
Detecting Weak Points in Networks Using
Variable Neighborhood Search

Sergio Pérez-Peló , Jesús Sánchez-Oro(B) , and Abraham Duarte

Department of Computer Sciences, Universidad Rey Juan Carlos, Móstoles, Spain
{sergio.perez.pelo,jesus.sanchezoro,abraham.duarte}@urjc.es

Abstract. Recent advances in networks technology require from
advanced technologies for monitoring and controlling weaknesses in net-
works. Networks are naturally dynamic systems to which a wide variety
of devices are continuously connecting and disconnecting. This dynamic
nature force us to maintain a constant analysis looking for weak points
that can eventually disconnect the network. The detection of weak points
is devoted to find which nodes must be reinforced in order to increase
the safety of the network. This work tackles the α separator problem,
which aims to find a minimum set of nodes that disconnect the net-
work in subnetworks of size smaller than a given threshold. A Variable
Neighborhood Search algorithm is proposed for finding the minimum α
separator in different network topologies, comparing the obtained results
with the best algorithm found in the state of the art.

Keywords: Alpha-separator · Reduced VNS · Betweenness

1 Introduction

Nowadays cybersecurity is becoming one of the most relevant fields for any kind
of users: from companies and institutions to individual users. The increase in the
number of attacks to different networks in the last years, as well as the relevance
of the privacy in the Internet, have created the necessity of having more secure,
reliable and robust networks. A cyberattack to a company that causes loss of
personal information of their clients can result in important economic and social
damage [1]. Furthermore, Denial of Service (DoS) and Distributed Denial of
Service (DDoS) attacks are becoming more common since a successful attack
can result in disabling a service of an Internet provider, for instance. Even more,
if several services are dependent on the service under attack, a cascade failure
can occur, affecting to a large number of clients [3].

It is important to identify which are the most relevant nodes in a network.
This is a matter of interest for both actors in a cyberattack: the attacker and
the defender. The former is interested in disabling these nodes in order to make

This work has been partially founded by Ministerio de Economı́a y Competitividad
with grant ref. TIN2015-65460-C2-2-P.

c© Springer Nature Switzerland AG 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 141–151, 2019.
https://doi.org/10.1007/978-3-030-15843-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15843-9_12&domain=pdf
http://orcid.org/0000-0002-1915-4160
http://orcid.org/0000-0003-1702-4941
http://orcid.org/0000-0002-4532-3124
https://doi.org/10.1007/978-3-030-15843-9_12

142 S. Pérez-Peló et al.

the network more vulnerable while the latter is focused on reinforcing these
important nodes with more robust security measures. On the one hand, the
attacker is interested in causing the maximum damage to the network while
consuming the minimum amount of resources. On the other hand, the defender
wants to reinforce the network minimizing the increase in the maintenance and
security costs. Therefore, it is interesting for both parts to identify which are
the weak points in a network.

We define a network as a graph G = (V,E), where V is the set of vertices,
|V | = n, and E is the set of edges, |E| = m. A vertex v ∈ V represents a node
of the network while an edge (v, u) ∈ E, with v, u ∈ V indicates that there is a
connection in the network between vertices v and u. Let us also define a separator
of a network as a set of vertices S ⊆ V whose removal cause the partition of the
network into two or more connected components. More formally,

V \ S = C1 ∪ C2 . . . ∪ Cp

∀ (u, v) ∈ E! ∃ Ci : u, v ∈ Ci

where E! = {(u, v) ∈ E : u, v /∈ S}.
This work is focused on finding a minimum α-separator S! which is able

to split a network G into connected components of sizes smaller than α · n. In
mathematical terms,

S! ← arg min
S∈S

|S| : max
Ci∈V \S

|Ci| ≤ α · n

It is worth mentioning that the number of resulting connected components
is not relevant in this problem neither as a constraint nor for evaluating the
objective function value. The actual constraint of the α-separator problem (α-
SP) is that the number of vertices in each connected component must be lower
or equal than α · n, where α is an input value. This problem is NP-hard for
general networks topologies when considering α ≤ 2

3 [6]. Some polynomial-time
algorithms have been proposed when the topology of the network is a tree or a
cycle [15]. However, these algorithms require to have previous knowledge on the
topology of the network, which is not usual in real-life problems.

