original GRASP research 
article, proposed a semi-greedy heuristic for the MaxMin diversity problem. The 
research introduces randomization in the selection of the next candidate to be 
selected with the aim of generating different solutions, resulting in better result than 
a traditional greedy heuristic. This idea inspired the design of GRASP. Additionally, 
they proposed a local search heuristic based on replacing an element with a new one, 
stopping when no improvement is found. This local search has been later applied for 
most of the diversity variants in the literature, being refined in each new proposal. 

The .NP-hardness of the MaxMin problem was proven by Ghosh (1996). In this 
work, the author proposed a greedy randomized heuristic which is considered an 
intermediate phase between simple heuristics and complex metaheuristics. 

Several heuristics based on the GRASP framework were proposed for solving the 
MaxSum model . In their research, Silva et al. (2004) evaluated the combination of 
different constructive procedures coupled with the local search method, testing then 
in a wide set of instances. The proposed algorithm was named KLD, and it requires 
several hours of computing time in instances with 500 elements. A hybrid method 
named GRASP-DM was then presented by Santos et al. (2005), introducing some 
data mining techniques in the context of GRASP. GRASP-DM firstly executes the 
GRASP algorithm a fixed number of iterations and, then, the data mining process 
extracts patterns from the most promising solutions. After that, a hybrid algorithm 
combining GRASP with path relinking was proposed by Silva et al. (2007), where 
GRASP is applied to generate a set of elite solutions and, then, the path relinking 
method is applied to create a path between one of the elite solutions and a newly 
generated solution using GRASP. 

The combination of GRASP with Tabu Search was explored for solving the 
MaxSum model by Duarte and Martí (2007), proposing two constructive procedures 
and a tabu search improvement phase. Authors focused on proposing new strategies 
for exploring the interchange neighborhood efficiently, to avoid large computing 
times as in previous works. This is accomplished by selecting only the most 
promising movement on the neighborhood, instead of exploring the complete one. 

The MaxMin model was tackled following a GRASP approach by Resende et al. 
(2010), using an efficient implementation which is able to reach the best results
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in the literature at that time in short computing times. The approach considers 
the distance of the next candidate to the elements already selected as greedy 
function of GRASP. With the aim of efficiently exploring the flat landscape of 
the MaxMin problem, authors proposed the use of an alternative objective function 
which generates a non-flat landscape. The GRASP procedure is coupled with a path 
relinking strategy to further improve the generated solutions. 

The first public dataset of instances for diversity, named MDPLIB, was originally 
presented by Martí et al. (2013), collecting 315 instances from different previous 
works. In that survey, authors state that GRASP is one of the most promising 
metaheuristics for solving diversity problems. 

A GRASP algorithm for the MaxMean model, also known as equitable dis-
persion problem, was proposed by Martí and Sandoya (2013). In this variant, the 
number of elements to be selected is not fixed and the distances between elements 
can take either positive or negative values. Authors proposed a GRASP constructive 
algorithm which considers a novel combination of greediness and randomization, 
together with a local search method based on variable neighborhood descent and 
path relinking as a post-processing approach. 

Then, Martínez-Gavara et al. (2017) integrate GRASP with Tabu Search in an 
algorithm which is able to oscillate in the feasibility boundary defined by the 
MaxMinSum constraint, testing six GRASP variants and three oscillation variants, 
comparing the results with LocalSolver, a black-box local-search solver for general 
0-1 programming proposed by Benoist et al. (2011). 

Considering the MinDiff model, Duarte et al. (2015) proposed a GRASP 
algorithm coupled with exterior path relinking, which is applied to increase the 
diversity of the search by generating new solutions which are different from both 
the initial and the guiding solution. The results are compared with the optimal 
values obtained by the CPLEX commercial solver, showing the effectiveness of the 
proposal. 

Peiró et al. (2021) introduce capacity constraints in the diversity problem. They 
proposed a hybrid GRASP with the variable neighborhood descent algorithm for 
the capacitated dispersion problem. Later on, Martí et al. (2021) proposed a new 
mathematical model and a scatter search algorithm, whose diversification generation 
method is based on GRASP, improving the best previous results. 

