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In the age of connectivity, every person is constantly producing large amounts of data
every minute: social networks, information about trips, work connections, etc. These data
will only become useful information if we are able to analyze and extract the most relevant
features from it, which depends on the field of analysis. This task is usually performed by
clustering data into similar groups with the aim of finding similarities and differences
among them. However, the vast amount of data available makes traditional analysis obso-
lete for real-life datasets. This paper addresses the problem of dividing a set of elements
into a predefined number of equally-sized clusters. In order to do so, we propose a
Strategic Oscillation approach combined with a Greedy Randomized Adaptive Search
Procedure. The computational experiments section firstly tunes the parameters of the algo-
rithm and studies the influence of the proposed strategies. Then, the best variant is com-
pared with the current state-of-the-art method over the same set of instances. The
obtained results show the superiority of the proposal using two different clustering met-
rics: MSE (Mean Square Error) and Davies-Bouldin index.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

The large amount of data available in several fields of research like economics or biology has made traditional analysis
techniques impractical for real-life problems [35]. In fact, data used in most of these areas grows exponentially everyday.
Therefore, the design of high-quality and high-performance algorithms has become a research field of interest for data
analysts.

In order to get relevant information when using huge volume of data, two main approaches are typically followed: clas-
sification and clustering [20]. In the former, there is a complete previous knowledge of the available information (i.e., the
group to which each element belongs to is known beforehand). Then, data analysis techniques can take advantage of this
information in a supervised way. On the contrary, clustering techniques use this information in an unsupervised way, since
it is not available a priori. The design of effective procedures for clustering is harder as the actual group for each element is
not known [39].

Clustering problems consist in splitting data into groups (also known as clusters), which contain elements that share
some specific features. In other words, it is expected that if two elements belong to the same cluster, then it is because they
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are related to each other by means of some specific features. Symmetrically, if two elements are in different clusters, it is
because they are barely related. Therefore, clustering algorithms are designed to split a given dataset into several subsets
maximizing the similarity of elements in the same subset, while minimizing the similarities between elements in different
subsets. It is important to remark that the similarity metric used totally depends on the dataset and the scope of the
clustering.

The minimum sum-of-squares clustering problem (MSSC) presents several practical applications in a wide variety of
areas (biology, biometry, psychology, marketing, etc.), and it is also a useful technique to improve the performance of other
techniques like pattern recognition, data mining, or image processing, among others [36]. This problem has been proven to
be NP-hard [24], even when considering only two clusters in the Euclidean space [2].

MSSC considers that the number of clusters k is known a priori. The objective of MSSC is to assign a set of npoints
P ¼ fp1; p2; . . . ; png located in an s-dimensional Euclidean space Rs to a cluster Ki 2 fK1;K2; . . . ;Kkg. MSSC then tries to find
the assignment S of points to clusters with the minimum sum-of-squares distances from each point pj of the cluster Ki to its
corresponding centroid �pi. Given a cluster Ki, its centroid is defined as the point whose distance to the other points of the
cluster is minimum. More formally, the quality of the partition S, denoted as f ðSÞ can be evaluated as:
f ðSÞ ¼
Xn

j¼1

Xk

i¼1
xijjjpj � �pijj2
where xij is a binary variable (with 1 6 i 6 k and 1 6 j 6 n) that takes on the value 1 if point pj is assigned to cluster Ki; other-

wise, xij ¼ 0. Naturally, this variable satisfies that
Pk

i¼1xij ¼ 1 for 1 6 j 6 n.
The evaluation of the objective function can be improved by leveraging the results derived from the Huygens’ theorem

[13], as stated in [9]. Specifically, evaluating the sum-of-squared distances from all points of a given cluster to its centroid
is equivalent to evaluating the sum-of-squared distances between each pair of points in the cluster divided by its cardinality.
It can be formally defined as:
f ðSÞ ¼
Xk

i¼1

Xn�1

j¼1

Xn

l¼jþ1
xijl
jjpj � pljj2
jKij
where xijl is a binary variable (with 1 6 i 6 k and 1 6 j < l 6 n) that takes on the value 1 if points pj; pl are assigned to cluster
Ki; otherwise, xijl ¼ 0.

It is worth mentioning that the use of the Huygens’ theorem [13] allows us to design considerably efficient algorithms.
Specifically, we compute the distances between each pair of elements only once (even before executing the algorithm) stor-
ing them in a matrix. Then, looking up the distance between two elements can be performed in Oð1Þ since it only requires an
access to the distance matrix. Additionally, this approach makes the algorithms independent of the instance dimensionality.
See [4,21] for further details about the issues related with the dimensionality course.

In this paper, we focus on the variant with the cardinality constraint, which is called Balanced MSSC (BMSSC) problem.
Specifically, there will be n mod k clusters of size dn=ke, and k� ðn mod kÞ clusters of size bn=kc. BMSSC has also been proven
to be NP-hard for n=k P 3. See [28] for further details.

Fig. 1 shows an example of two possible clustering solutions for k ¼ 2, where we consider the same set of points. On the
one hand, Fig. 1.a depicts a solution S1 conformed with K1 ¼ fA;B;C;F;Hg and K2 ¼ fD;G;E;Ig, resulting in an objective func-
tion value of f ðS1Þ ¼ 245. On the other hand, the solution S2 presented in Fig. 1.b contains clusters K1 ¼ fA;C;D;G;Ig and
K2 ¼ fB;E;F;Hg, with an objective function value of f ðS2Þ ¼ 353. Analyzing these values, we can conclude that S1 is better
than S2 since the elements contained in each cluster are more similar among them (regarding the computation of the objec-
tive function).