Figure 1 shows an example of a network and two feasible solutions for the
α-SP. The network depicted in Fig. 1(a) is conformed with 9 vertices and 10
edges connecting those vertices. We consider α = 2

3 for this example, so the
connected components of the network must contain (2

3 · 9) = 6 vertices at most.
Figure 1(b) shows a feasible solution S1 = {B, C, E, I} which divides the network
into two connected components C1 = {A, D}, and C2 = {F, G, H}, whose number
of vertices (2 and 3, respectively), are smaller than 6. The second solution, S2 =
{A, B}, depicted in Fig. 1(c), divides the network in three connected components:
C1 = {E}, C2 = {D}, and C3 = {C, G, H, I} (all of them with sizes smaller than 6).
Notice that S2 is better than S1 in terms of objective function value since it is
able to disconnect the network by removing just 2 vertices, while S1 requires to
remove 4 vertices in order to disconnect the network. Notice that neither the size
nor the number of connected components affect to the quality of the solution.

Detecting Weak Points in Networks Using Variable Neighborhood Search 143

Fig. 1. (a) Example of a graph derived from a network, (b) a feasible solution with 4
nodes in the separator (B,C,E, and I), and (c) a better solution with 2 nodes in the
separator (A and B)

This problem has been tackled for both exact and heuristic perspectives.
Specifically, polynomial-time algorithms have been presented for special topolo-
gies as trees or cycles, as well as a greedy algorithm with approximation ratio of
α · n + 1 [15]. Additionally, a heuristic algorithm for studying the node separa-
tors in the Internet Autonomous Systems was proposed [17]. Depending on the α
value, the α-separator problem can be related to different well-known problems.
In particular, when α = 1

n , it is equivalent to the minimum vertex cover prob-
lem, and when α = 2

n it is analogous to the minimum dissociation set problem.
Therefore, the α-separator problem is a generalization of these problems, which
are also NP-hard [9]. As far as we know, the best previous heuristic consists
of a random walk algorithm which is based on a Markov Chain Monte Carlo
method [13].

2 Algorithmic Proposal

Variable Neighborhood Search (VNS) [11] is a metaheuristic framework based
on systematic changes of neighborhoods. As a metaheuristic algorithm, it does
not guarantee the optimality of the solutions obtained, but it is focused on
obtaining high quality solutions in reasonable computing times. There are sev-
eral variants of VNS, which are classified taking into account fundamentally
the exploration of the considered neighborhoods. Typically, the neighborhood
structures are analyzed using three different criterion: stochastic (Reduced VNS,
RVNS), deterministic (Variable Neighborhood Descent, VND), or a combination
of both deterministic and stochastic (Basic VNS, BVNS). Furthermore, several
additional variants have been proposed in the last years: General VNS (GVNS),
Variable Neighborhood Decomposition Search (VNDS), Skewed VNS (SVNS),
Variable Formulation Search (VFS), among others.

144 S. Pérez-Peló et al.

The stochastic exploration of the search space is usually recommended for
those problems where the local search method is very computationally demand-
ing. Additionally, it is useful for problems in which the design of a local search is
not clear since the definition of the neighborhoods to be explored is very complex
to be considered in a fast heuristic. In the context of α-SP, any neighborhood
that performs small moves over a feasible solution will probably result in a non-
feasible solution and, therefore, a repair method must be applied after perform-
ing each move. The repair method should consider the feasibility of the solution,
which is very time consuming in the problem under consideration, increasing the
time required to perform a local search.

As stated in Sect. 1, solutions for the α-SP should be generated as fast as
possible, since the integrity of the network highly depends on the performance of
the algorithm, not only in terms of solution quality but also with respect to the
computing time required to produce a solution. RVNS is usually compared with
a Monte-Carlo method, but being RVNS more systematic [14]. Indeed, RVNS has
been able to obtain results competitive with the Fast Interchange [18] method
when applied to the p-Median problem [10]. This work presents a Reduced VNS
algorithm in order to generate high quality solutions in short computing time.
Algorithm1 presents the general framework of RVNS.

