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Abstract

Warehousing is a key part of supply chain management. It primarily focuses on controlling the movement
and storage of materials within a warehouse and processing the associated transactions, including shipping,
receiving, and picking. From the tactical point of view, the main decision is the storage policy, that is, to decide
where each product should be located. Every day a warehouse receives several orders from its customers. Each
order consists of a list of one or more items that have to be retrieved from the warehouse and shipped to a
specific customer. Thus, items must be collected by a warehouse operator. We focus on situations in which
several orders are put together into batches, satisfying a fixed capacity constraint. Then, each batch is assigned
to an operator, who retrieves all the items included in those orders grouped into the corresponding batch in
a single tour. The objective is then to minimize the maximum retrieving time for any batch. In this paper, we
propose a parallel variable neighborhood search algorithm to tackle the so-called min–max order batching
problem. We additionally compare this parallel procedure with the best previous approach. Computational
results show the superiority of our proposal, confirmed with statistical tests.

Keywords: min–max order batching problem; parallel variable neighborhood search; general variable neighborhood search

1. Introduction

Warehouse management systems have become an essential part of the supply chain strategy. They
mainly focus on moving and storing materials within a warehouse by performing different transac-
tions (including shipping, receiving, and picking). The success of a warehouse management system
strongly depends on how customer orders (containing a set of goods or items) are retrieved. This
picking process may consume up to 60% of the total time of all labor activities in the warehouse
(Drury, 1988), which can assume more than half of the total operating costs. It consists of taking
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and collecting articles (items) in a specified quantity before shipment to satisfy the orders of the
customers.

As it is well documented in the literature, reducing the travel time of picking operations improves
order picking productivity. This is why batch strategies are used in warehouses and it is also one of
the aims that makes companies invest into conveyor systems. Travel time can easily account up to
50% or even more of the time spent on order picking tours. Note that other time-consuming activities
might include searching items, acceleration and deceleration of the picking cart, approximation to
the shelves, etc. By combining orders into a single batch, the time spent traveling is greatly reduced.
The smaller the order, the better the opportunity to combine multiple orders into a single batch.

Given a set of orders received in the warehouse, there are two basic order-picking strategies:
“strict-order picking” and “order batching.” In the first strategy, each picker collects all the items
included in one order. Once he/she finishes, the picker continues with the second order and so on.
In the order batching strategy, several orders are put together into batches. Then, each batch is
assigned to a picker, who can retrieve the items of any order grouped into the assigned batch, and
satisfy a capacity constraint (fixed by a maximum number of orders).

From an optimization point of view, we can identify two different problems: how to group orders
into batches (batching) and how to design the corresponding routes to collect them (routing). Ac-
cording to De Koster et al. (1999a), if both problems (i.e., batching and routing) are simultaneously
considered, the associated benefits can be considerably increased, reducing travel time more than
35%.

In this paper, we deal with an optimization problem that involves these two main actions: (a)
grouping the orders into feasible batches and (b) retrieving the items in each order from their
location, satisfying some constraints. In particular, the optimization problem addressed in this
paper is known as min–max order batching problem (OBP), where the specific aim is to minimize
the maximum retrieving time for all the generated batches.

We propose sequential and parallel algorithms based on the variable neighborhood search (VNS)
methodology to address it. The remainder of the paper is organized as follows. In Section 2, we
provide a literature review of the state of the art. In Section 3, we describe the problem. In Section
4, we present different strategies based on VNS to tackle the problem. The parallel VNS algorithm
designed to address the min–max OBP is described in Section 5. The computational experiments
and associated conclusions are presented in Sections 6 and 7, respectively.

2. Literature review

The aforementioned problems have been approached using different models. The OBP is probably
the most studied variant. It consists of distributing the orders among an unconstrained number of
batches such that the sum of the time of the picking tours (one per batch) is minimized. The OBP has
been proved to be NP-hard for general instances, but it is solvable in polynomial time if each batch
does not contain more than two orders (Gademann and Velde, 2005). Unfortunately, real warehouse
instances do not usually fall into this category. Therefore, the OBP has been heuristically approached
in the past years. For the sake of clarity, we restrict our revision to modern heuristic procedures. In
particular, Hsu et al. (2005) proposed a genetic algorithm for the OBP considering any warehouse
layout. Later, Albareda-Sambola et al. (2009) proposed a variable neighborhood descent (VND)
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algorithm that considered six different neighborhood structures. Henn et al. (2010) proposed two
procedures. The first approach is an iterated local search (ILS) algorithm that consists of a local
search procedure, which considers two neighborhoods, and a complex perturbation procedure.
The second method is a straightforward implementation of a rank-based ant system. Henn and
Wäscher (2012) improved previous results by proposing two metaheuristic methods. The first one
is tabu search algorithm that constructs the initial solution with a classical method (Clarke and
Wright, 1964; Gibson and Sharp, 1992) and improves it with a nested exploration of two different
neighborhoods. The second procedure is an attribute-based hill climbing (ABHC) method with two
genuine attribute sets. The most recent approach to tackle the OBP was presented in Öncan (2015),
where the author proposed several mixed integer linear programming (MILP) formulations to solve
the problem. More precisely, the difference among methods relies on the idea of using different
routing strategies to evaluate the solution. Additionally, the author proposed an ILS with a tabu
thresholding method that considers three different neighborhoods.

The online rescheduling OBP (OR-OBP) is a dynamic extension of the OBP (Rubrico et al.,
2011). In this variant, new orders are randomly added to the list of orders to be picked even while
the static orders are being retrieved. The number of batches is not limited and the objective function
is again the minimization of the total travel time. It is assumed that static and dynamic orders have
the same priority and all of them must be picked. Additionally, a dynamic order cannot be inserted
into a route currently being traversed by a picker. However, it can be added to a nonretrieved batch,
while capacity constraint is not violated. The OR-OBP has been recently (and simultaneously)
studied in Rubrico et al. (2011) and Henn (2012). In the former, the authors proposed a steepest
descent algorithm and a problem-dependent heuristic. Henn (2012) studied a slightly different
variant (online OBP), where there are only dynamic orders. He described a modified version of ILS
(previously used in the context of OBP) for this variant. More recently, Chen et al. (2016) studied
a more constrained version of this problem. Specifically, the authors considered the online version
with only dynamic orders but avoiding the congestion in the aisles (i.e., it is not allowed that two
or more pickers traverse the same point in an aisle at the same time). Chen et al. (2016) proposed
an ant colony optimization (ACO) algorithm to solve this variant in which each ant simulates the
behavior of humans in a warehouse.

