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ABSTRACT

The problem of maximizing diversity or dispersion deals with selecting a subset of elements from a given
set in such a way that the distance among the selected elements is maximized. The definition of distance
between elements is customized to specific applications, and the way that the overall diversity of the
selected elements is computed results in different mathematical models. Maximizing diversity by means
of combinatorial optimization models has gained prominence in Operations Research (OR) over the last
two decades, and constitutes nowadays an important area. In this paper, we review the milestones in
the development of this area, starting in the late eighties when the first models were proposed, and
identify three periods of time. The critical analysis from an OR perspective of the previous developments,
permits us to establish the most appropriate models, their connection with practical problems in terms
of dispersion and representativeness, and the open problems that are still a challenge. We also revise and
extend the library of benchmark instances that has been widely used in heuristic comparisons. Finally,
we perform an empirical review and comparison of the best and more recently proposed procedures, to
clearly identify the state-of-the art methods for the main diversity models.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Maximum diversity problems arise in many practical settings
from facility location to social network analysis, and constitute
an important class of NP-hard problems in combinatorial opti-
mization. They were first approached from an Operations Research
perspective in 1988 by Kuby (1988) and presented in 1993 in
the annual meeting of the Decision Science Institute, where Kuo,
Glover, and Dhir, proposed integer programming models (Dhir,
Glover, & Kuo, 1993; Kuo, Glover, & Dhir, 1993). There has been a
growing interest in these problems in the last 30 years, and differ-
ent mathematical programming models, and their corresponding
solving methods, have been proposed to capture the notion of
diversity. They basically consist in selecting a subset of elements of
a given set, in such a way that a distance measure is maximized,
and differ among them in the way that the overall diversity
of the selected elements is computed. In its graph version, the
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most popular dispersion model, the Maximum Diversity Problem
(MDP), is defined as follows. Given the complete graph G = (V,E)
with edge distances d;; for every pair i,j eV, and an integer m,
compute a subset M of V, such that [M| =m and }; . d;; is as
large as possible.

The study of diversity models, also called dispersion, has
achieved a level of maturity, and still has a huge potential, which
makes it especially adequate for a review paper like this one. In
our opinion, we are witnessing the typical scenario in science,
in which a sub-field of research detaches from the main field
and creates its own body of knowledge. Diversity problems may
be considered, in a certain way, a sub-class of location problems
(specially when we refer to location problems with distance con-
straints as in Moon & Chaudhry, 1984), and we can find nowadays
many researchers specifically devoted to them. In this sense, we
may say that maximizing diversity can be considered now as a
field in itself.

As recently pointed out by Parrefio, Alvarez-Valdés, & Marti
(2021), the term diversity is somehow ambiguous in the context of
combinatorial optimization, and it has been applied to problems
looking for dispersion among the selected points, but also in prob-
lems looking for some kind of representativeness, in which the
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selected points are class representatives of subsets of points in the
given set. This argument is not entirely new, since Glover, Kuo, &
Dhir (1998) in the late nineties already said that diversity is a rather
nebulous term with overtones and a vaguely statistical nature, and
proposed simple heuristics that could easily be adapted to handle
the particular characteristics of the diversity problem being solved.

Maximum diversity problems have a wide variety of real-life
applications that cover many fields. One of the first applications
appears in genetics (see Porter, Rawal, Rachie, Wien, & Williams,
1975) where species with desirable traits are selected to obtain
new varieties by controlled breeding. These problems can also be
applied to other areas related to biology, such as ecology (Pearce,
1987) where diversity is crucial to establish viable systems. The se-
lection of a diverse group as a representative sample is probably
one of the most extended applications which arises in product de-
sign (Glover et al., 1998), ethnicity (Swierenga, 1977), and in mak-
ing diverse teams at work. The placement of undesirable facilities
such as hazardous waste sites, and location problems with asso-
ciated capacity and cost factors, have been also studied as diver-
sity maximization problems by several researchers (see Church &
Garfinkel, 1978; Erkut & Neuman, 1989; Goldman & Dearing, 1975;
Rosenkrantz, Tayi, & Ravi, 2000 and the references cited therein).

We have identified three periods in the development of diver-
sity and dispersion problems. The early period, from 1977 to 2000,
where we can find the first models (MaxMin and MaxSum), and
relatively simple algorithms to solve them, being the seminal pa-
pers by Kuby (1988) and Erkut (1990) the origins of the area. We
can only find a few papers in this period in the OR literature, al-
though in other fields of science, such as sociology or biology, di-
versity maximization received much more attention.