Algorithm 1. RVNS (S, kmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: k ← NeighborhoodChange(S, S′, k)
6: end while
7: until StoppingCriterion
8: return S

RVNS starts from an initial solution S, which can be generated using a
random procedure or any other complex heuristic or metaheuristic. Addition-
ally, the maximum neighborhood kmax to be explored must be indicated. As
stated in previous works [12], the maximum neighborhood to be considered in
the RVNS algorithm is usually small, to avoid exploring completely different
solutions in each iteration. Finally, the third parameter of the algorithm indi-
cates the stopping criterion. For this work, we consider a maximum number λ
of RVNS iterations.

In each iteration, the algorithm starts from the first considered neighbor-
hood k = 1 (step 2). Then, the algorithm iterates until reaching the maximum
neighborhood kmax (steps 3–6). In each iteration, a random solution S′ in the
current neighborhood k is generated (step 4). Then, the algorithm selects the
next neighborhood to be explored (step 5). In particular, if the objective func-
tion value of S′ is better than the one of S, an improvement is found, updating
the best solution found (S ← S′) and restarting the search from the first neigh-
borhood (k = 1). Otherwise, the search continues with the next neighborhood

Detecting Weak Points in Networks Using Variable Neighborhood Search 145

(k ← k + 1). The method ends when performing λ iterations of RVNS (steps
1–7), returning the best solution found during the search (step 8).

2.1 Constructive Method

The main objective of the α-SP is to identify the most important nodes in a
network trying to minimize the size of the separator. To achieve this goal, we can
leverage several characteristics of a node of a graph, such as its degree (number
of edges of a node), its position in the network, or any centrality measure, among
others, as a selection criterion to find the most important vertices in a graph.

This work proposes a greedy constructive procedure for generating the initial
solution. In particular, we propose a greedy function that evaluates the relevance
of a vertex in a graph using a centrality metric known as betweenness centrality
[2], an extended metric in the context of finding relevant users in social networks.

Betweenness centrality considers that a node is important within a network
if it acts as a flow of information in the graph. In order to look for relevant nodes
with respect to this metric, it is necessary to evaluate all the paths between any
pair of nodes of the graph, being the relevance of a vertex directly related to the
number of paths in which it appears. The rationale behind this it that if a vertex
v participates in several paths of the network, then any information transmitted
through it will eventually traverse v.

The betweenness centrality of a node v ∈ V , named as b(v), is evaluated as
the number of paths between any pair of nodes s and t in which v is included,
σ(s, t|v), divided by all the paths that connect s and t, σ(s, t). More formally,

b(v) ←
∑

s,t∈V \{v}

σ (s, t|v)
σ (s, t)

It is worth mentioning that the evaluation of the betweenness is a compu-
tationally demanding process. Specifically, the betweenness of a node v requires
from the evaluation of all shortest paths between every pair of vertices s, t ∈ V .

In order to reduce the complexity of this evaluation, we consider an approx-
imation of this metric by evaluating a number of shortest paths between every
pair of nodes using a fast algorithm for finding shortest paths without loops in
networks based on Yen’s algorithm [19].

We have selected this criterion because it seems logical to think that, the
more information circulates through a node in a graph, the more important
this node will be within the network. Therefore, it will be easier to disconnect
the network if priority is given to eliminate the nodes with a higher value of
betweenness centrality.

A totally greedy algorithm will always produce the same initial solution, since
it is focused on intensifying the search. However, several works [4,16] have shown
that introducing some randomness in the search, thus increasing the diversifica-
tion, results in better initial solutions. We propose the use of Greedy Random-
ized Adaptive Search Procedure (GRASP) methodology in order generate more
diverse initial solutions that will eventually lead the algorithm to obtain better
results.

146 S. Pérez-Peló et al.

GRASP methodology was originally proposed in 1989 [7] but it was not for-
mally defined until 1994 [8]. Traditional GRASP algorithms consists of two well-
differenced phases: construction and local search. In this work we just consider
the construction stage, since a local search for the α-SP is rather computationally
demanding, resulting in large computing times.