The order batching and sequencing problem (OBSP) considers on time retrievals from a ware-
house to avoid production delays. In this variant, instead of determining the quality of a solution by
means of the total travel time, the order batching has to be evaluated with respect to the tardiness
of the corresponding orders (Elsayed et al., 1993). The tardiness is defined as the positive difference
between the collecting time of an order and its due date. If an order is collected before its due date,
the tardiness associated to that order is zero. Note that the orders of a given batch have the same
collecting time but some of them might satisfy a determined due date constraint and others might
not. The goal of this problem is then to minimize the sum of the tardiness associated to each order.
The OBSP has been recently studied in Henn and Schmid (2013), using a modified version of the
ILS and ABHC methods proposed in Henn et al. (2010) and Henn and Wäscher (2012), respectively.
Azadnia et al. (2013) proposed a hybrid approach based on combining a weighted association rule
mining to determine the affinity among orders with respect to their due date, a standard genetic
algorithm to produce a feasible batch configuration, and a different genetic algorithm to construct
the routes to collect batches. The last attempt to address the problem has been driven by Chen
et al. (2015). In this paper, the authors developed first, a genetic algorithm to search near-optimal
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solutions of order batching and batch sequencing and then, an ACO algorithm that searches the
shortest path for each batch.

Henn (2015) proposed a VNS method with eight different neighborhood structures for a problem
similar to the OBSP but considering multiple pickers (MP). This new variant is known as OBSP
with MP (OBSP-MP). A solution to the OBSP-MP can be interpreted as a set of batches and the
corresponding sequences (one for each order picker). A warehouse operator collects the customer
orders included in the first batch of his/her sequence. After returning to the depot he/she collects
the customer orders in the second batch of his/her sequence and so on. The goal of this problem is
to minimize the total tardiness.

Gademann et al. (2001) introduced the min–max OBP variant, which considers that a number of
batches is collected simultaneously by a group of pickers. It is usually denominated as “wave picking
operation.” In the context of warehousing, these operations are applied when the set of orders to
retrieve is large and, thus, the collecting time is important. Min–max OBP assumes that each picker
collects the items of one batch and all the pickers start their routes at the same time. The objective
function in this variant is to minimize the maximum retrieving time of any of the batches. This
variant was exactly solved by Gademann et al. (2001) with a branch-and-bound (B&B) algorithm
with four different lower bounds and a straightforward heuristic for the upper bound.

3. Problem description

The min–max OBP consists of a combination of two different tasks: batching and routing. In
particular, the warehouses considered in this paper have parallel aisles of equal length connected
by two cross aisles (one at the front and one at the back). They also have a depot located in either
the front or the back cross aisle. In Fig. 1, we illustrate an example of a warehouse layout with five
parallel aisles, two cross aisles, and a depot located at the left bottom corner.

In this problem, the warehouse receives orders and each one must be retrieved by a single picker.
An order consists of one or more order lines, where each one determines the number of items of a
given product that must be collected. The products are stored in the warehouse on different picking
positions. A position might have one or more levels organized in different shelves.

A picker retrieves the items in a given batch by following a specific route that starts and finishes at
the depot. The time employed in performing that route is known as “retrieving time” of a batch. It
is computed as the sum of the “travel time” plus the “extraction time” that includes, as mentioned
above, the time needed to localize the item and to extract it from its picking location, the associated
time employed in accelerating/decelerating the picking cart, etc. In this case, the extraction time
is considered as one unit per item retrieved. Note that the travel time is calculated by means of a
routing algorithm.

Let n be the number of orders, m the number of batches, and b = � n
m� the maximum number of

orders per batch. The number of orders that can be held into a batch is determined by its capacity
(i.e., it is assumed that the order weight/size/volume is one unit).

As mentioned earlier, the routing problem determines the value of the retrieving time. It can
be exactly solved in polynomial time (see Ratliff and Rosenthal, 1983). They presented a dynamic
programming algorithm that obtains a route by considering only six possible configurations of
traversing an aisle. Similarly, there are five different ways of going through two consecutive aisles
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Fig. 1. Warehouse layout.

Fig. 2. Optimal route.

(using either the front or back cross aisles). Thus, determining the optimal route is polynomially
solvable in O(na + ni) time, where na is the number of aisles and ni is the number of items to be
retrieved.

However, these routes might be hard to follow for human pickers, since they could imply to move
forward and backward in the same cross aisle. In Fig. 2, we show an example of how a picker
collects the items of a particular batch following this approach. The picking locations that contain
a required item are represented by black squares. Note that the route must reach the position of
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Fig. 3. S-shape strategy.

all black squares. The retrieving time is computed as the time needed to perform this route and
collect all the required items. As we can see in this example, the picker must perform a U-turn in the
front cross aisle. Therefore, this kind of solutions is usually discarded in real situations, resorting to
heuristic strategies.

The easiest heuristic routing strategy for warehouse workers is the S-shape or traversal strategy
(Goetschalckx and Ratliff, 1988). It consists of traversing an aisle, which contains at least one item
to collect, from the front cross aisle to the back cross aisle (or the other way round). If the number
of parallel aisles is odd, the last aisle is traversed until the farthest item from the front cross aisle.
In Fig. 3, we show an example of how a picker collects the items of a particular batch. Then, the
S-shape route must go through those aisles. Note that the last aisle is not fully traversed, since the
number of aisles is odd. The retrieving time is computed as the time needed to perform this route
and collect all the required items.

The largest gap strategy (De Koster et al., 1999b) is based on the idea of gap, which is defined in
a parallel aisle as the distance between two consecutive items to be retrieved within the aisle; the
distance between the front cross aisle and nearest item in the parallel aisle; or the distance between
the back cross aisle and nearest item in the parallel aisle. The largest gap distance of a parallel aisle
is the maximum of the previously defined distances. The largest gap strategy avoids to traverse the
largest gap distance, performing a U-turn when the picker reaches the position of the item where
the largest gap distance starts. In this routing strategy, the picker fully traverses both, the first and
last aisles that contain required items. The rest of the parallel aisles are partially traversed since
the picker avoids to traverse the largest gap distance. In Fig. 4, we illustrate an example of a batch
retrieving, where the required items are again represented by black squares. As we can observe in
this figure, the first and last aisles are fully traversed. The second and third aisles are entered and
exited from the back cross aisle and front cross aisle (performing two U-turns). However, the fourth
aisle is only entered and exited from the back cross aisle (performing only one U-turn).
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Fig. 4. Largest gap strategy.

Fig. 5. Combined strategy.

The combined strategy was originally introduced in Roodbergen and De Koster (2001) as a
combination of the two previously defined strategies. Afterwards, Albareda-Sambola et al. (2009)
proposed a more elaborated version of this routing algorithm. In particular, it determines whether
it is better to traverse an aisle with the S-shape or with the largest gap strategy. More precisely,
after collecting all items of one aisle, the algorithm decides whether to go to the rear end of an aisle
(S-shape) or to return to the front end (largest gap). These two alternatives are compared to each
other, selecting the one that results in the shortest route. Thus, after leaving an aisle, the algorithm
evaluates the same two alternatives for the next one. This means that there are always two possible
routes to follow. In Fig. 5, we show an example of a route obtained by the combined strategy where
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the first, second, third, and fifth aisles are traversed with the S-shape strategy and the fourth aisle is
traversed with the largest gap strategy.