In the second period, that we may call the expansion period,
the first metaheuristics were proposed to target large instances
effectively. Duarte & Marti (2007) adapted both the Tabu Search
and GRASP methodologies to the MaxSum model, triggering the
interest of the metaheuristic community in this family of prob-
lems. Special mention deserves the work by Prokopyev, Kong, &
Martinez-Torres (2009), where three new dispersion models were
introduced: the MaxMinSum, the MaxMean, and the MinDiff. In
this way, these authors clearly stated that there are different ways
to model diversity maximization, opening many possibilities for fu-
ture developments. This period lasted over a decade, ending with
very efficient methods for some of the models, as shown in the
empirical comparison of 30 methods by Marti, Gallego, Duarte, &
Pardo (2013) performed in 2010, and with several solid research
groups working on them. The boundaries defining the area of max-
imizing diversity were expanded with the inclusion of more realis-
tic models built with capacity and cost constraints.

The third period, that we call the development period, started
in 2011 and is still in progress. From the heuristic side, the compe-
tition is now very high, due to the efficient methods published in
the previous period, so only complex metaheuristics are proposed
now. In the exact domain, Sayyady & Fathi (2016) and Sayah &
Irnich (2017) recently proposed integer programming approaches
for the MaxMin model, which are able to solve large size problems,
and somehow changed the game in terms of the need of heuristics
for real instances. These new efficient methods, exact and meta-
heuristics, made Marti's comparison (Marti et al., 2013) out of date,
so one of the objectives of this paper is to update it by including
them.

Martinez-Gavara, Corberan, & Marti (2021) elaborated on the
seminal work by Rosenkrantz et al. (2000) that included capacity
and cost constraints in the classic diversity models. The authors
approach these theoretical models from an Operations Research
perspective, opening new research opportunities and modeling
a wide range of real problems. In this paper, we complete their
proposals by introducing other variants that may be the subject of
future developments as well.
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Most of the studies on diversity problems have been compu-
tational, and the different methods have been tested on a well-
established benchmark set of instances. The Maximum Diversity
Problem Library, MDPLIB, was originally collected for the MaxSum
model, and contained 315 instances proposed and used in the de-
velopment period. This library has been used to evaluate heuristics
for all dispersion models. However, some type of instances are not
well suited for some of the models and, additionally, some of them
are trivial for nowadays complex methods. We therefore revised it,
removing some small instances, and adding some new ones, spec-
ifying the models for which they are meant. We call MDPLIB 2.0'
to the updated library that contains 770 instances.

There is no doubt that maximizing diversity is nowadays a
trending area in many fields of science. Terms like biodiversity,
heterogeneous workforce, or simply gender diversity have a posi-
tive connotation and are studied in many disciplines. We obviously
do not cover them directly in this paper, but our aim is to show
that advances in mathematical models related to diversity have a
huge impact in many other disciplines. Researchers in Operations
Research perfectly know the power and wide scope of models, but
we want to emphasize it here because diversity is a cross cut-
ting concept, which makes these models applicable to many areas.
This point is clearly stated in a management science paper (Hong
& Page, 2004) directly entitled as Groups of diverse problem-solvers
can outperform groups of high-ability problem solvers, thus reinforc-
ing the idea that maximizing diversity has benefits even in prob-
lem solving. In the following sections, we review the contributions
to discrete diversity optimization classifying them into the three
periods introduced above. We basically consider models, solving
methods, and benchmark instances. We finish our revision with an
empirical comparison of the two most studied models, the Max-
Sum and the MaxMin, and a recently considered combination of
them.

2. The early period (1980-2000)

Early papers on diversity and dispersion problems can be traced
back to the late seventies. It seems that Shier (1977) was the first
to recognize the p-dispersion as an optimization problem. He con-
sidered the continuous problem of locating a facility at a node
or any point in the arcs of a tree. Chandrasekaran & Daughety
(1981) studied the p-center and p-dispersion? discrete problems
on a tree. The p-center minimizes the maximum distance between
the selected nodes in a tree, while the p-dispersion maximizes
their minimum distance. The p-center problem had been studied
in the previous decade and it was relatively well-known in loca-
tion theory; however, as the authors mentioned, the p-dispersion
had received very little attention in spite of its practical signifi-
cance to model the location of undesirable facilities. The authors
studied the duality between both problems.

As far as we know, the first publication on discrete versions of
dispersion problems in general graphs is due to Kuby (1988). The
author considered the p-dispersion as locating p facilities on the
nodes of a network, so that the minimum distance between any
pair of facilities is maximized. Kuby proposed a linear integer for-
mulation for this problem and applied it to a small example with
25 nodes. The author also extended the model to the max-sum
case, in which the objective is to maximize the sum of distances
between all the pairs of selected facilities (nodes). These problems
were later coined as the MaxMin Diversity Problem (MMDP), and
MaxSum Diversity Problem (MDP) respectively.