The constructive procedure proposed starts by randomly selecting the first
node v to be removed from the graph. Then, a candidate list is constructed
with all the vertices u ∈ V \ {v}. In each iteration, a vertex is selected from
the candidate list and removed from the graph. The selection of the next vertex
is performed as follows. Firstly, a restricted candidate list is created with the
most promising nodes of the candidate list. For this problem, we evaluate the
betweenness of all the candidate vertices. Let us consider that gmax and gmin

are the maximum and minimum values for this metric, respectively. Then, a
threshold µ is evaluated as:

µ = gmax − β ∗ (gmax − gmin)

The restricted candidate list contains all the candidate vertices whose
betweenness value is larger or equal than the threshold µ. Notice that β ∈ [0, 1]
is a parameter of the constructive method that controls its degree of random-
ness. On the one hand, β = 0 results in µ = gmax, which considers a totally
greedy algorithm. On the other hand, β = 1 results in µ = gmin, which considers
a completely random procedure. Section 3 will evaluates different values for this
parameter, discussing how it affects to the initial solution quality.

We have made a series of preliminary experiments in order to test what is
the α parameter that works better with our greedy criterion. Concretely, we
have tested our algorithm using 0.25, 0.5, 0.75 and RND values. We present the
results of these experiments in Sect. 3.

2.2 Perturbing Solutions for the α-SP

Shake method is responsible for finding new solutions in the neighborhood under
exploration in the RVNS framework. First of all, it is important to define the
neighborhoods considered in this work. We define the neighborhood N1(S) of a
solution S as the insertion of a new node in the solution. In mathematical terms,

N1(S) = {S′ ← S ∪ {v} : v ∈ V \ S}

Analogously, we define the neighborhood Nk(S) as the insertion of k new
nodes in the solution S. More formally,

Nk(S) = {S′ ← S ∪ T : ∀v ∈ T, (v ∈ V \ S) ∧ (|T | = k)}

Notice that any solution S′ obtained in the neighborhood Nk of solution
S presents more vertices included in it. If the quality of a solution is given
by the number of vertices included in it and α-SP is a minimization problem,
then any solution S′ ∈ Nk(S) is worse than S in terms of objective function

Detecting Weak Points in Networks Using Variable Neighborhood Search 147

value. However, the main advantage of exploring this neighborhood is that every
solution is always feasible, being unnecessary to check the constraint of the
problem, which is one of the most time consuming parts of the algorithm.

Since the Shake procedure always deteriorates the quality of the solution per-
turbed, it is necessary to define a post-processing method that tries to improve
its quality. For this purpose, we define a refining process that consists of remov-
ing all the vertices that are unnecessarily included in the perturbed solution
S′. Specifically, the method randomly traverses the set of vertices that were
originally in the solution (i.e., S′ \ T). If the solution becomes unfeasible after
removing a vertex, it is included again in S′. After trying to remove all vertices
in S′ \ T , the method repeats this instructions for all the vertices included in
T . Following this procedure, if the number of removed nodes from the solution
during the refining process is larger or equal than k, an improvement has been
found, restarting the search from the first neighborhood. Otherwise, the search
continues in the next neighborhood. The method stops when reaching the max-
imum predefined one, k, returning the best solution found during the search.

3 Computational Results

This Section is devoted to analyze the performance of the proposed algorithms
and compare the obtained results with the best previous method found in the
state of the art. The algorithms have been developed in Java 9 and all the
experiments have been conducted on an Intel Core 2 Duo 2.66GHz with 4GB
RAM.

The set of instances used in this experimentation has been generated using
the same graph generator proposed in the best previous work [13]. Specifically,
graphs are generated by using the Erdös-Réyi model [5], in which a new node
is linked to the nodes already in the graph with the same probability. We have
generated a set of 50 instances whose number of vertices ranges from 100 to 200
and the number of edges ranges from 200 to 2000.

We have divided the experiments into two different parts: preliminary and
final experimentation. The former is designed for finding the best parameters
of the GRASP constructive procedure and RVNS algorithm, while the latter is
devoted to analyze the performance of the best variant when compared with the
best previous method found in the state of the art.

All the experiments report the following metrics: Avg., the average objective
function value; Time (s), the average computing time in seconds; Dev (%), the
average deviation with respect to the best solution found in the experiment; and
Best, the number of times that an algorithm reaches the best solution of the
experiment.

The preliminary experiments consider a subset of 20 representative instances
out of 50 in order to avoid overfitting, while the final experimentation considers
the total set of 50 instances.