In general, the implementation of the combined strategy is considerably more complex than
the other two. However, it usually produces better outcomes (Albareda-Sambola et al., 2009).
In this paper, we then select the combined strategy among the heuristic approaches to be com-
pared to the exact method (Ratliff and Rosenthal, 1983) in order to construct the routes of the
picker. This comparison could help to analyze the independence of the batching and routing
strategies.

4. VNS methodology

VNS is a metaheuristic introduced by Mladenović and Hansen (1997), which exploits the idea
of neighborhood change in a systematic way, both descending to a local optimum and escaping
from the basin of attraction of that local optimum. The original metaheuristic has been widely
evolved with many extensions. For instance, VND explores the neighborhood in a deterministic
way by using several local search procedures; reduced VNS (RVNS) explores solutions at random
in each neighborhood by perturbing the solutions with the shaking procedure; basic VNS (BVNS)
combines deterministic and random exploration of the neighborhoods.

In this paper, we propose a general VNS (GVNS) for the min–max OBP. This scheme was first
used in Caporossi et al. (1999), although they had no name yet. The pseudocode of this algorithm
is shown in Algorithm 1. This scheme has three input parameters, namely, the initial solution (S),
largest neighborhood to be explored (kmax), and maximum computing time (tmax). The influence
of the parameter kmax on the search is studied in Section 6. The tmax is set in order to match the
computing time of previous approaches in the state of the art.

The construction of the initial solution does not belong to the GVNS scheme. In fact, the initial
solution might be constructed at random, as it is usual in many papers by the VNS community.
However, as it is well documented in the related literature (see Duarte et al., 2012; Lozano et al.,
2012; Sánchez-Oro et al., 2014, 2015), a more elaborated constructive procedure might improve
considerably the quality of the best solution found. In Section 4.1, we describe the constructive
procedures proposed for the min–max OBP.

The GVNS algorithm starts by initializing k to the first neighborhood (step 3) and then, it en-
ters the main loop (steps 5–7). First, the current solution is perturbed, in the shake procedure,
by applying a random move in the kth neighborhood (see Section 4.2). Then, the obtained solu-
tion is improved within a VND procedure that considers two different neighborhoods (see Section
4.3). The VND is described in detail in Section 4.4. Finally, we use a standard implementation
of neighborhood change method. In particular, this procedure determines which neighborhood
is the next one to be explored. If the perturbed and improved solution (S′′) outperforms S, the
GVNS method considers S′′ as the new incumbent solution (S ← S′′) and resets the search to the
first neighborhood (k ← 1). Otherwise, the current solution is not updated, but a larger neigh-
borhood is explored (k ← k + 1). These three steps are repeated until the largest neighborhood
(kmax) is explored without finding an improvement. Then if the maximum computing time (tmax)
has not been exceeded, the GVNS performs a new iteration; otherwise, it returns the best solution
found.
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Algorithm 1. GVNS algorithm

1: procedure GVNS(S, kmax, tmax)
2: repeat
3: k ← 1
4: repeat
5: S′ ← Shake(S, k)

6: S′′ ← VND(S′)
7: NeighborhoodChange(S, S′′, k)

8: until k > kmax
9: t ← CPU T ime()

10: until t ≥ tmax
11: return S
12: end procedure

4.1. Constructive methods

We propose two different greedy constructive procedures. Both of these procedures fill batches
sequentially, that is, they start filling the first batch, then the second batch, and so on. Algorithm 2
shows the pseudocode of the first constructive procedure, denominated C1. It begins by initializing
the solution S to the empty set (step 2). Then, we define O as the set of orders not included yet in
the solution (step 3). Note that we do not have a complete solution until O is empty. Once these
variables are initialized, the procedure greedily selects the orders to be included in each batch (steps
4–12). In particular, batch Bi is initialized in step 5. Then, while the size constraint is not satisfied
(steps 6–10), the greedy function, denoted as g1, determines the best order to be included in the
solution under construction. Specifically, C1 selects the order O� that minimizes the retrieving time
of the current batch (step 7). When an order has been selected, it is included in the corresponding
batch (step 8) and removed from the set O (step 9). When the batch Bi is filled, it is added to S (step
11) and C1 performs a new iteration. The constructive procedure ends when all orders have been
assigned to one of the m available batches, returning the solution S.

The second constructive procedure, denominated C2, considers a different greedy function, g2.
Specifically, instead of selecting the order that minimizes the retrieving time of the batch Bi, C2
chooses the order that maximizes the relative number of shared items between the corresponding
order and the items already in Bi. Let us illustrate this new greedy function with an example. Suppose
that the batch Bi already has the orders Oa and Ob, and we want to evaluate the greedy value when
we include order Oc. Then, this value is computed as

g2(Bi, Oc) = |Oa ∩ Oc| + |Ob ∩ Oc| − |Oa ∩ Ob ∩ Oc|
|Oa ∪ Ob ∪ Oc|

.
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Algorithm 2. Scheme for the constructive algorithms

1: function C1
2: S ← ∅
3: O ← {O1, O2, . . . , On}
4: for i = 1 to m do
5: Bi ← ∅
6: while |Bi| < b and O �= ∅ do
7: O� ← arg min

O∈O
g1(Bi, O)

8: Bi ← Bi ∪ {O�}
9: O ← O\{O�}

10: end while
11: S ← S ∪ Bi
12: end for
13: return S
14: end function

Note that we subtract the intersection of Oa, Ob, and Oc to avoid double counting those items
that are simultaneously in the three orders. We do not provide the pseudocode of this procedure,
since it is completely equivalent to the procedure presented in Algorithm 2, but replacing the greedy
function g1 with g2 and min-operator with max-operator (see step 7 in Algorithm 2).

4.2. Shake strategy

The shake stage is usually introduced in VNS as an effective strategy to escape from a basin of
attraction. Given a solution S, the shake procedure randomly generates a solution S′ by applying
k moves to S. In general, it is said that solution S′ is in the neighborhood Nk(S). More precisely,
Nk(S) contains the set of solutions that can be reached by applying k consecutive moves.

There are some optimization problems where the topology of the search space is so steep that
a straightforward implementation of the shake procedure is not enough to escape from a basin of
attraction, and we require more aggressive strategies. As we will empirically show in the compu-
tational experience, the min–max OBP falls into this category (i.e., the depth and height of some
local maxima and minima are so large that it is not always possible to escape from them by simply
shaking the current solution). We overcome this situation using a more elaborated perturbation
schema (involving four different orders allocated in four different batches). This move is inspired
in the ejection chain methodology (Glover, 1992). Figure 6 illustrates how this move works. It
considers four different batches, namely, Ba, Bb, Bc, Bd and one order per batch (Oa, Ob, Oc, Od ,
respectively). The proposed shake procedure requires that, at least, one of the involved batches
presents the largest retrieving time since that batch determines the value of the objective function.
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Ba

Oa

Bc

Oc

Bb

Ob

Bd

Od

Fig. 6. Shake procedure.