5.3 GRASP Design for Solving Maximum Diversity Problem 

In this section, a simple yet effective GRASP approach for solving the MaxSum 
diversity problem (MDP) is proposed. Given a set of V elements, with .|N | = n, a  
solution for the MDP, conformed with a subset .M ⊆ V of m elements, with .m < n, 
is evaluated as the sum of distances among the selected elements. In mathematical 
terms,
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. MDP(M) =
∑

i<j,i,j∈M
dij

where . dij is the considered metric of distance between elements i and j , which 
strictly depends on the instance under evaluation. Then, the objective of MDP is to 
find a solution .M⋆ with the maximum objective function value among all possible 
solutions: 

. S⋆ ← argmax
M∈M

MDP(M)

where . M represents all possible subsets of m elements that can be conformed with 
the elements in V . 

In order to show the appropriateness of GRASP for solving diversity problems, 
we propose a simple yet effective algorithm conformed with a greedy randomized 
and adaptive constructive procedure coupled with a local search method. 

The constructive procedure follows the traditional GRC scheme proposed in 
Section 5.1. The greedy function used in this case is the actual contribution of the 
candidate to be selected to the objective function value. Therefore, given a partial 
solution under construction M and a candidate to be included on it c, the greedy 
function .g(c) which evaluates the relevance of inserting c in M is evaluated as 
follows: 

. g(c) =
∑

i∈M
dci

It is worth mentioning that this greedy function allows us to perform an efficient 
evaluation of the objective function. In particular, after inserting the next candidate 
c in the solution under construction, it is not necessary to evaluate the complete 
objective function from scratch. Instead, the objective function value of the solution 
under construction M is updated as .MDP(M) + g(c). This optimization in the 
objective function evaluation reduces its complexity from .O(n2) to .O(n), thus 
reducing the computing time required to construct a solution. 

In order to define a local search for the MDP, it is necessary to describe the main 
elements that will conform it: the move operator, the neighborhood explored, and 
the strategy considered to explore the neighborhood. The move operator selected for 
this work is the interchange move, which consists of replacing an element already 
included in the solution with another element which has not been selected yet. This 
move operator, named .Interchange(M, i, j), with .i ∈ M and .j ∈ V \M , has been 
shown to be effective in the context of diversity problems. Another advantage of 
this move operator is that it always produces a feasible solution, since the number 
of selected elements always remains the same. 

Since the local search is the most computationally demanding stage in the 
GRASP methodology, it is recommended to optimize this process to reduce the 
computing time required by the complete GRASP algorithm. In a direct implemen-
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tation, performing an interchange move will result in the evaluation of the new 
solution from scratch. However, in the context of MDP, it is possible to leverage 
a factorization in the evaluation of the objective function that allows us to avoid 
evaluating the complete solution from scratch. In particular, it is only necessary to 
evaluate the distance between the node being removed and the nodes remaining in 
the solution and the distance between the node being added and the nodes remaining 
in the solution. Then, the evaluation of the solution . M ′, resulting from performing 
.Interchange(M, i, j) is evaluated as follows: 

. MDP(M ′) ← MDP(M)+
∑

k∈M
djk − dik

This optimization considerably reduces the computational effort required to execute 
the complete local search, thus reducing the computing time of the complete 
GRASP procedure. 

Having defined the move operator, the next step consists of defining the 
neighborhood that will be explored with that operator. In this work, the local search 
explores the neighborhood . Ni , generated by all the solutions that can be reached 
with a single interchange move. More formally, 

. Ni(M) ←
{
M ′ ← Interchange(M, i, j) ∀i ∈ M ∧ ∀j ∈ V \M

}

Finally, it is necessary to propose a strategy to traverse the proposed neighborhood. 
As stated in Section 5.1, two main strategies are usually considered when designing 
local search methods. This work considers both strategies for solving the MDP in 
order to provide a comparison between them in terms of both quality and computing 
time. 

5.4 Computational Experiments 

The main objective of this section is to evaluate the performance of GRASP 
metaheuristic when dealing with the MDP. The set of instances considered for 
this experimentation has been derived from the MDPLIB 2.0, which is publicly 
available.1 In particular, we have considered a subset derived from sets GKD-c, 
MDG-a, and MDG-b, conforming a dataset of 68 instances. The experiments are 
divided into two different sections: preliminary and final. The former are devoted to 
tune the parameters of the GRASP algorithm, while the latter is designed to evaluate 
the performance of the best configuration of GRASP. In order to avoid overfitting, 
the preliminary experiments are performed over a subset of 20 representative 
instances.