The first experiment is designed for evaluating the effect of the β parameter in
the quality of the initial solutions generated. We have considered the following

148 S. Pérez-Peló et al.

values for β = {0.25, 0.50, 0.75,RND}, where RND indicates that a random
value is selected in each iteration of the construction phase. Table 1 shows the
results obtained in this experiment. It is worth mentioning that 100 solutions
have been generated for each instance, returning the best solution found and
computing the accumulated time required for constructing all of them.

Table 1. Performance of GRASP constructive procedure with different values for the
β parameter.

β Avg. Time (s) Dev (%) #Best

0.25 59.80 592.43 0.59 16

0.5 60.45 590.30 2.08 12

0.75 62.25 590.79 4.26 9

−1.00 59.85 612.49 0.94 13

Analyzing Table 1 we can clearly see that the best results are obtained when
considering β = 0.25, closely followed by β = RND . Specifically, β = 0.25 is able
to find 16 out of 20 best solutions, and the average deviation of 0.59% indicates
that in those instances in which it is not able to reach the best value, the con-
structive method obtains a high quality solution really close to the best one. The
value of β = 0.25 indicates that the best results are obtained when introducing a
small random part in the constructive procedure, and increasing the randomness
of the method results in worse solutions. The worst results are obtained with the
largest β value, 0.75, obtaining just 9 out of 20 best solutions with an average
deviation of 4.26%. This behavior also confirms that the betweenness metric is
a good selection as a greedy function value for the constructive procedure.

One of the main advantages of VNS is the reduced number of parameters
that must be tuned in order to obtain high quality solutions. In particular, the
RVNS algorithm proposed requires from just one parameter, kmax, that corre-
sponds to the largest neighborhood to be explored. The preliminary experiment
then considers the following values for kmax = {0.05, 0.10, 0.25, 0.50}. We do not
consider larger values of kmax since a solution in such a large neighborhood will
be completely different from the original one. It is worth mentioning that the
number of vertices that will be included in the neighbor solution is evaluated as
k · |S|, being |S| the number of vertices of the initial solution. Table 2 shows the
performance of the different values for kmax.

The experiment clearly shows that the best value for kmax is 0.25, finding all
the best solutions, while the remaining values are able to obtain just one best
solution out of 20. This results are in line with those presented by Mladenovic
et al. [14], which recommends considering small values of kmax in the context of
RVNS. This is mainly because large values for kmax explores solutions that are
not close in the search space, resulting in a completely random search, which is
against the VNS methodology.

Detecting Weak Points in Networks Using Variable Neighborhood Search 149

Table 2. Performance of the RVNS when considering different values for the kmax

parameter

kmax Avg. Time (s) Dev (%) #Best

0.05 49.00 303.09 15.40 1

0.10 48.40 314.81 14.16 1

0.25 43.45 310.06 0.00 20

0.50 47.65 316.44 12.76 1

Analyzing the results obtained in the preliminary experiments, the RVNS
algorithm for the final experiment is configured with β = 0.25 and kmax = 0.25.

The final experiment is intended to compare the best variant of RVNS with
the best previous method found in the state of the art [13]. Specifically, it consists
of a random walk (RW) algorithm with Markov Chain Monte Carlo method. It
is worth mentioning that we have not been able to contact to the authors of the
previous work neither to obtain the set of instances nor an executable file of the
algorithm. Therefore, we have reimplemented the previous algorithm following,
in detail, all the steps described in the manuscript. Table 3 shows the results
obtained by the proposed algorithm (RVNS) and the best previous method found
(RW).

Table 3. Comparison of the best variant of RVNS with the best previous method
found in the state of the art.

Avg. Time (s) Dev (%) #Best

RW 71.78 1070.35 25.98 5

RVNS 55.58 473.72 0.10 46

The results obtained clearly confirm the superiority of our proposal. In par-
ticular, RVNS is able to obtain 46 out of 50 best solutions, while RW only reaches
the best solution in 5 out of 50 instances. Furthermore, the computing time for
RVNS is half of the time required by RW. Finally, the average deviation of RVNS
is close to zero, which indicates that, in those instances in which RVNS is not
able to match the best solution, it stays close to it. However, the deviation of RW
is higher, indicating that its results are not close to the best solution obtained
by the RVNS.

We have finally conducted the nonparametric Wilcoxon Signed Test in order
to confirm that there exists statistically significant differences between both algo-
rithms. The p-value obtained is lower than 0.0001, which confirms the superiority
of our proposal.