The other three batches are selected at random. The four orders involved in the shake strategy are
also selected at random from its corresponding batch.

The shake procedure starts by selecting one order, Oa ∈ Ba, removing it from its current batch
and inserting it in batch Bd . In order to make room for Oa, the order Od is removed from its current
batch (Bd ) and it is inserted in Bc, producing the ejection of order Oc from Bc to Bb. Finally, order
Ob is moved from Bb to Ba finishing the chain. Note that this chain represents a perturbation within
the shake procedure (i.e., k = 1). Therefore, k = 2 implies two different chains of moves, and so on.
In this case, the batch Ba is always the batch with the largest retrieving time. Otherwise, the shake
strategy does not produce the desired effect.

4.3. Neighborhood structures

A solution to the min–max OBP is represented as a list of m batches (i.e., S = {B1, B2, . . . , Bm}),
where each batch Bj contains b orders, and each order is formed by an unfixed number of items
that must be retrieved. According to this solution representation, the swap move, denoted by
Swap(S, Oi, Bj, Ok, Bl ), produces a new solution S′ starting from the solution S, where the order
Oi is removed from its current batch (Bj) and inserted in batch Bl . Simultaneously, the order Ok is
removed from its batch Bl and inserted in Bj . Considering this move, the neighborhood associated
to the solution S is

NSwap-1(S) = {S′ ← Swap(S, Oi, Bj, Ok, Bl )

with 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ m, i �= k, and j �= l}.

The second considered neighborhood is based on a composed move that con-
sists of applying the swap move two consecutive times. This move is implemented as
Swap(Swap(S, Oi, Bj, Ok, Bl ), Op, Bl , Oq, Br). Specifically, it considers four orders (Oi, Ok, Op, and
Oq) allocated in three different batches (i.e., Oi ∈ Bj, Ok ∈ Bl , Op ∈ Bl , and Oq ∈ Br). This move
swaps the orders Oi and Ok between their respective batches (Bj and Bl ) and then, swaps orders Op
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and Oq between their respective batches (Bl and Br). Note that Oi and Op might be the same order
since the inner Swap-move is always performed before the outer Swap-move. The neighborhood of
the solution S generated by this move is

NSwap-2(S) = {S′ ← Swap(Swap(S, Oi, Bj, Ok, Bl ), Op, Bl , Oq, Br)

with 1 ≤ i, k, p, q ≤ n, 1 ≤ j, l, r ≤ m, i �= k, p �= q,

i �= q, j �= l, l �= r, and r �= j}.

The complexity of exploring the whole neighborhood (the worst case) is cubic with respect to the
number of batches, i.e., |NSwap-2(S)| = O(m3). Therefore, if it is exhaustively explored, the associated
computing time could be considerably enlarged. In order to reduce this time, we fix Bj to be the
batch with the largest retrieving time. This simplification reduces NSwap-2(S) from cubic to quadratic
size in terms of the number of batches.

4.4. Improvement methods

Local search methods are likely the oldest and simplest heuristic methods used to improve solutions.
Starting from a given feasible solution, these procedures explore a determined neighborhood in each
iteration, replacing the current solution if a neighbor improves the objective function. The search
ends when all neighbor solutions are worse (i.e., larger objective function value in a minimization
problem), meaning that a local optimum is found.

There exist two typical strategies to explore the corresponding neighborhood: best improvement
and first improvement. In the former, the associated neighborhood is completely explored by a
fully deterministic procedure, performing the best associated move. In the latter, it tries to avoid the
scanning of the whole neighborhood by performing the first improving move encountered during
the exploration of the corresponding neighborhood. In general, iterations performed in the first
improvement strategy are more efficient than iterations in the best improvement strategy, since the
former only evaluates part of the neighborhood, while the latter explores it completely. On the
other hand, the improvement obtained in the first improvement strategy is typically smaller than
the improvement achieved by the best improvement strategy, requiring in general more iterations to
obtain the local optimum.

A straightforward implementation of the best improvement local search, based on swap moves,
implies to explore a relatively large neighborhood. Specifically, in NSwap-1, the swap move evaluates
for each batch and each order its potential swapping with the remaining batches and orders.
Therefore, the size of this neighborhood is m2 × b2. As it is pointed out by Hoos and Stützle (2004),
the best improvement strategy is usually more adequate to perform efficient caching and updating
mechanisms, which allows the search to efficiently explore the neighborhood. Considering the ideas
described in Clarke and Wright (1964) about saving matrices, we propose an efficient local search
method, denoted as LS1, to explore NSwap-1. It is based on a nonsymmetric n × n matrix, where
each element located in the row i and column j stores the increment (positive value) or decrement
(negative value) of the retrieving time of each batch if we swap the order Oi (in one batch) with the
order Oj (in a different batch). Table 1 shows an example of this matrix for a problem with six batches
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and four orders per batch. For the sake of simplicity, the orders are grouped together according
to their batches and lexicographically numbered. Note that if we swap two orders belonging to the
same batch, the retrieving time does not change. For example, as illustrated in Table 1, the swap of
orders O1, O2 does not produce a change in the retrieving time of the batch. In other words, the
corresponding value of row 1 (column 2; symmetrically, row 2 (column 1)) is zero. On the other
hand, if we swap the order O2 with the order O9, we would obtain a decrement of 11 time units (see
row 2 (column 9)) for the batch B1 and, simultaneously, it would produce an increment of one time
units for batch B3 (see row 9 (column 2)). The potential improvement would be the sum of these two
values. If it results in a positive value, the corresponding swap move would produce a deterioration
of the current solution; otherwise it would be considered an improving move. In the example of
swapping O2 with O9, the resulting value is −11 + 1 = −10, which means that this move eventually
improves upon the current solution.

We consider an additional array with size n that stores, for each order, the best possible swap with
another order. We do not show this array since it can be easily derived by computing the minimum
value of each row of the matrix. The best improving move is then the minimum value of this array.
In the example described above, the best available move is to swap O2 with O9, reducing the value
of the retrieving time of B1 in 11 time units.

Once we perform a swap move, the matrix must be updated. In particular, if we perform the best
move, that is, Swap(S, O2, B1, O9, B3), we only need to recalculate part of this matrix. In particular,
we need to reevaluate the retrieving time of the batches involved in the corresponding move. In
Table 2, we show the new matrix after performing the best move, where the modified values are
highlighted in gray.