In this paper, we propose a Greedy Randomized Adaptive Search Procedure (GRASP) [15] combined with Strategic Oscil-
lation (SO) [16]. Fig. 2 shows the complete scheme of the proposed algorithm, where we can identify two main blocks:
GRASP and SO. The first one performs a predefined number of constructions followed by a local search method. Then, the
best solution found is further improved in the SO block by alternatively considering feasible and unfeasible solutions. The
SO block finally returns the best solution found during the search.

This procedure presents a remarkable performance in both, quality and computing time, as we will show in the compu-
tational experience. The remaining of the paper is organized as follows: Section 3 presents the metaheuristic algorithm
developed for the BMSSC, Section 4 describes a post-processing method in order to improve the quality of the obtained solu-
tions, Section 5 thoroughly describes the experiments performed to test our proposal and, finally, Section 7 draws some con-
clusions over the problem and the proposed algorithms.
2. Literature review

Most of the clustering problems have been proven to beNP-hard [17]. Therefore, the majority of the algorithms found in
the related literature are approximate procedures, where the main goal is to find a high quality partition in reasonable com-
puting times. However, these algorithms are not able to guarantee the optimality of the provided solution. Clustering algo-
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Fig. 1. Two possible clustering solutions for a given set of points: (a) {A,B,C,F,H} and {D,G,E,I}, and (b) {A,C,D,G,I} and {B,E,F,H}.

Fig. 2. Complete scheme of the proposed algorithm.
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rithms can be classified in: partitional clustering [29], in which data must be divided into disjoint sets and each element is
assigned to one set; hierarchical clustering [5], where clusters are created following a top-down or bottom-up approach;
density-based clustering [27], where elements are grouped following a density function; or grid-based clustering [19], in
which data is divided into grids with different granularity level. We refer the reader to [34] for a detailed taxonomy of basic
and advanced clustering techniques.

In this paper, we focus on partitional clustering whose objective is to generate non-overlapping subsets of elements
where each element is assigned to exactly one cluster. The concept of similarity can be defined in a large variety of criteria,
but usually they do not coincide. However, there is a common criterion when considering the clustering of elements that can
be located in an Euclidean space. Specifically, it is widely accepted that minimizing the sum of squares between elements in
the same cluster is a good criterion for clustering analysis. Furthermore, it is equivalent to maximizing the sum of squares
between elements in different clusters, resulting in a criterion for increasing both similarity in the same cluster and sepa-
ration among different clusters [36].

The k-means procedure has been widely used mainly due to its simplicity and its computational efficiency [31,37]. How-
ever, it totally relies on the initial random centroid selection. Therefore, if that selection results in a bad initial set of cen-
troids, the method will not be able to obtain a good partition. A new method, named k-means++ [3], was designed to
mitigate this behavior and perform a better initial centroid selection. Specifically, it consists in selecting the most diverse
centroid; that is, the one with the smallest similarity measure among them. This idea reduces the harmful effect that a ran-
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dom centroid selection can produce in the performance of the traditional k-means algorithm. Recently, there have been
another approaches proposed to even reduce this effect. In particular, the power k-means algorithm is proposed to avoid
poor local minima by annealing through a family of smoother surfaces [38]. This algorithm is further improved in [6] when
dealing with high dimensions. Finally, in [8] is described a different approach, denoted as convex clustering, where a penalty
function is introduced to guarantee the convexity of the derived problem.

The classical Minimum Sum-of-Squares Clustering (MSSC) problem does not have any constraint about the number of
elements that can be assigned to each cluster. However, several problems require generating clusters of similar sizes. Des-
rosiers et al. [11] proposed a Variable Neighborhood Search algorithm for dividing students from school and universities in
teams, considering that each team must provide a good representation of the population. They propose two different func-
tions for evaluating the balance among teams and test the efficiency of the algorithm over actual data from an MBA program.
This problem also has applications in Very Large Scale Integration (VLSI) design. Specifically, Hagen et al. [18] indicates that
the second smallest eigenvalue of a matrix derived from the corresponding netlist provides a good approximation to the
optimal ratio cut partition cost. As is stated in this paper, balance clustering problems are equivalent to the second eigen-
vector computation. Consequently, an effective and efficient method for the former is useful for the later. Finally, Su et al.
[33] present an algorithm for balancing tenant placement in cloud computing, with the aim of improving the performance
and maximizing the resource utilization of complex multi-tenant architectures.

First attempts to solve the Balanced Minimum Sum-of-Squares Clustering (BMSSC) problem consider the well-known k-
means procedure [32]. This algorithm is a classical clustering method that consists of two main steps: it firstly selects the
elements that will become the centroids of the clusters and then assigns each one of the remaining elements to their nearest
centroid. We refer the reader to [22] for an efficient implementation of the method.

The best heuristic algorithm identified in the related literature is presented in [9]. The procedure is based on the Variable
Neighborhood Search methodology, which relies on the idea of combining stochastic and deterministic changes of neighbor-
hood to escape from local optimality. Therefore, we include this algorithm in the computational testing. In order to comple-
ment the experimentation, we include k-means [3] with the Hungarian algorithm [23] to satisfy the balance constraint
among clusters. Finally, we include two of the most performing procedures for the MSSC problem. Specifically, the hierar-
chical Clustering with Optimal Transport (HCOT) method [5] and the Continuous GRASP [29]. In both methods, a post-
processing method is executed to guarantee the balance constraint (i.e., oversized clusters are repaired by reassigning their
elements to the best available cluster).