150 S. Pérez-Peló et al.

4 Conclusions

This work has proposed a Reduced VNS algorithm for detecting critical nodes in
networks. The initial solution is generated by using a Greedy Randomized Adap-
tive Search Procedure whose greedy criterion is adapted from the social network
field of research, which is named betweenness. The RVNS proposal is able to
obtain better results than the best previous method found in the literature,
which consists of a random walk algorithm in both quality and computing time.
This results, supported by non-parametric statistical tests, confirms the superi-
ority of the proposal. The adaptation of a social network metric to the problem
under consideration in this work has led us to obtain high quality solutions,
which reveals the relevance of the synergy among different fields of research.

References

1. Andersson, G., et al.: Causes of the 2003 major grid blackouts in North America
and Europe, and recommended means to improve system dynamic performance.
IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

2. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25(2),
163–177 (2001)

3. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex
networks. Phys. Rev. E 69, 045104 (2004)

4. Duarte, A., Sánchez-Oro, J., Resende, M.G., Glover, F., Mart́ı, R.: Greedy ran-
domized adaptive search procedure with exterior path relinking for differential
dispersion minimization. Inf. Sci. 296, 46–60 (2015)

5. Erdős, P., Rényi, A.: On random graphs. Publ. Math. 6, 290 (1959)
6. Feige, U., Mahdian, M.: Finding small balanced separators. In: Kleinberg, J.M.

(ed.) STOC, pp. 375–384. ACM (2006)
7. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set

covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)
8. Feo, T.A., Resende, M.G., Smith, S.H.: Greedy randomized adaptive search pro-

cedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)
9. Garey, M., Johnson, D.: Computers and Intractability - A guide to the Theory of

NP-Completeness. Freeman, San Fransisco (1979)
10. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applica-

tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)
11. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Burke, E., Kendall,

G. (eds.) Search Methodologies, pp. 313–337. Springer, Boston (2014)
12. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: meth-

ods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)
13. Lee, J., Kwak, J., Lee, H.W., Shroff, N.B.: Finding minimum node separators: a

Markov chain Monte Carlo method. In: 13th International Conference on Design
of Reliable Communication Networks, DRCN 2017, pp. 1–8, March 2017

14. Mladenovic, N., Petrovic, J., Kovacevic-Vujcic, V., Cangalovic, M.: Solving spread
spectrum radar polyphase code design problem by tabu search and variable neigh-
bourhood search. Eur. J. Oper. Res. 151(2), 389–399 (2003)

15. Mohamed-Sidi, M.: K-separator problem. (Problème de k-Sèparateur). Ph.D. the-
sis, Telecom & Management SudParis, Èvry, Essonne, France (2014)

Detecting Weak Points in Networks Using Variable Neighborhood Search 151

16. Quintana, J.D., Sánchez-Oro, J., Duarte, A.: Efficient greedy randomized adaptive
search procedure for the generalized regenerator location problem. Int. J. Comput.
Intell. Syst. 9(6), 1016–1027 (2016)

17. Wachs, M., Grothoff, C., Thurimella, R.: Partitioning the internet. In: Martinelli,
F., Lanet, J.L., Fitzgerald, W.M., Foley, S.N. (eds.) CRiSIS, pp. 1–8. IEEE Com-
puter Society (2012)

18. Whitaker, R.: A fast algorithm for the greedy interchange for large-scale clustering
and median location problems. INFOR: Inf. Syst. Oper. Res. 21(2), 95–108 (1983)

19. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11),
712–716 (1971)

	Preface
	Organization
	Contents
	Improved Variable Neighbourhood Search Heuristic for Quartet Clustering
	1 Introduction
	2 Related Work
	3 Description of the Solution Algorithms
	3.1 Greedy Constructive Heuristic
	3.2 Reduced Variable Neighbourhood Search

	4 Computational Results
	5 Conclusions
	References

	On the k-Medoids Model for Semi-supervised Clustering
	1 Introduction
	2 Related Works
	3 Proposed Model
	4 Local Descent Algorithm for SSKMP
	4.1 Handling Must-Link Constraints
	4.2 Handling Cannot-Link Constraints