The second neighborhood NSwap-2 is constructed by applying the swap move for two consecutive
times, affecting three different batches. As it was mentioned above, one of these is set to the batch
with the largest retrieving time. Therefore, the size of this neighborhood is m2 × b3 in the worst case,
which is even larger than NSwap-1. This neighborhood can either be explored using the first or best
improvement strategy. We select the former since NSwap-2 is scanned within a VND procedure, where
it first explores NSwap-1 (until reaching a local optimum with respect to that neighborhood), and then
NSwap-2. If we explored NSwap-2 with the best improvement strategy, we should use a matrix similar
to the matrix described for NSwap-1. Then, after performing a move in NSwap-1, we should update
both matrices (although the method does not perform a move in NSwap-2). Even worse, once we get
a local optimum with respect to NSwap-1, the VND method explores NSwap-2 where it is likely that,
after a few iterations, it finds an improvement, returning again to NSwap-1. Therefore, this matrix
is not exhaustively exploited, but requires large effort to keep it updated. We have experimentally
confirmed this fact. Therefore, the local search method, denominated LS2, responsible of scanning
NSwap-2, is based on the first improvement strategy.

4.5. Alternative objective function

The objective function value of the min–max OBP consists in minimizing a maximum value. Con-
sequently, there may be many different solutions with the same objective function value, since it is
only determined by the batch with the largest retrieving time. These problems are a challenge for
local search based methods, since these are based on improving moves and most of these reduce
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the retrieving time of a batch but not the time that determines the value of the objective function.
Therefore, the value of the objective function is not modified.

Let S = {B1, B2, . . . , Bm} be a solution of the min–max OBP. Without loss of generality, we
assume that the batches are sorted in a descending order of the corresponding retrieving time
(i.e., tB1

≥ tB2
, · · · , ≥ tBm

). Then, the value of solution S is tB1
. It is not possible to improve the

current objective function by performing a move without considering B1. To overcome the lack
of information provided by the move value in terms of the objective function, we extend here the
meaning of “improving.”

Let tB j
and tBl

be the retrieving times of batches Bj and Bl . Symmetrically, tB′
j

and tB′
l

are the
retrieving times of B′

j and B′
l . A swap move, Swap(S, Oi, Bj, Ok, Bl ), produces a new solution

S′ = {B′
1, B′

2, . . . , B′
m}, where

tBs
= tB′

s
, s �= j, s �= l

B′
j = Bj \ Oi ∪ Ok

B′
l = Bl \ Ok ∪ Oi.

In order to evaluate the quality of this move, we identify

tmax = max{tB j
, tBl

}
tmin = min{tB j

, tBl
}

t′
max = max{tB′

j
, tB′

l
}

t′
min = min{tB′

j
, tB′

l
}.

Then, we assume that the swap move improves the current solution if t′
max < tmax or, alternatively,

t′
max = tmax and t′

min < tmin. Let us illustrate it with an example. Suppose that the retrieving time
of batches Bj and Bl are tB j

= 10 and tBl
= 2, respectively. Let us assume that after performing a

move, the new retrieving times are t′
B j

= 4 and t′
Bl

= 9. Then, although the retrieving time of B′
l has

been considerably deteriorated (from 2 to 9), the corresponding move is accepted since the largest
retrieving time has been reduced (from 10 to 9).

5. Parallel VNS

Nowadays, as a result of the evolution of computer architectures, modern computers are able to
execute different programs simultaneously, since they have several processors. Computer scientists
have been using this capability to increase the performance of their programs. This fact is particularly
effective in the case of heuristics and metaheuristics (see Alba, 2005; Talbi, 2009). However, to make
the most of the multiprocessor architecture, algorithms must be redesigned to be adapted to the
specific architecture.

There exists several parallelization technologies that are suitable for implementing parallel al-
gorithms (threads, OpenMP, CUDA, etc.). We refer the reader to Cook (2012), Gao et al. (2008),
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Oaks and Wong (2004) for some tutorials on parallel programming. In this paper, we focus on
the use of threads. In programming languages, a thread is defined as a fragment of code that is
independently executed in a processor. “Pthreads” and “Java threads” are considered the most rep-
resentative tools. In particular, Pthreads (POSIX threads) was defined in the mid-1990s as an effort
to provide a unified set of C library routines in order to make multithreaded programs portable.
Java threads is a version of Pthreads for Java programming language, which offers the advantages of
the portability inherent to Java programs. In addition, Java threads can be easily used to tackle task
parallel applications. Therefore, we select this technology to implement our parallel algorithms.

The parallelization of a metaheuristic must be intended to either reduce the computing time of the
sequential algorithm or to explore a wider portion of the search space (Garcı́a-López et al., 2002).
The first step in parallelization is to identify which parts of the sequential algorithm can be redesigned
to be executed in parallel efficiently. In this paper, we investigate an efficient parallelization of the
VNS methodology (for some successful examples, see Garcı́a-López et al., 2002; Crainic et al.,
2004).

As far as we know, the first attempt to parallelize VNS was presented in Garcı́a-López et al.
(2002). Specifically, the authors proposed three different approaches: synchronous parallel VNS
(SPVNS), replicated parallel VNS (RPVNS), and replicated shaking VNS (RSVNS). The idea
behind the first approach, SPVNS, is to parallelize the local search method of a sequential VNS
with the goal of reducing the computational time. This is mainly because the local search method
is usually the most time-consuming part of the VNS algorithm. More precisely, SPVNS splits the
execution of the local search in several threads. The second approach, RPVNS, explores a wider
portion of the solution space using a multistart strategy. Specifically, RPVNS executes several VNS
methods in parallel, each one in a different thread. The last variant, RSVNS, follows a classical
master–slave scheme. In particular, the master executes the VNS, and each slave executes the shake
and local search methods.

Later, Crainic et al. (2004) proposed a new parallel VNS approach called cooperative neighbor-
hood VNS (CNVNS), which also uses the master–slave scheme. CNVNS considers the cooperative
exploration of different neighborhoods by different threads. The master is responsible for maintain-
ing, updating, and communicating the current overall best solution. It also initiates and terminates
the algorithm executed in each thread. Each slave performs the exploration of a different neighbor-
hood and communicates its local best solution to the master process. Then, the master communicates
the best solution found to the slaves every time it is updated, making the slaves to continue the search
from the new best solution.

To select the most suitable parallel VNS strategy for the current problem, it is essential to evaluate
how each variant fits to the min–max OBP. The local search methods proposed for this problem
are mainly sequential, that is, each iteration depends on the previous iteration. This fact makes
the parallelization of the local search worthless. Therefore, SPVNS approach is not suitable for
this problem. The RPVNS approach is well suited for VNS variants that use a multistart strategy.
However, the algorithms proposed in this paper to construct solutions does not follow a multistart
strategy. Then, the RPVNS approach is also discarded. The CNVNS is basically conceived for
optimization problems where different type of moves are defined, determining different topologies
of the search space. However, the moves associated to the min–max OBP are always based on
swap moves (i.e., interchanging orders between batches). Therefore, the CNVNS cannot be easily
adapted to this problem. This paper therefore focuses on the RSVNS methodology to redesign the
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Fig. 7. Replicated shaking VNS.

general VNS described in Section 4 as a parallel procedure. This methodology allows the search to
explore simultaneously p solutions (where p is the number of threads) in the current neighborhood.
Therefore, in a single iteration, this variant is able to explore p solutions, while the sequential version
explores only one. Note that if p processors are available, the computing time of the parallel and
sequential versions should be similar, since the objective of RSVNS is not to reduce the computing
time, but to explore a wider portion of the solution space.