3. Greedy randomized adaptive search procedure

The term Greedy Randomized Adaptive Search Procedure (GRASP) refers to a metaheuristic algorithm originally intro-
duced in the late 1980s [14] but it was not formally defined until 1994 [15]. GRASP is an iterative algorithm where each iter-
ation can be divided into two stages: generating an initial solution and then locally improving it. The first phase starts from
an empty solution building the Candidate List (CL) of elements to be added to the solution under construction. The first ele-
ment is usually selected at random from the CL. The remaining elements to be included in the solution are selected following
a greedy criterion. Specifically, a Restricted Candidate List (RCL) is conformed with those elements that surpass the greedy
criterion established. Then, the next element to be added is selected at random from the RCL. This random selection allows
GRASP methodology to explore diverse regions of the search space, thus increasing the possibility of finding better solutions.

The random part of the initial solution construction is able to generate diverse solutions, but it is not designed to find a
local optimumwith respect to the constructed solution. Therefore, a local improvement method is required in order to find a
local optimum with respect to the constructed solution. The versatility of the GRASP methodology allows us to use different
algorithms in this stage, from traditional local search methods to more complex implementations such as hybridizations
with other metaheuristics that has lead to successful research: Tabu Search [26], Path Relinking [12], Ejection Chains
[30], among others.

Finally, this two stages are iteratively repeated until a stopping criterion is reached, which is usually a maximum number
of generated solutions or a maximum allowed running time. The method returns the best solution found during the search.
The remaining of this section is devoted to presenting the specific design of the GRASP algorithm for the BMSSC.

3.1. Initialization

Classical GRASP algorithms usually select the first element to be added to the solution under construction at random.
However, as stated in Section 1, the random selection of the initial elements in a clustering problem can determine the qual-
ity of the obtained results. Therefore, we propose a new initialization criterion which tries to guide the initial solution to
promising regions of the search space by inserting a single vertex in each cluster. The method starts by selecting the first
element at random and inserting it in the first cluster. Then, the distance from the remaining elements to the one already
selected is evaluated, selecting the element that presents the largest one (i.e., the one that is furthest from the element
already clustered).

Once two elements have been assigned to two different clusters, the next element to be inserted should be far away from
both elements already assigned. For this purpose, we define the distance from an element p to a given cluster Ki as follows:
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dðp;KiÞ ¼
X

pj2Ki

jjp� pjjj2
where Ki is the set of points pj 2 P that have been assigned to cluster i.
Then, the distance from an element pto a given solution S ¼ fK1;K2; . . . ;Kkg can be defined as:
dðp; SÞ ¼min
Ki2S

dðp;KiÞ
Then, the next element to be added, pI, will be the one with the largest distance to the already clustered elements. More
formally:
pI ¼ argmax
p2PnS

dðp; SÞ
This criterion allows us to insert, in each cluster, the furthest element with respect to the already clustered elements, thus
reducing the similarity of the elements in different clusters and, therefore, increasing the similarity between elements in the
same cluster.

The initialization stage ends when each cluster has exactly one element in it, using this partial solution as input for the
constructive method.

3.2. Constructive method

The constructive algorithm proposed in this work, named JoinClosest, follows a traditional GRASP approach where each
element is added to the cluster that minimizes the value of the objective function. JoinClosest, as a GRASP constructive
method, requires from a greedy function that evaluates the relevance of adding an element in a given step of the
construction.

The greedy function for each element is evaluated as the increase in the objective function value if the element is inserted
in the closest cluster. It is worth mentioning that only the clusters which are not completed yet are considered in this step, in
order to maintain the feasibility of the solution. More formally,
gðv ; SÞ ¼ min
16i6k

X

p2Ki

dðp; vÞ
Algorithm1 JoinClosestðP; S ¼ fK1;K2; . . .Kkg;aÞ
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1: CL P n S

2: while CL –£ do

3: gmin  minc2CLgðc; SÞ

4: gmax  maxc2CLgðc; SÞ

5: l gmin þ a � ðgmax � gminÞ

6: RCL fc 2 CL : gðc; SÞ 6 lg

7: cI  RandomðRCLÞ

8: CL CL n fcIg

9: KI  argmin

Ki2S
dðcI;KiÞ
10: KI  KI [ fcIg

11: end while

12: return S
Algorithm1 depicts the pseudocode of the JoinClosest constructive procedure. The algorithm receives three input param-
eters: P, the set of points that needs to be clustered; S, the set of clusters created in the initialization step; and a, a parameter
that controls the greediness/randomness of the method (discussed later).

The method starts by creating the Candidate List (CL) with the set of elements in Pthat has not been assigned to any clus-
ter in the initialization phase (step 1). Then, it iterates until all the elements have been clustered (steps 2–11), adding a new
element to a cluster in each iteration.

Specifically, JoinClosest evaluates the minimum and maximum value for the greedy function previously defined (steps 3–
4) and then evaluates a threshold l (step 5) that depends on the value of the parameter a 2 ½0;1� whose function is to limit
the elements that are allowed to enter the Restricted Candidate List (RCL). On the one hand, a ¼ 0 indicates that only the
elements with the best greedy function value are selected, which results in a totally greedy algorithm. On the other hand,
a ¼ 1 considers all the elements in the CL to be added to the RCL, which results in a totally random algorithm. Therefore,
parameter a is able to control the greediness/randomness of the constructive procedure.
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Once the RCL is created with the elements whose objective function value is smaller than the threshold (step 6), an ele-
ment cI is selected at random from the RCL (step 7). Then, the algorithm selects the closest cluster KI (step 9) and inserts the
element in the cluster (step 10). The method ends when all the elements have been assigned to a cluster, returning the solu-
tion created.