	5 Variable Neighborhood Search for SSKMP
	6 Experiments
	6.1 Model Accuracy
	6.2 VNS Performance
	6.3 Model Flexibility

	7 Conclusion
	References

	Complexity and Heuristics for the Max Cut-Clique Problem
	1 Motivation
	2 Analysis and Complexity
	2.1 Complexity
	2.2 Bounds for MCC

	3 Methodology
	3.1 Construction Phase - Clique
	3.2 Local Search Phase - VND

	4 Exact Method for the MCC
	5 Computational Results
	6 Conclusions and Trends for Future Work
	References

	A VNS Approach to Solve Multi-level Capacitated Lotsizing Problem with Backlogging
	1 Introduction
	2 State of the Art
	3 Problem Formulation
	4 VNS Algorithm
	4.1 Idea of the Algorithm
	4.2 Neighborhood Perturbations
	4.3 Local Search Algorithm

	5 Computational Experiment and Results Analysis
	6 Conclusions and the Future Work
	References

	How to Locate Disperse Obnoxious Facility Centers?
	1 Introduction
	2 VNS Algorithm
	2.1 Constructive Method
	2.2 Local Search

	3 Computational Results
	4 Conclusions and Future Research
	References

	Basic VNS Algorithms for Solving the Pollution Location Inventory Routing Problem
	1 Introduction
	2 Problem Statement
	3 Solution Method
	3.1 Construction Heuristic
	3.2 Basic VNS

	4 Numerical Results
	4.1 Computing Environment and Parameter Settings
	4.2 Computational Results

	5 Conclusions
	References

	Less Is More: The Neighborhood Guided Evolution Strategies Convergence on Some Classic Neighborhood Operators
	1 Introduction
	2 The Neighborhood Guided Evolution Strategies
	2.1 Tips for C++ Implementation of the NGES
	2.2 Basic Principles

	3 Heterogeneous Fleet Vehicle Routing Problem with Multiple Trips
	3.1 Representation and Evaluation of a Solution
	3.2 Neighborhood Structures

	4 Computational Experiments and Analysis
	4.1 Basic Calibration of Population Size
	4.2 Logic for Setting the Upper Limits for Each Neighborhood Structure
	4.3 NGES Self-adaptive Mechanisms - P and A

	5 Final Considerations and Extensions
	References

	New VNS Variants for the Online Order Batching Problem
	1 Introduction
	2 State of the Art
	2.1 First Come First Served Algorithm
	2.2 Seed Algorithm
	2.3 Clark & Wright Savings Algorithm

	3 Algorithmic Proposal
	3.1 Constructive Procedure
	3.2 Shake Procedure
	3.3 Local Search Procedure

	4 Results
	4.1 Instances
	4.2 Comparison with the State of the Art

	5 Conclusions
	References

	An Adaptive VNS and Skewed GVNS Approaches for School Timetabling Problems
	1 Introduction
	2 Context
	2.1 XHSTT Standard
	2.2 KHE Library
	2.3 ITC 2011

	3 Proposed Approaches
	3.1 Adaptive VNS
	3.2 Skewed GVNS (SGVNS)
	3.3 Moves

	4 Computational Experiments
	4.1 Parameter Tuning
	4.2 Results

	5 Conclusions
	References

	Finding Balanced Bicliques in Bipartite Graphs Using Variable Neighborhood Search
	1 Introduction
	2 Reduced Variable Neighborhood Search
	2.1 Constructive Method
	2.2 Shake

	3 Computational Results
	3.1 Preliminary Experiments
	3.2 Final Experiment

	4 Conclusions
	References

	General Variable Neighborhood Search for Scheduling Heterogeneous Vehicles in Agriculture
	1 Introduction
	2 Problem Description
	3 General Variable Neighborhood Search for Vehicle Scheduling Problem with Heterogeneous Vehicles
	3.1 Solution Representation
	3.2 Objective Function Calculation
	3.3 Generating Initial Solution
	3.4 Neighborhood Structures
	3.5 GVNS Implementation

	4 Computational Study
	5 Conclusion
	References

	Detecting Weak Points in Networks Using Variable Neighborhood Search
	1 Introduction
	2 Algorithmic Proposal
	2.1 Constructive Method
	2.2 Perturbing Solutions for the -SP