1 Marti, R., A. Duarte, A. Martinez-Gavara, and ]. Sinchez-Oro. MDPLIB 2.0 - Max-
imum Diversity Problem Library. https://www.uv.es/rmarti/paper/mdp.html.

2 Note that some authors use p and others m to denote the number of elements
to be selected. In this paper we will use both indistinguishably.
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The MDP can be trivially formulated in mathematical terms as
a quadratic binary problem, where variable x; takes the value 1 if

element i is selected and O otherwise, i=1,...,n.
Maximize Yicj dijXiX;
subject to: i Xi=m (1)
xe(01} i=1..n

To avoid the non-linearity due to the product of two variables,
Kuby formulated the MDP as:

Maximize ij Zijdij
n

subject to: Y xi=m
i=1 . .. (2)
Zij < X; Lj=1,...,n:j>1
Zjj < Xj i,j=1,....n:j>1
Zij,XiG{O,l} i,j=1, Lo, N

This author also formulated the m-dispersion problem (MMDP)
in the following terms, where C is a very large constant number
that makes the second constraint active only when facilities i and
Jj have been selected (x; = xj = 1):

Maximize D
n
subject to: Sxi=m
i=1
D<dj(1+C(1—x)+CA—x))) ij=1...n:j>i
x; € {0, 1} i=1,..., n.

3)

Erkut and Neuman published in 1989 an invited review in the
European Journal of Operational Research on location models for
obnoxious facilities (Erkut & Neuman, 1989), where a function dis-
tance is maximized. The authors mainly focused on continuous
and network based models, and pointed out that the only previous
work on discrete models is the one by Kuby described above. The
authors classified these models according to the following criteria:

o number of facilities (single /| multiple)

« solution space (R¥ | network)

o feasible region (discrete / continuous)

« distance measure (Euclidean |/ rectilinear / network)
o weights (different weights | unweighted)

o distance function (sum / min)

» objective (single / multiple)

Erkut (1990) proposed the first algorithms for the MaxMin. In
particular, this author introduced a simple heuristic and a branch
and bound exact method to solve small problems (with up to 40
elements) to optimality. Erkut’s heuristic is intentionally naive and
breaks ties in the constructive phase at random. As document by
Hart & Shogan (1987), semi-greedy heuristics, which deviate from
rigid selection rules by including random choices, generate many
solutions, leading to better outcomes than simple greedy heuris-
tics. This is very interesting since this type of reasoning led to the
design of powerful metaheuristics, such as the well-known GRASP
methodology (Feo & Resende, 1995; Festa & Resende, 2016). The
construction is coupled with a local search method that scans the
set of selected elements in search of the best exchange to replace
a selected element with an unselected one. The method performs
moves as long as the objective value increases, and stops when
no improving exchange can be found. This local search has been
applied to most of the algorithms proposed for both the Max-
Sum (MDP) and the MaxMin (MMDP), introducing successive re-
finements that resulted in improved outcomes.

Kincaid (1992) proposed two heuristics for the MaxMin, also
known as the discrete p-dispersion problem, based on exchanges:
a simulated annealing (SA) heuristic (Kirkpatrick, Gelatt, & Vecchi,
1983) and a tabu search (TS) heuristic (Glover, Campos, & Marti,
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2021; Glover & Laguna, 1998). In a given iteration, these heuris-
tics generate a random move (an exchange between a selected and
an unselected element) and apply the standard acceptance rules
of the methodology, the so-called temperature and cooling sched-
ule in the SA, and the tabu status and aspiration criteria in tabu
search. These methods are also adapted to the MaxSum problem,
called the p-defense-sum problem in that paper. The author exam-
ined the performance of both methods on these two models on a
reduced benchmark of 30 instances of size n = 25 (in three groups
of ten with different characteristics) and p ranging from 5 to 15.

Kuo et al. (1993) proposed several models to maximize diver-
sity based on their seminal working papers elaborated in 1977. In-
dependently to Kuby and Erkut, the authors presented some effi-
cient binary programming models for the MaxSum and MaxMin.
In particular, for the MaxSum, called there the Maximum Diversity
Problem, they proposed the following zero-one formulation that
has been considered the most efficient one until now:

Maximize Yicn Wi

subject to: ijx,— =m
ljb,»xi+wi50 i=1,..., n-1
—‘nZ dijxj +Li(1—x) +w; <0 i=1,..., n-1
xije:%,l} i=1,...,n

where U; = Z?:m max (0, d;;) and L; = Z?:m min(0, d;;). The au-
thors proved that the MDP is NP-hard both with and without re-
stricting distances to non-negative values. Kuo, Glover, and Dhir
also proposed a binary model for the MaxMin, and illustrated its
performance on a small example of size 10. The same authors ap-
plied these models to solve a practical case in biological diversity
(Glover, Kuo, & Dhir, 1995).