3.3. Local optimization

The solution created in the construction phase tries to find a balance between diversification and intensification in order
to explore a wider portion of the search space. However, this behavior complicates finding a local optimum in the construc-
tion stage. The second phase of a GRASP procedure consists of an improvement strategy that is able to find a local optimum
of the initial solution with respect to a given neighborhood.

In this work, we consider a neighborhood based on interchanging two elements of different clusters. More formally, given
a solution
S ¼ fK1; . . . ;Ka; . . . ;Ki; . . . ;Kkg
the interchange of elements pj 2 Ka and pl 2 Ki, produces a new solution S0 ¼ K1; . . . ;Ka n fpjg [ fplg; . . . ;Ki n fplg [ fpjg;
�

. . . ;Kkg. For the sake of clarity, we represent this move as S0  moveðS; pj;KiÞ.
We propose a local search method for the BMSSC based on this neighborhood. It evaluates the interchange of every pair of

elements in the solution, executing in each step the first interchange that results in a better solution (first improvement, FI).
We additionally propose a different approach in which the interchange performed is not the first element that leads to a bet-
ter solution but the one that leads to the best solution in the neighborhood (best improvement, BI). The performance of both
local search methods will be later discussed in Section 5.
4. Strategic oscillation

Reaching a better solution during the search might prove difficult in some cases, since the constraint on the size of each
cluster in the BMSSC problem limits the number of available movements that can be performed. Specifically, in order to
maintain the same size in each cluster it is only possible to perform symmetrical movements (mostly based on
interchanges).

With the aim of increasing the portion of the search space explored, we propose considering unfeasible solutions during
the search that can eventually lead the algorithm to better feasible solutions.

Strategic oscillation (SO) is a methodology originally proposed for being used in combination with Tabu Search [16]. It is
based on allowing the algorithm to surpass the boundaries of its search space, usually by consider the exploration of unfea-
sible solutions. When the search gets stuck in a deep basin of attraction, SO modifies the rules of the search, allowing the
algorithm to continue its exploration considering the set of unfeasible solutions. Every time a promising unfeasible solution
is reached, the algorithm must repair it in order to transform it into a feasible solution that would eventually be a high-
quality one.

The first step in SO is the definition of the boundary to be surpassed. In the context of BMSSC, we consider the increment
of the size of each cluster. This modification is performed by increasing each cluster size by a percentage defined by a param-
eter b 2 ½0;1� that controls how far the explored solutions are from being feasible. Specifically, given a cluster Ki, if the orig-
inal cluster size is jKij, considering the relaxation of the feasibility, the new cluster size is now limited by jKij � ð1þ bÞ. This
relaxation allows the algorithm to include more points in each cluster, which may lead the procedure to find better solutions
that can be later repaired. A search algorithm that considers small values of b will explore solutions that are almost feasible,
while considering larger values will explore rather unfeasible solutions.

SO allows us to define a new neighborhood to be explored, which consists in moving a given element from one
cluster to another. Notice that this movement cannot be considered in the feasible solution space since any move violates
the size constraint. Given a point pj that belongs to cluster Ka which is moved to cluster Ki in a certain solution
S ¼ fK1; . . . ;Ka; . . . ;Ki; . . . ;Kkg, the movement generates a new solution S0 ¼ K1; . . . ;Ka n fpjg; . . . ;Ki [ fpjg; . . . ;Kk

� �
.

The SO methodology can be divided into two phases: the first one is a local search devoted to exploring the unfeasible
region while the second one tries to repair every promising solution.

The local search phase considers themove neighborhood previously defined as follows. The method evaluates the move of
each element pj (with 1 6 j 6 n) of the solution S ¼ fK1;K2; . . . ;Kkg to every cluster Ki (with 1 6 i 6 k). Notice that, in the

context of SO, the size of each cluster Ki is now limited by jKij � ð1þ bÞ. The method then selects the cluster KI that minimizes
the objective function value f. More formally,
KI ¼ argmin
16i6k;16j6n

f moveðS;pj;KiÞ
� �
It is worth mentioning that the local search moves each element to the cluster that minimizes the value of the objective
function, resulting in a best improvement method.
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The repair phase is applied to every unfeasible solution whose objective function value outperforms the best solution
found so far. This phase is intended to reduce the number of elements of each oversized cluster as follows. For each element
pj belonging to an oversized cluster, the method finds the cluster Ki that minimizes the value of the objective function of
those whose size satisfies the original size constraint. Then, it applies the operationmoveðS; pj;KiÞ in order to insert pj in clus-
ter Ki. The method ends when every cluster satisfies the original size constraint, returning the best solution found during the
search.
5. Computational experiments

This section is intended to evaluate the quality of the proposed algorithms and compare it with the best previous
approach. All algorithms have been implemented using Java 8 and the experiments were conducted in an Intel Core i5-
4210U 1.7 GHz and 8 GB RAM. The source code and the full experimental results are available at the following URL:
https://grafo.etsii.urjc.es/BMSSC.

In order to have a fair comparison, we have considered the set of 16 instances used in the best previous work found in the
literature. We have additionally incorporated 9 instances to have a larger benchmark. All these instances have been taken
from the machine learning repository of the University of California1. Table 1 shows, for each single instance, the number
of points (n), dimensions (s), and clusters (k). Notice that we first show the original instances and then the new instances, sep-
arated by an horizontal line. It is worth mentioning that all instances come from real data. In particular, benchmarks consider
information derived from different real world scenarios: breast cancer, phone sensors, water treatment, among others. We refer
the reader to [9] to find a deep analysis and description of these instances.

We divide the experiments performed into two different subsets: preliminary experimentation and final experimenta-
tion. The former refers to those experiments designed to find the best parameters for the proposed algorithms and to eval-
uate the relevance of the proposed strategies (constructive method, local search procedure, and Strategic Oscillation
algorithm), while the aim of the latter is to perform a comparison between the best algorithm designed and the best previous
method found in the state of the art. Notice that the proposed algorithm requires just one run to obtain the presented results.