	3 Computational Results
	4 Conclusions
	References

	A Variable Neighborhood Search with Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with Setup
	Abstract
	1 Introduction
	2 Problem Description
	3 Cooperative Approach for MCKS
	3.1 Initial Feasible Solution
	3.2 Upper Bound for IP
	3.3 Local Search with IP

	4 Computational Results
	4.1 Parameter Setting
	4.2 Computational Results

	5 Conclusion
	References

	A VNS-Based Algorithm with Adaptive Local Search for Solving the Multi-Depot Vehicle Routing Problem
	1 Introduction
	2 Multi-Depot Vehicle Routing Problem
	3 Neighborhoods for MDVRP
	4 Description of the Proposed Algorithm
	5 Parameter Tuning
	6 Computational Experiments
	7 Conclusions
	References

	Skewed Variable Neighborhood Search Method for the Weighted Generalized Regenerator Location Problem
	1 Introduction
	2 Problem Description
	3 Skewed Variable Neighborhood Search for the WGRLP
	3.1 Solution Representation
	3.2 Generating Initial Solution
	3.3 The Structure of the Proposed SVNS for WGRLP
	3.4 Efficient Objective Function Update

	4 Experimental Analysis
	4.1 Parameter Tuning
	4.2 Computational Results

	5 Conclusion
	References

	Using a Variable Neighborhood Search to Solve the Single Processor Scheduling Problem with Time Restrictions
	1 Introduction
	2 Variable Neighborhood Search
	2.1 Initial Solution and Neighborhood Structures
	2.2 Local Search and Shaking

	3 Fixed Neighborhood Search
	4 Computational Results
	4.1 Comparison Between VNS and FNS Algorithms
	4.2 Comparison Between VNS and the MIP Model

	5 Conclusion
	References

	An Evolutionary Variable Neighborhood Descent for Addressing an Electric VRP Variant
	1 Introduction
	2 Problem Description
	3 Related Works
	4 The Proposed Evolutionary Variable Neighborhood Method
	4.1 Representation of a Solution
	4.2 Initial Population
	4.3 Best Cost Route Crossover Operator
	4.4 The Variable Neighborhood Descent Procedure

	5 Experimental Setup
	5.1 Relevance of the VND Procedure
	5.2 Comparison with Some State-of-the-Art Methods

	6 Conclusion
	References

	A Variable Neighborhood Descent Heuristic for the Multi-quay Berth Allocation and Crane Assignment Problem Under Availability Constraints
	1 Introduction
	2 Literature Review
	3 Variable Neighborhood Descent
	3.1 Initial Solution
	3.2 Neighborhood Structures
	3.3 Sequential Variable Neighborhood Descent

	4 Computational Results
	5 Conclusion and Perspectives
	References

	A Variable Neighborhood Search Approach for Solving the Multidimensional Multi-Way Number Partitioning Problem
	1 Introduction
	2 Problem Statement
	2.1 Fundamental Notions
	2.2 Analysis of the Objective Function

	3 Proposed Algorithm
	4 Experimental Results
	5 Conclusion
	References

	A General Variable Neighborhood Search with Mixed VND for the multi-Vehicle multi-Covering Tour Problem
	1 Introduction
	2 Problem Description
	3 Solution Approach
	4 Computational Results
	5 Conclusions
	References

	A Hybrid Firefly - VNS Algorithm for the Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Permutation Flowshop Scheduling Problem
	3 Classic Firefly Algorithm
	4 Hybrid Firefly Variable Neighborhood Search Algorithm
	4.1 General Structure of the Algorithm
	4.2 Variable Neighborhood Search

	5 Computational Results
	6 Conclusions
	References

	Studying the Impact of Perturbation Methods on the Efficiency of GVNS for the ATSP
	1 Introduction
	2 Related Work
	3 Solution Method
	3.1 Variable Neighborhood Search
	3.2 Neighborhood Structures
	3.3 Shaking Methods
	3.4 GVNS Schemes

	4 Computational Analysis
	4.1 Computing Environment and Parameter Settings
	4.2 Computational Results
	4.3 Statistical Analysis on Computational Results

	5 Conclusions - Future Work
	References

	A GVNS Algorithm to Solve VRP with Optional Visits
	1 Introduction
	2 Problem Description
	3 General Variable Neighborhood Search Approach for the MDCTVRP
	4 Computational Experiments
	5 Conclusions
	References

	Author Index