1 https://www.uv.es/rmarti/paper/mdp.html. 

https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
https://www.uv.es/rmarti/paper/mdp.html
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All the experiments report the following metrics: Diversity, the average objective 
function value among all the instances considered in the experiment; Time (s), the  
average computing time required by an algorithm measured in seconds; Dev. (%), 
the average deviation with respect to the best solution found in the experiment, 
evaluated as .(Best − Obj.Func.)/Best, where Obj.Func. refers to the objective 
function value obtained by the algorithm; and #Best, the number of times that the 
algorithm reaches the best solution of the experiment. 

Since each iteration of GRASP, consisting in a construction and a local improve-
ment, is totally independent from the other iterations, we have decided to execute 
it in parallel, considering that, nowadays, every computer have more than one 
CPU available which can be used to accelerate the experiments. All the algorithms 
have been coded in Java 17 and the experiments have been executed in an 
AMD EPYC 7282 with 16GB RAM and 16 processors. Therefore, it is able to 
perform 16 simultaneous iterations of GRASP. Synchronization procedures have 
been considered to recover the best solution found among all iterations. The code 
and individual results for each instance are publicly available.2 

5.4.1 Preliminary Experiments 

The preliminary experiments are designed with the aim of tuning the parameters 
of GRASP to produce better solutions. In the context of the algorithm proposed in 
Section 5.3, there are two decisions to be made when executing GRASP: the value 
of the . α parameter and the local search strategy selected (first or best improvement). 
As it is customary in GRASP, each algorithm generates 100 solutions. 

The first experiment is devoted to select the most adequate value for the . α
parameter. In particular, the tested values are .α = {0.25, 0.50, 0.75,RND}, where 
RND indicates that the value is selected at random for each construction in the 
range [0,1] following a uniform distribution. The adjustment of this parameter is 
usually done by executing the constructive procedure in isolation, without coupling 
it with the local search method. However, this is not a good practice, since the main 
objective of the constructive phase of GRASP is not only to generate high-quality 
solutions but also diverse ones. Therefore, selecting the value of . α providing the 
largest quality may result in a constructive procedure without diversification. As 
a consequence, it is recommended to evaluate the appropriateness of an .α-value 
also considering the local search phase. To illustrate this behavior, both experiments 
are performed in this work. First of all, Table 5.1 shows the results obtained when 
executing the constructive procedures without considering any local search method. 

As it can be derived from the table, the best value for . α is RND. It is an expected 
result, since that value explores the complete range of available values for . α. If we

2 https://grafo.etsii.urjc.es/G4D. 

https://grafo.etsii.urjc.es/G4D
https://grafo.etsii.urjc.es/G4D
https://grafo.etsii.urjc.es/G4D
https://grafo.etsii.urjc.es/G4D
https://grafo.etsii.urjc.es/G4D
https://grafo.etsii.urjc.es/G4D
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Table 5.1 Results of the 
constructive procedures 
executed in isolation. Best 
results are highlighted in bold 
font 

Alpha Diversity Time (s) Dev(%) #Best 

RND 52,638.32 0.01 0.00 19 
0.25 51,711.41 0.01 2.16 1 
0.50 47,065.91 0.01 11.38 0 
0.75 44,202.31 0.01 18.34 0 

Table 5.2 Results of 
GRASP considering the first 
improvement approach in the 
local search method. Best 
results are highlighted in bold 
font 

Alpha Diversity Time (s) Dev(%) #Best 

RND 53,603.41 0.76 0.05 13 
0.25 53,488.4 0.59 0.06 13 
0.5 53,620.17 0.91 0.04 16 
0.75 53,584.44 0.98 0.20 13 

Table 5.3 Results of 
GRASP considering the best 
improvement approach in the 
local search method. Best 
results are highlighted in bold 
font 

Alpha Diversity Time (s) Dev (%) #Best 

RND 53,698.7 0.92 0.05 18 
0.25 53,359.57 0.62 0.10 16 
0.5 53,536.3 1.12 0.07 17 
0.75 53,514.15 1.25 0.06 17 

do not consider that value, the smaller the value of . α, the better, indicating that 
greedy values provide better results, as expected. 

The next experiment is devoted to evaluate the performance of the constructive 
procedures when coupling them with the local search method, considering the first 
improvement approach. Table 5.2 shows the results obtained when considering the 
first improvement approach in the local search phase of GRASP. 