All the experiments report the following metrics: Dev. (%), the average deviation with respect to the best solution found in
the experiment; #Best, the number of times that an algorithm reaches the best solution; and Time (s), the average computing
time in seconds.

5.1. Preliminary experimentation

This section is intended to find the best values for the input parameters of the proposed algorithms. Specifically, the algo-
rithms proposed require to find the best value for a and b parameters (constructive procedure and Strategic Oscillation,
respectively), as well as selecting the best local search method. We have selected a subset of 4 representative instances
(Vehicle, Yeast, Multiple Features, and Image Segmentation) for tuning the parameters of the algorithm in order to avoid
overfitting.

The first experiment is devoted to evaluating the performance of constructive method JoinClosest when varying the a
parameter value. In particular, we have considered a ¼ f0:25; 0:50;0:75;RNDg, where RND indicates that the value is selected
at random in the range 0–1 in each construction.

Table 2 shows the effect of the a parameter in the performance of JoinClosest when constructing 100 solutions. In partic-
ular, the best results are achieved with JoinClosest(0.25), which is the closest variant to a totally greedy algorithm. It is worth
mentioning that a pure greedy configuration of this constructive method produces worse results than the constructive pro-
cedure configured with a ¼ 0:25. We can then conclude from this experiment that the larger the randomness, the lower the
quality of the constructive procedure. Notice that these results are in line with those presented in [3], which indicates that a
random initialization in the well-known k-means algorithm usually produces worse quality solutions than those obtained
with the greedy initialization of the k-means++ version.

The main aim of the second experiment is to analyze the ability of each proposed improvement method for finding a local
optimum starting the search from each constructed solution. Specifically, we combine the best constructive method (i.e.,
a ¼ 0:25) with the two local search methods proposed in Section 3.3: First Improvement (FI) and Best Improvement (BI).

Table 3 compares the results obtained when combining the best variant of the constructive procedure coupled with both
local search algorithms, resulting into two GRASP variants: JoinClosest(0.25) + FI and JoinClosest(0.25) + BI. We also include
the results obtained with JoinClosest isolated, in order to analyze the contribution of the improvement strategies. Notice that
the results reported in Table 3 are averaged over the 4 instances used in the preliminary experiments. As can be seen in this
table, both local search approaches obtain similar results in terms of quality, which can be seen in the average deviation with
respect to best found value (0.24% and 0.07%, respectively) and number of best solutions found (both methods matches 2
best solutions). It is also important to remark that avoiding exploring the neighborhood exhaustively with the First Improve-
ment approach lead us to marginally increase the computing time with respect to the constructive method (10.57 versus
8.99 s on average). However, the Best Improvement approach requires almost twice the computing time (15.24 versus
1 http://www.ics.uci.edu/mlearn/MLRepository.html
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Table 1
Individual description of each instance considered in this
work. For each instance, the following parameters are
provided: n, total number of points; s, number of dimen-
sions; k, number of clusters to create.

Instance Name n s k

Body 507 5 2
Breast Cancer 569 30 2
Glass 214 9 7
Image Segmentation 2310 19 7
Ionosphere 351 34 2
Iris 150 4 3
Libra 360 90 15
Multiple Features Reduced 2000 240 7
Synthetic Control 600 60 6
Thyroid 215 5 3
User Knowledge 403 5 4
Vehicle 846 18 6
Vowel 871 3 3
Water 527 38 13
Wine 178 13 3
Yeast 1484 8 10

Cardiotopography 2126 24 10
MobileKSD 2855 71 56
Ozone 2536 73 21
Seismic Bumps 2584 15 19
Internet Ads 3279 1555 2
PhonesAcc 2000 3 4
PhonesGyro 2000 3 4
WatchAcc 2000 3 4
WatchGyro 2000 3 4

Table 2
Performance of the constructive method JoinClosest when varying the a parameter value.

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) 1.10 1 8.99
JoinClosest(0.50) 20.51 2 9.89
JoinClosest(0.75) 22.77 0 9.85
JoinClosest(RND) 13.94 1 9.26

Table 3
Comparison of the two local search procedures, Best Improvement (BI) and First Improvement (FI),

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) 31.41 0 8.99
JoinClosest(0.25) + BI 0.24 2 15.24
JoinClosest(0.25) + FI 0.07 2 10.57
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8.99), without significantly improving the obtained results. Therefore, we select the First Improvement approach as the local
search procedure for the final algorithm.

The next preliminary experiment is intended to evaluate the contribution of using Strategic Oscillation to further improve
the best solution obtained with the GRASP procedure. As stated in Section 4, SO method requires only one parameter that
controls how far from feasibility are the solutions explored during the search. In this experiment we consider the values
b ¼ f0:1;0:25;0:50;0:75g. These values indicates the increase of each cluster size in a 10%, 25%, 50%, and 75% of the original
cluster size. We do not consider larger values of b since values that exceed 100% will evaluate clusters with more than twice
the original size, which is rather distant from feasibility. If so, it would be equivalent to start the search from a totally new
solution.

Table 4 presents the results obtained with the aforementioned different values of b. Additionally, we have included the
best GRASP variant for measuring the contribution of the Strategic Oscillation to the quality of the algorithm. As can be easily
seen, every variant of the Strategic Oscillation algorithm outperforms the GRASP procedure in all metrics, barely increasing
the computing time. Among SO variants, the one that increases the size of the cluster in a 75% obtains the best results. This
can be mainly due to its ability to explore further regions of the search space, most of them intractable for the remaining
variants. Therefore, we select b ¼ 0:75 as the best variant of the SO algorithm.
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Table 4
Results obtained by Strategic Oscillation (SO) with different increments in the cluster size.