In Fig. 7, we graphically show the proposed parallel procedure. In particular, the algorithm starts
from an initial solution, S, constructed with the method proposed in Section 4.1, which becomes
the current best solution. The algorithm then creates p threads, where each one perturbs the current
solution S with the shake procedure, generating a new solution S′

i in the current neighborhood. It
is important to remark that for each neighborhood, instead of generating only one solution (as the
sequential implementation does), we generate p different shaken solutions, increasing the explored
portion of the solution space.

Then, each solution is improved with the VND procedure described in Section 4.4, resulting in p
local optima S′′

i (with 1 ≤ i ≤ p). The algorithm program waits until all the threads have finished the
search with a barrier synchronization method. Then, the best solution, S′′, among them is selected.
Finally, the algorithm executes the NeighborhoodChange procedure defined in Section 4. It basically
determines whether to perform a new parallel iteration (k < kmax) or not (k = kmax), returning the
best solution found during the search. Note that this procedure is executed in the master thread
(i.e., it is the only part of the VNS procedure not executed in parallel).

6. Computational experiments

In this section, we present the experiments performed to empirically study the influence of the
proposed strategies and then to compare our best variant with the best algorithm identified in the
state of the art (Gademann et al., 2001). We implemented our algorithms in Java 7, which were run
on an Intel Core i7 with 2.5 GHz and 4 GB of RAM with Linux Mint Debian Edition 64 bit OS.
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We consider two sets of instances previously used in the context of OBP. All of these are available
at http://www.optsicom.es/mmobp/. We have divided the description of each set of instances into
three different parts: warehouse layout, item distribution, and customer orders.
Set HW (Henn and Wäscher, 2012). This set contains 2560 instances whose main features are as

follows:

� Warehouse layout: It consists of 900 storage locations, where each one stores a different article
(item). The warehouse has 10 aisles with 90 storage locations each (45 on either side of each aisle).
The length of each storage location is set to 1 length unit (LU). When the picker leaves an aisle,
it is assumed that he/she moves 1 LU (from either the first or last storage location to the cross
aisle). Finally, the picker spends 5 LU to move from the current aisle to the next aisle. The depot
is located 1.5 LU away from the first storage location in the leftmost aisle.

� Item distribution: There are two different scenarios: (a) ABC distribution and (b) random distri-
bution. In the first scenario, items can be grouped into three classes. The first scenario contains
very demanded items (Class A), where 10% of the articles represent 52% of the demand. The
second class contains items with medium demand (Class B), where another 30% of the articles
accounts for 36% of the demand. Finally, Class C contains items with low demand and represents
the final 60% of the articles that represents the 12% of the demand. Articles of Class A are stored
in the first aisle, articles of Class B in the second, third, and fourth aisles, and articles of Class C
in the remaining six aisles. Note that items are randomly located within a demand class. In the
second scenario, items are randomly distributed among the storage locations.

� Customer orders: This set of instances considers four different sizes of orders, n = {40, 60, 80, 100},
where the number of items per order is uniformly distributed in {5, 6, . . . , 25}. The capacity of
the picking device C (defined as the maximum number of items that can be assigned to a batch)
has been fixed to 30, 45, 60, and 75.

Set AAMD (Albareda-Sambola et al., 2009). This set contains 2400 instances whose main features
are as follows:

� Warehouse layout: It considers four different warehouses: W1, W2, W3, and W4. The first ware-
house has four parallel aisles with 60 storage locations (30 per side) and a total aisle length of
50 m. The distance between two consecutive aisles is 4.3 m and the picker speed is set to 0.6
m/second. W2 contains 10 aisles (20 storage locations on each side) with a length of 10 m. The
separation between aisles is 2.4 m and the picker speed is also 0.6 m/second. The third warehouse
has 25 aisles (25 storage locations per side) of length 50 m. The distance between two consecutive
aisles is 5 m, and the picker speed 2 m/second. Finally, W4 has 12 aisles (16 storage locations per
side) of 80 m length. The distance between two consecutive aisles is 15 m, and the picker speed is
1 m/second.

� Item distribution: This set of instances also considers an ABC distribution and random distribu-
tion. In this case, Class A contains 20% of the articles representing 80% of the demand. Class
B contains 20% of the articles representing 10% of the demand. Finally, Class C contains the
remaining 60% of the articles that represents 10% of the demand. Items belonging to each class
are assigned to aisles according to these percentages. The random distribution is equivalent to the
aforementioned distribution.
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Table 3
Comparison between constructive methods

Constructive Time (seconds) Dev. (%) #Best

C1 0.78 0.16 11
C2 0.01 2.93 6

� Customer orders: The order size for W1, W2, W3, and W4 is, respectively, U (1, 7), U (2, 10),
U (5, 25), and U (1, 36), where U indicates a uniform distribution. The weight of each item is
set to 1 for W1, W2, and W3. In the fourth warehouse, W4, the weight is randomly generated
according to an uniform distribution U (1, 3). Finally, the capacity of the picking device, C, is set
to 12, 24, 150, and 80 for each warehouse, respectively.

The number of instances in the original sets is huge (totalizing 4960 instances). In particular, the
set HW contains 64 groups of 40 similar instances. Similarly, the set AAMD has 80 groups of 30
similar instances. Therefore, we propose to use only one instance per group, selected at random, to
ease future comparisons, reducing the original dataset from 4960 to 144 instances. We have observed
that there are no significant differences between using the whole dataset or the reduced dataset.
To this end, we have empirically tested this hypothesis by performing a previous experiment with
simple heuristics (constructive procedure coupled with a local search). The obtained results were
very similar, on average, in both datasets, which validates our original hypothesis.

In order to study the robustness of our proposal, we have considered different number of batches
(i.e., m = {5, 10, 20, 25}). Considering that the instances reported in the literature establishes that the
number of orders must be a multiple of the number of batches, we have then selected m = {5, 10, 20}
for Set HW and m = {5, 10, 25} for Set AAMD. Therefore, the 144 instances previously selected
becomes 432 instances, since we consider three values of m per instance.

6.1. Preliminary experimentation

In this section, we show the merit of the proposed search strategies by conducting several experiments
with a representative subset of the instances selected, with different properties (10% of the whole
set). We first study the performance of the proposed constructive procedures (see Section 4.1).
Table 3 summarizes, for each method, the average execution time in seconds (Time (seconds)), the
average percentage deviation with respect to the best results found in the experiment (Dev. (%)),
and the number of times that each method matches the best sotion (#Best).