It is worth mentioning that the improvement phase is able to balance the 
quality obtained by different .α-values. This results are in line with the idea of not 
necessarily selecting the best constructive procedure in terms of quality without 
considering diversity. In particular, .α = 0.5 is now the best value for the .α-
parameter, demonstrating how increasing diversity may eventually lead to better 
solutions. Notice that the local search is able to considerably improve the results of 
the constructive procedure in all the .α-values, resulting in rather similar results. 

The next experiment is devoted to analyze the performance of the best improve-
ment approach inside the GRASP framework. Table 5.3 shows the results obtained 
when considering this local search method. 

In this case, the best results are obtained when considering .α = RND, being able 
to reach the best objective function value in 18 out of 20 instances, and obtaining 
a deviation of 0.05, which indicates that, in those instances in which it is not able 
to reach the best solution, it still remains really close to it. Without considering 
.α = RND, the quality of the results increases with the value of . α, indicating that 
diversification is a key part of the algorithm. 

In both, first improvement and best improvement experiments, although all the 
variants require similar computing times, it can be seen how increasing the random-
ness (i.e., increasing the value of . α) leads to more time-consuming approaches. This
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behavior can be partially explained by the situation of the starting point from which 
the local search starts in each case. Values close to 1 indicate that the initial solutions 
will be diverse but not necessarily of high quality, so the local search will need more 
iterations to reach a local optimum. 

5.4.2 Final Experiment 

Having selected the best value for the .α-parameter in both, first and best improve-
ment strategies, the objective of this final experiment is to perform a competitive 
testing between the considered strategies. In this case, the complete set of instances 
is considered. 

The comparison between first and best improvement is still an open issue which 
should be experimentally solved for each problem, since it is hard to provide 
conclusive hypothesis without performing an experimental comparison. To that end, 
Table 5.4 shows the results obtained by GRASP when considering first and best 
improvement strategies in the local improvement phase over the complete set of 
instances. 

Analyzing the results, it can be concluded that both algorithms present similar 
performance in terms of quality and computing time. Although it is expected that 
best improvement require larger computing times than first improvement, it usually 
gets trapped in local optima faster. Therefore, first improvement usually is able to 
perform more iterations, reaching equivalent computing times. If we analyze the 
quality of each algorithm, first improvement is able to reach a larger number of best 
solutions (56 versus 43) and a slightly smaller deviation (0.05% versus 0.10%). The 
small deviation value in both algorithms indicates that in those instances in which 
they are not able to reach the best solution, they still present competitive results. 

With the aim of validating these results, we have performed the nonparametric 
pairwise Wilcoxon signed rank test. The resulting p-value, smaller than 0.05, 
indicates that there are statistically significant differences between both algorithms. 
Additionally, results presented in Table 5.5 show how the first improvement variant 
is able to reach strictly better solutions than best improvement in 44 out of 68 
instances, while the best improvement approach only reaches 19 strictly better 
solutions than first improvement, with 5 ties. 

Table 5.4 Comparison of GRASP considering best and first improvement strategies with the best 
value of . α for each variant 

Algorithm Diversity Time (s) Dev (%) #Best 

.GRASPBI 124,124.89 1.56 0.10 43 

.GRASPFI 124,158.68 1.52 0.05 56
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Table 5.5 Results of 
Wilcoxon signed rank test 
comparing .GRASPFI with 
. GRASPBI

N Mean rank Sum of ranks 

.GRASPFI < GRASPBI 19 34.95 664.00 

.GRASPFI > GRASPBI 44 30.73 1352.00 
Ties 5 
Total 68 

These results indicate that the first improvement approach is able to produce 
better results in terms of quality when comparing it with the best improvement 
variant, both requiring similar computing time. 

5.5 Conclusions 

This work has presented a detailed review on GRASP for the diversity problem 
and a particular design of a GRASP procedure for solving the maximum diversity 
problem. The proposal conforms a greedy randomized constructive procedure , 
whose greedy function coincides with the objective function and two local improve-
ment methods: first and best improvement. The detailed experimental comparison 
shows the superiority of the first improvement approach, analyzing the contribution 
of each part of the algorithm. This design is not oriented to be competitive with 
the state of the art, but to show the simplicity of GRASP, which is a simple yet 
effective metaheuristic for solving a large variety of hard combinatorial optimization 
problems. 
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