Algorithm Dev. (%) #Best Time (s)

JoinClosest(0.25) + FI 0.81 0 10.57
SO(0.10) 0.24 3 10.94
SO(0.25) 0.66 1 10.69
SO(0.50) 0.22 2 10.82
SO(0.75) 0.09 3 11.21
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5.2. Comparison with the state-of-the-art procedures

The next experiment is devoted to evaluating the contribution of our best proposal by comparing it with the best previous
method identified in the state of the art, which is VNS-LIMA [9]. This method is a Variable Neighborhood Search algorithm
that follows the ‘‘Less Is More Approach”. We additionally include a third algorithm in the comparison to verify the superi-
ority of the proposal. In particular, we have considered an adaptation of the traditional k-means for balanced clustering [25].
This work follows the well-known k-means clustering algorithm, which is one of the most successful algorithms for cluster-
ing. Instead of selecting the closest centroid, it considers a set of clusters in which a point can be assigned, in order to satisfy
the size constraint. This assignment is performed by following the Hungarian algorithm [23].

Additionally, we have executed two state-of-the-art algorithms for the classic clustering problem. Specifically, the Hier-
archical Clustering with Optimal Transport (HCOT) [5] and the Continuous Greedy Randomized Adaptive Search Procedure
(CGRASP) [29]. Notice that these methods do not consider the balance constraint. Therefore, once an algorithm obtains a
solution, a post processing method is applied in order to make it feasible. In order to do so, each point belonging to an over-
loaded cluster is moved to the best cluster not yet completed.

With the aim of facilitating the comparison among algorithms, we report in Table 5 the same information than the one
reported in [9]. Specifically, we show the Mean Squared Error of (MSE) of every single instance achieved with the proposed
Strategic Oscillation algorithm (SO), when comparing with those obtained with HCOT, CGRASP, k-means with Hungarian
algorithm (KMH), and VNS-LIMA. All the algorithms have been executed in the same computer and the same time per
instance to have a fair comparison (last column of Table 5). We additionally consider in these experiments the whole set
of 25 instances. Instances where a procedure is not able to produce a feasible solution are marked with an asterisk symbol
0 � 0.

As we can observe, instance dimensions are rather different so it is hard to compare directly the MSE value. Therefore, we
consider the average deviation with respect to the best known value since this metric is dimensionless. In particular, SO pre-
sents an average deviation of 0.38% with respect to the best known value, while the deviation of VNS-LIMA rises up to 4.84%.
Finally, the HCOT, CGRASP, and KMH algorithms have a deviation of 23.70%, 54.35%, and 23.20%, respectively. Summarizing,
SO is able to reach the best known solution in most of the instances (19 out of 25). Symmetrically, in the 6 instances in which
SO does not obtain the best value, the corresponding result remains very close to the best known.

With the aim of studying the adaptability of the algorithms to different metrics, we evaluate the five procedures when
considering an alternative metric not used during the optimization phase. In particular, the well-known Davies-Bouldin
[10] index (DB) is analyzed. This index was proposed for evaluating the quality of clustering algorithms by reducing the
inter-cluster similarity while increasing the intra-cluster similarity. The smaller the index value, the better the clustering.
Table 6 shows the individual results of each algorithm over each instance evaluated with the Davies-Bouldin index.

These results are in line with those reported in Table 5, obtaining our method the best DB index in 16 out of 25 instances,
followed by VNS-LIMA (11 out of 25). As expected, algorithms not explicitly designed for the BMSSC problem present a mod-
erate performance. We can then conclude that the proposed Strategic Oscillation algorithm emerges as the best variant even
considering this new metric.

We complement these experiments by conducting a Friedman test to determine whether there exists statistically signif-
icant differences among the compared methods or not. The resulting p-value smaller than 0.0001, in both MSE and DB met-
rics, indicates that the proposed algorithm is statistically better than the competitors. Table 7 reports the associated rank
values for both MSE and DB for the five compared algorithms. These results confirm the superiority of the proposal when
considering short computing times, which is specially relevant when considering applications where clustering is just a
small part of the whole process that must be performed several times.

6. Experimental analysis

This section is devoted to deeply analyzing the parameters selected for the proposed algorithm. Specifically, we first test
the robustness and reliability of the proposed algorithm by executing 30 times the SO algorithm over the 4 instances of the
preliminary experimentation (Multiple Features, Vehicles, Yeast, and Image Segmentation). Considering that differences in
the objective function are rather large, we use the average deviation with respect to the best value found in the 30 indepen-
dent executions, since it is a dimensionless metric. We depict in Fig. 3 the associated box and whisker plot, reporting for each
instance quartiles, median, minimum, and maximum values (excluding outliers). see Table 8.
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Table 5
Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT considering the MSE metric. Best values found with each method are highlighted with bold
font.

Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 1.14E+05 1.14E+05 2.34E+05 1.14E+05 1.14E+05 1.08
Breast cancer * 1.38E+08 1.38E+08 1.38E+08 1.38E+08 0.90
Glass 9.70E+02 9.36E+02 7.29E+02 5.08E+02 5.25E+02 0.27
Image Segmentation * 2.24E+07 2.75E+07 2.14E+07 2.14E+07 19.24
Ionosphere 2.52E+03 2.44E+03 2.52E+03 2.43E+03 2.43E+03 0.32
Iris 8.14E+01 8.14E+01 8.90E+01 8.14E+01 8.14E+01 0.06
Libra * 6.66E+07 6.70E+07 6.42E+07 6.41E+07 0.57
Multiple Features 2.04E+06 2.00E+06 2.10E+06 1.99E+06 1.96E+06 16.29
Synthetic Control 1.64E+06 1.09E+06 1.28E+06 1.14E+06 1.01E+06 0.97
Thyroid 3.82E+04 3.70E+04 3.87E+04 3.44E+04 3.44E+04 0.12
User Knowledge 8.31E+01 7.17E+01 8.06E+01 7.09E+01 7.03E+01 0.49
Vehicle * 6.32E+06 4.76E+06 2.93E+06 2.90E+06 2.13
Vowel * 6.47E+07 1.58E+08 7.53E+07 6.45E+07 2.18
Water * 2.73E+10 7.88E+09 7.94E+09 7.93E+09 0.96
Wine * 5.55E+06 3.77E+06 3.83E+06 3.77E+06 0.08
Yeast 6.74E+01 5.82E+01 6.01E+01 5.41E+01 5.35E+01 8.84

Cardiotopography 1.19E+07 2.72E+07 1.10E+07 8.50E+06 8.60E+06 23.24
MobileKSD * 3.85E+10 3.28E+10 3.12E+10 3.11E+10 141.65
Ozone * 3.61E+09 2.56E+09 2.46E+09 2.56E+09 61.93
Seismic Bumps * 1.07E+14 2.96E+13 3.05E+13 2.94E+13 56.93
Internet Ads 3.76E+04 * * 3.74E+04 3.75E+04 24.41
Phones Acc 4.16E+02 * 3.35E+02 3.11E+02 2.63E+02 20.14
Phones Gyro 3.65E+01 * 3.42E+01 3.47E+01 3.37E+01 13.72
Watch Acc 2.08E+03 * 1.80E+03 2.65E+03 1.68E+03 30.86
Watch Gyro 1.64E+01 * 1.58E+01 1.54E+01 1.54E+01 22.86

Table 6
Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT considering the Davies-Bouldin metric. Best values found with each method are highlighted
with bold font.

Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 9.25E+01 9.24E+01 8.35E+02 9.23E+01 9.24E+01 1.08
Breast cancer * 1.64E+02 1.65E+02 1.64E+02 1.64E+02 0.90
Glass 3.02E+02 5.80E+02 9.12E+01 3.67E+01 6.14E+01 0.27
Image Segmentation * 1.11E+03 9.43E+02 8.33E+02 1.15E+03 19.24
Ionosphere 3.07E+02 2.65E+02 3.08E+02 2.64E+02 2.64E+02 0.32
Iris 1.64E+01 1.64E+01 2.02E+01 1.64E+01 1.64E+01 0.06
Libra * 3.24E+02 4.38E+02 2.88E+02 3.16E+02 0.57
Multiple Features 1.18E+03 9.83E+02 1.25E+03 9.50E+02 8.40E+02 16.29
Synthetic Control 1.53E+03 2.90E+02 3.67E+02 4.19E+02 2.36E+02 0.97
Thyroid 1.16E+02 9.86E+01 1.75E+02 9.00E+01 9.00E+01 0.12
User Knowledge 2.55E+02 1.68E+02 2.02E+02 1.56E+02 1.42E+02 0.49
Vehicle * 2.64E+02 9.01E+02 1.40E+02 1.05E+02 2.13
Vowel * 1.47E+02 1.08E+03 1.71E+02 1.47E+02 2.18
Water * 1.58E+03 4.72E+01 2.71E+01 2.53E+01 0.96
Wine * 2.72E+01 1.49E+01 1.51E+01 1.49E+01 0.08
Yeast 7.00E+02 5.89E+02 3.65E+02 3.65E+02 3.63E+02 8.84

Cardiotopography 1.41E+03 3.61E+03 7.75E+02 5.02E+02 4.85E+02 23.24
MobileKSD * 1.95E+03 3.92E+02 3.89E+02 3.94E+02 141.65
Ozone * 5.16E+03 2.91E+02 1.50E+02 1.46E+02 61.93
Seismic Bumps * 3.58E+04 2.11E+02 4.23E+03 2.14E+02 56.93
Internet Ads 3.12E+04 * * 2.57E+04 3.01E+04 24.41
Phones Acc 2.10E+03 * 6.98E+02 3.84E+03 5.22E+02 20.14
Phones Gyro 1.23E+04 * 1.81E+03 1.87E+03 1.66E+03 13.72
Watch Acc 1.46E+03 * 1.19E+03 2.30E+05 1.36E+03 30.86
Watch Gyro 1.54E+04 * 6.60E+03 6.09E+03 6.14E+03 22.86

Table 7
Friedman test for both MSE (Mean Squared Error) and DB (Davies-Bouldin) metrics.

Metric HCOT CGRASP KMH VNS OS p < 0:01

MSE 4.38 3.62 3.50 2.10 1.40 YES
DB 4.34 3.62 3.30 2.10 1.64 YES
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Fig. 3. Box and whisker plot for 30 independent executions.

Table 8
Sensitivity analysis for a and b parameters.

a 0.25 0.50 0.75

0.50 0.686
0.75 0.181 0.581
RND 0.196 0.123 0.742

b 0.10 0.25 0.50

0.25 0.012
0.50 0.002 0.000
0.75 0.133 0.019 0.002

R. Martín-Santamaría, J. Sánchez-Oro, S. Pérez-Peló et al. Information Sciences 585 (2022) 529–542
As it can be derived from the results, the proposed algorithm presents a robust behavior when considering 30 indepen-
dent executions in the instances considered for the preliminary experiments. As expected, the combination of GRASP with SO
tries to find a balance between diversification and intensification. Specifically, in all the instances the mean (represented
with an x) and median (represented with an horizontal value) values are very close, with the median under the mean in most
of the cases. This result indicates that the algorithm is able to diversify the search to explore a larger portion of the search
space but the intensification phase is able to lead the algorithm to high-quality solutions.