As expected, the computing time of these procedures is almost negligible (less than a second).
In particular, C1 is considerably slower than C2. This difference in the computing time is mostly
due to the fact that C1 executes a routing algorithm (see Section 3). Attending to the average
deviation and the number of best solutions found, C1 seems to be better than C2. However, we have
performed a Wilcoxon pairwise nonparametric test to certify whether the differences are significant
or nonsignificant. The obtained p-value is 0.018, which indicates that there are statistically significant
differences between both constructive methods, when considering a standard significance level of
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Fig. 8. Comparison of the execution time when using the “matrix-based” implementation or “direct-based”
implementation in the local search.

Table 4
Comparison between LS1, LS2, and VND

Method Time (seconds) Dev. (%) #Best

LS1 6.37 0.52 7
LS2 2.06 2.48 7
VND 9.62 0.12 12

α = 0.05. We then select C1 as a constructive procedure since it presents better performance and the
computing time is not relevant when comparing it with the execution time of the whole algorithm.

In the next experiment, we study the influence of the matrix of retrieving times in the performance
of the local search, LS1 (see Section 4.4). In order to do so, we constructed solutions (with C1) and
improved them with the two variants of LS1: using the cached information about retrieving times
(matrix) or not (direct). In Fig. 8, we depict a bar diagram where the X -axis represents the instances
in the preliminary set and Y -axis reports the computing time required to obtain a local optimum
with both methods in the corresponding instance. As it is clearly shown in Fig. 8, the saving in
computing time when using the “matrix-based” implementation is significant. Specifically, for these
14 instances “direct” needs 12.82 seconds on an average to obtain a local optimum, while “matrix”
requires 6.37 seconds on an average to obtain the same local optimum, that is, two times faster. We
then use the “matrix” variant for the remaining experiments.

In the third preliminary experiment, we compare the performance of the VND (see Section 4.4),
with the local search procedures in isolation (i.e., LS1 and LS2). Typically, VND explores the
neighborhoods from the smallest to the slowest and largest. Consequently, our VND first considers
NSwap-1 and then NSwap-2. Results in Table 4 confirm that the VND procedure compares favorably
with respect to simple local search methods. We have additionally confirmed this fact by conducting
a Friedman nonparametric test, which ranks the algorithms according to their quality. The resulting
p-value of 0.044 indicates that there exists statistical differences among the local search methods
(considering α = 0.05). Specifically, VND achieves the lowest deviation (0.12%) and a rank value
of 1.64, compared to the two local search methods tested (0.52% with ranking 2.00 and 2.48%
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Table 5
Influence of kmax on the performance of the GVNS

kmax Time (seconds) Dev. (%) #Best

3 22.60 3.06 7
4 32.92 2.92 9
5 43.94 0.40 11
6 53.23 0.37 12
7 70.10 0.00 14

with ranking 2.36 for LS1 and LS2, respectively). It is worth mentioning that the results of LS2
in isolation seem to be quite bad. However, when coupling LS1 and LS2 in a VND strategy, the
resulting algorithm obtains the best outcomes.

The next experiment consists in determining the influence of the parameter kmax on the perfor-
mance of GVNS. In particular, we consider kmax = {3, 4, 5, 6, 7}. In Table 5, we show the associated
results. As expected, the higher the value of kmax, the better the results. In this case, the Friedman
test again highlights the statistically significant differences among the tested algorithms (p-value
<0.001), becoming kmax = 7 the first algorithm in the ranking (2.39), closely followed by kmax =
6 (2.61) and kmax = 5 (2.79). The remaining values (i.e., kmax = 4 and kmax = 3) have a lower perfor-
mance with an associated ranking values of 3.43 and 3.79, respectively. It is worth mentioning that
the computing time increases with the value of kmax, so we set kmax = 5 as a compromise between
computing time and quality.

According to Crainic and Michel (2003), the classical performance measure for parallel algorithms
(i.e., speedup described by Barr and Hickman, 1993) is not adequate to evaluate the performance
of parallel metaheuristics. This is due to the fact that asynchronous interactions between threads
generally induce significant differences in search behavior, not only for the global parallel method,
but also for each process participating in cooperation. Therefore, the sequential and parallel methods
may then be viewed as different metaheuristics, requiring a redefinition of speedup and other
performance measures. This situation is further aggravated by the randomness embedded in the
VNS methods considered in this paper. However, it is important to note that a parallelization
strategy should accelerate the search or, alternatively, produce better results than the sequential
method. Consequently, we compare the quality of the solutions obtained by the sequential and
parallel VNS methods to evaluate the quality of the parallel design strategy. In particular, the next
experiment compares the performance of the GVNS (Section 4) and its parallel redesign following
the RSVNS methodology (Section 5). We conduct this experiment on a computer able to execute
up to eight processes (threads) simultaneously. Therefore, we consider one thread (i.e., sequential
version), and two, four, and eight threads. In Table 6 we report the associated results, where the
parameter in parenthesis indicates the number of threads. Notice that, in this table, RSVNS(1) is
equivalent to GVNS.

In Table 6, we show that all parallel versions outperform the sequential VNS method, RSVNS(1),
according to the statistics in the table. In this experiment, the p-value associated to the Friedman
test is 0.026, which indicates that there are statistically significant differences among all the variants,
emerging RSVNS(8) as the best method in the experiment. These results can be partially explained
by the fact that the proposed parallel methods explore larger portions of the search space. We also
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Table 6
Comparison of different configurations of RSVNS when varying the number of threads

No. of threads Time (seconds) Dev. (%) #Best

RSVNS(1) 43.94 1.73 6
RSVNS(2) 40.01 1.55 6
RSVNS(4) 51.78 0.99 6
RSVNS(8) 78.17 0.36 12

observe that the best outcomes are obtained with eight threads. It presents an average deviation
of 0.36% and 12 best-found solutions (out of 14), which compares favorably with the sequential
version (1.73% and 6). Computing times of the sequential version and parallel versions with two
and four threads are similar (about 50 seconds). This is mainly because the objective of RSVNS is
not the reduction of the computing time, but the exploration of a larger portion of the search space.
However, the parallel version with eight threads has a considerably larger computing time. This
deviation is mainly due to one instance, where the RSVNS(8) uses more than 400 seconds while the
computing time of the other three variants is about 80 seconds. However, this extra time drives to
a much better local optimum. We therefore select the parallel variant with eight threads as the best
procedure for our final experimentation.

6.2. Final experimentation

Once we have identified the best parameters and strategies among our proposed variants, the final
experiment is intended to compare the performance of our best proposal with the best previous
approaches in the state of the art. In particular, we have selected C1 as a constructive procedure,
VND as improvement strategy, and RSVNS with eight threads as the best RSVNS variant, to
compose our best algorithm. For the sake of simplicity, our method is named as RSVNS. This
approach is then compared to the heuristic algorithm described in Gademann et al. (2001), denoted
in the following as Heur-Gademann et al., and with the exact procedure also described in the same
paper, denoted as B&B-Gademann et al.