We additionally conduct a sensitivity analysis. In particular, for each parameter of the SO algorithm, namely a (the bal-
ance between greediness/randomness of the constructive method) and b (the percentage of cluster size increment inside
Strategic Oscillation), we evaluate different possibilities while fixing the remaining parameters to the best values found
in the preliminary experimentation. In particular, we test values a ¼ fRND;0:25;0:50;0:75g and b ¼ f0:1;0:25;0:5;0:75g.
For each instance and each parameter setting, we execute 30 independent iterations of each algorithm.

We consider the Wilcoxon signed rank test to determine if there exists significant statistical differences among variants
(in terms of the average objective function value) when we only vary a single parameter as mentioned above. The corre-
sponding Wilcoxon test shows that the different a configurations do not significantly affect the performance of the proposal.
Specifically, the associated p-values range from 0:181 to 0:742 which are considerably larger than the customary 0:05
threshold. This experiment shows that the proposed algorithm does not present a particular sensitivity with respect to this
parameter.

On the other hand, observing the b parameter, there are statistical differences in performance. Therefore, this experiment
justifies the election of the b ¼ 0:75, as shown in Table 4.

To further investigate the performance of the proposed SO procedure, we conduct a convergence analysis by considering
time-to-target plots (TTTPlot), which is essentially a run-time distribution [1]. The experimental hypothesis in TTTPlots is
that running times fit a two parameter, or shifted, exponential distribution. Then, for a particular instance, the execution
time needed to find an objective function value at least as good as a given target value is recorded. In the context of the
heuristic optimization, the algorithm is determined a pre-established number of times on the selected instance and using
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Fig. 4. Time to target plots for the preliminary instances.
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the given target solution. For each of run, the random number generator is initialized with a different seed and therefore the
executions are assumed to be independent. To compare the empirical and the theoretical distributions, we follow a standard
graphical methodology for data analysis [7], execute our Algorithm 1 times, and recording for each instance/target pair the
corresponding running time. Fig. 4 shows the TTTPlot for those instances in the set of preliminary experiments. In these fig-
ures, each value in the abscissa axis represents a running time, while each value in the ordinate axis, reports the probability
of obtaining the best-known value. This experiment confirms the expected exponential run-time distribution of our SO algo-
rithm. If we analyze the instances Multiple Features, Vehicles, and Yeast, we can observe that the probability of SO to find a
solution at least at good as the target value in less than a second is close to 100%. However, regarding Image Segmentation,
which is a more complex instance, this probability is near 50% when considering 10 s, requiring about 15 s to rise the prob-
ability to 100%.

7. Conclusions

We proposed a Greedy Randomized Adaptive Search Procedure (GRASP) coupled with Strategic Oscillation (SO) algorithm
for the Balanced Minimum Sum-of-Squares Clustering Problem (BMSSC), which consists in grouping a set of s-dimensional
points into kclusters maximizing the similarity among them. The experiments performed showed that SO is able to modify
the search space, allowing us to explore solutions that are unattainable by using traditional heuristic procedures. This behav-
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Table 9
Advantages and disadvantages of the proposed algorithm.

Advantages Disadvantages

Best results in the literature Not suitable if the size of the clusters is not fixed
Fast method Does not guarantee optimality
Easily adaptable to new objective functions Works with just one neighborhood structure
Scalable to a distributed architecture
Independent of the dataset
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ior leads our proposal to obtain better results than the best previous method found in the state of the art. The simplicity of
the method and its speed is essential when considering large amounts of data that are continuously generated (i.e., data
derived from the stock exchange, social networks, etc.) and must be quickly analyzed.

The proposed algorithm presents the best results in the literature for the BMSSC problem, requiring small computing
times. As we follow the GRASP methodology, the algorithm is easily scalable to a distributed system, in order to further
reduce the computing times. The main limitation of our algorithm emerges when dealing with a variant in which the size
of the clusters is not fixed and can vary during the execution. In that case, a deep redesign of the algorithm should be per-
formed to adapt the method to this new problem. Furthermore, the algorithm is designed to work with a single neighbor-
hood structure. In order to include more neighborhoods, one shall consider a more complex local search method, such as
Variable Neighborhood Descent, which embeds several neighborhood structures in the same algorithm.

In order to summarize the main features of our procedure, we report in Table 9 its main advantages and disadvantages.
Focusing on the first disadvantage mentioned, this paper deals with the BMSSC, in which all the clusters share the same

size. The proposed algorithm is designed to obtain high quality solutions when the cluster size is constrained. This proposal
can be easily adapted to an unconstrained problem by modifying the feasibility constraint and the greedy criterion of the
algorithm, in order to consider alternative moves inside the local search and constructive procedure.

As a metaheuristic algorithm, GRASP does not guarantee optimality. However, it must be born in mind that, in most real
world applications, finding the optimum value is not feasible, mainly due to the complexity of the problem under consider-
ation. Nonetheless, the proposed GRASP algorithm tries to balance solution quality and computational cost, being able to
reach high quality solutions in reasonable computing time. Due to the size of the instances under consideration, using an
exact solver cannot be considered.

This algorithm considers a single neighborhood structure since the results obtained are excellent, and it is not necessary
to increase the computational time by including additional neighborhoods. However, the algorithm can be easily modified to
consider new neighborhood structures, by extending the proposed local search procedure.
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