For this final comparison, we considered the full set of 432 instances. In order to have a fair
comparison, the heuristic methods are executed for a similar computing time. On the other hand,
the exact method has been executed for a maximum computing time of 600 seconds, as suggested by
the authors. Results in Table 7 are split into two main groups, since we have considered two routing
strategies. Specifically, we test the performance of the three compared methods (Heur-Gademann
et al., B&B-Gademann et al., and RSVNS) by joining them with a heuristic and exact routing
strategies (combined and Ratliff and Rosenthal methods, respectively). Note that we do not report
the optimal value when using the combined strategy, since it does not guarantee the optimal route.

The first conclusion that we can extract by analyzing these results is that the new proposal
clearly outperforms the previous methods in the state of the art when considering both routing
strategies. In particular, considering the whole set of instances (432), RSVNS obtains the lowest
average deviation and the highest number of best solutions found in the same (or even lower)
computing time. Specifically, RSVNS achieves an average deviation of 0.17% and 0.14% when using
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Table 7
Comparison of our best proposal with the algorithms in the state of the art, considering the combined and Ratliff and
Rosenthal routing strategies

Combined routing strategy

Instances Algorithm Time (seconds) Dev. (%) #Best #Opt

AAMD (240) Heur-Gademann et al. 113.68 1.27 80 –
B&B-Gademann et al. 473.31 1.17 95 –
RSVNS 134.78 0.18 211 –

HW (192) Heur-Gademann et al. 0.95 1.38 49 –
B&B-Gademann et al. 509.09 0.73 77 –
RSVNS 2.70 0.15 163 –

Total (432) Heur-Gademann et al. 64.07 1.13 129 –
B&B-Gademann et al. 489.21 0.98 172 –
RSVNS 76.08 0.17 374 –

Ratliff and Rosenthal routing strategy

Instances Algorithm Time (seconds) Dev. (%) #Best #Opt

AAMD (240) Heur-Gademann et al. 198.03 1.34 69 38
B&B-Gademann et al. 479.42 1.27 83 51
RSVNS 227.53 0.16 205 39

HW (192) Heur-Gademann et al. 9.18 1.15 32 10
B&B-Gademann et al. 512.31 0.97 58 33
RSVNS 11.48 0.11 164 11

Total (432) Heur-Gademann et al. 114.10 1.26 101 48
B&B-Gademann et al. 494.04 1.13 141 84
RSVNS 131.50 0.14 369 50

the combined and Ratliff and Rosenthal strategies, respectively. The deviation of the second best
method (B&B) is, on average, 1% higher than our proposal in both routing strategies, requiring
more than four times the computing time of RSVNS. Regarding the number of best solutions
found, we can observe the quality of our proposal, which obtains 374 (combined) and 369 (Ratliff
and Rosenthal) of 432 best solutions found, when the B&B is able to obtain only 172 and 141,
respectively.

When considering the number of optima, we can only make reference to the results obtained by
B&B-Gademann et al. when paired with Ratliff and Rosenthal routing strategy. As expected, the
exact procedure finds the largest number of optima (84 out of 432) and, our approach, is able to
find 50 of them. Note that since our method finds the largest number of best solutions (369 out of
432), some of them could also be optimal but we cannot certify it because the exact procedure was
not able to solve them in allowed computing time.

We confirmed these results by conducting the Friedman statistical test, which ranks the algorithm
according to their quality. The ranks obtained when considering the combined strategy are 1.46
(RSVNS), 2.17 (B&B-Gademann et al.), and 2.37 (Heur-Gademann et al.), resulting in a p-value
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Fig. 9. Search profile of the average deviation, for a 20-second run on eight large instances.

lower than 0.001, which indicates that there are statistically significant differences among the com-
pared methods. Similarly, when considering the Ratliff and Rosenthal strategy, the ranks obtained
are 1.42 (RSVNS), 2.18 (B&B-Gademann et al.), and 2.40 (Heur-Gademann et al.), again with a
p-value lower than 0.001. These results support the superiority of our proposal, independent of the
routing strategy used.

We have additionally conducted a statistical test for pairwise comparisons. In particular, we
compared our method (RSVNS) and the best previous algorithm in the state of the art (B&B-
Gademann et al.) with the well-known Wilcoxon test. The resulting p-value lower than 0.001 (using
both routing strategies) indicates that the values compared come from different populations (using
the typical significance level of α = 0.05 as the threshold between rejecting or not rejecting the null
hypothesis).

Finally, we illustrate the behavior of the two heuristic methods over the time. In Fig. 9, we show
the average deviation of the methods with respect to the best-known values. In particular, we report
this average every 0.5 seconds over a set of eight representative instances. Again, we left the state-of-
the-art method to finish its execution and then adjusted our time to the time needed by that method.
As we can observe in the figure, the method by Gademann et al. (2001) produces good-quality results
from the very beginning of the search. However, its performance falls drastically after three seconds
of execution. On the other hand, our algorithm needs a little more time to produce better results
than the method by Gademann et al. (2001), but after four seconds of execution, it consistently
produces the best values until the end of the experiment.

7. Conclusions

This paper presented a parallel VNS algorithm for solving the min–max OBP. First, we designed
a sequential GVNS. Then, we adapted the previous GVNS to a parallel version based on the
RSVNS methodology. To find a good configuration for our best heuristic, we have introduced two
constructive procedures based on different greedy strategies, called C1 and C2. We also proposed
two local search strategies, LS1 and LS2, based on swap moves. It is important to highlight that
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both local search procedures incorporate a new definition of the improvement move, which allows
them to deal with flat landscapes. As opposed to the standard way of applying GVNS, where the
starting solution is random, the sampled greedy constructed solution is used.

Additionally, we introduced a novel scheme for calculating the objective function, based on
a matrix of retrieving times, which substantially reduced the computing time (by a factor of 2)
when compared to the straightforward implementation. This new approach opens a new avenue of
research with high interest for this field, since many practical applications could make use of the
advantages of parallel designs.

The extensive experimental comparison performed showed that the parallel version of the al-
gorithm, RSVNS, clearly outperformed the best previous approaches by Gademann et al. (2001),
in the state of the art. These results were confirmed by nonparametric statistical tests, emerging
RSVNS as the new state-of-the-art algorithm for the min–max OBP.

Finally, given the positive results obtained with the parallel implementation of VNS, we note the
possibility of applying the presented strategies to other variants of this problem, which are already
in the literature. Additionally, our parallel approach is not unique. The study of other parallel
strategies, such as RPVNS or CNVNS open the door to a wide variety of possibilities that invite
closer examination and may give an interesting basis for future research.
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Henn, S., Koch, S., Doerner, K., Strauss, C., Wäscher, G., 2010. Metaheuristics for the order batching problem in manual

order picking systems. BuR Business Research Journal 3, 1, 82–105.
Henn, S., Schmid, V., 2013. Metaheuristics for order batching and sequencing in manual order picking systems. Computers

& Industrial Engineering 66, 338–351.
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