Ghosh (1996) proved that the MaxMin problem is NP-hard us-
ing a reduction from the vertex cover problem. The author pro-
posed a greedy randomized heuristic, that can be considered the
first step of extending simple heuristics to complex metaheuris-
tic, and presented a limited computational experience on small in-
stances (up to n = 40) to show its merit.

Glover et al. (1998) proposed four different heuristics for the
MaxSum problem. The authors highlighted that different versions
of this problem include additional constraints, so the objective is
to design heuristics whose basic moves for transitioning from one
solution to another are both simple and flexible, allowing these
moves to be adapted to multiple settings. In this line, they con-
sider moves that are especially attractive in this context: construc-
tive and destructive, that drive the search to approach and cross
feasibility boundaries. These type of moves are natural in the max-
imum diversity problem, where the goal is to determine an opti-
mal composition for a set of selected elements. The authors com-
pare the solutions obtained with their heuristics with the optimal
solutions in small instances (up to n = 30), and conclude that the
constructive method C2, and the destructive method D2 perform
very well considering their simplicity. Specifically, C2 starts by ran-
domly selecting an initial element. Then, it selects at each step, the
element with the maximum sum of distances to the already se-
lected elements. On the other hand, D2 starts with all the elements
selected, and deselects the element with the minimum distance to
the selected elements at each step. Both methods finish when m
elements are selected.

At the end of this period, Agca, Eksioglu, & Ghosh (2000) pro-
posed a Lagrangian approach and provided both lower and up-
per bounds for the MaxSum problem. The authors also proposed a
variation of their method to target the MaxMin problem. Extensive
experimentation with small size instances (up to n = 100) showed
the good quality of the results in comparison with previous heuris-
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Fig. 1. Timeline of early OR diversity contributions (1988-2000).

tics; however, as the authors admit, this comes with a cost of sig-
nificant longer running times.

Fig. 1 shows a timeline diagram, in which the main contribu-
tions in this early period are depicted.

3. The expansion period (2000-2010)

This second period witnessed a huge growth in the area. Most
of the efforts were devoted to the MaxSum model, with a total of
30 methods, as documented in Marti et al. (2013). The MaxMin
model on the other hand, also received attention, although mod-
erate, probably because it poses a challenge to heuristic methods
due to the flat landscape in the search space created by the com-
bination of the maximum and minimum in the objective function.
Finally, new models were also proposed, introducing new ways to
compute diversity and including constraints to target more realistic
variants. We call it the expansion period since the limits defining
the area were substantially expanded in this decade.

From a graph-theoretic point of view, we may highlight the
work by Chandra & Halldérsson (2001) in which many disper-
sion problems are classified in terms of its nodes and edges. In
particular, given a graph G with set of vertices V, and an inte-
ger value p, a dispersion problem can be defined as obtaining a
set of p vertices PCV in a way that the sum of the weights of
certain edges in the subgraph induced by P is maximized. The
edge set definition characterizes the dispersion problem. It in-
cludes cliques, trees, k-trees, stars, pseudo-forests, cycles or match-
ings. The authors proved the NP-hardness of these problems and
proposed simple heuristics with performance approximation ratios
depending of the metric of the space. In line with that, Fekete &
Meijer (2004) consider the MaxSum problem, called the heaviest
subgraph problem, in the case of d-dimensional spaces with recti-
linear distances, and establish a linear-time algorithm that finds an
optimal solution. In this way, they improve upon the best known
result so far of an approximation algorithm with performance
ratio 2.

From the practical side, most of the papers published consider
the complete subgraph induced by the selected points. This is spe-
cially true in the metaheuristic field, as shown below.

3.1. The MaxSum model

Many metaheuristic methodologies were implemented in this
period to the MaxSum problem. They were relatively simple at
the beginning, but as the competition among methods became
harder, more sophisticated search strategies were proposed, end-
ing up with very complex algorithms. GRASP, Tabu Search, and VNS
played an important role in this period.

As mentioned, Kincaid (1992) was the first to apply metaheuris-
tics, namely SA and K-TS, to the MaxSum problem, although they
were straightforward implementations. Macambira (2002) pro-
posed a similar implementation of the tabu search methodology,
called M-TS, to solve the MDP. Note that K-TS starts with a
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random solution while M-TS starts with a greedy constructed
solution.

Silva, Ochi, & Martins (2004) proposed several heuristics based
on the GRASP methodology (Feo & Resende, 1995). They com-
bined different constructions with local searches and tested them
on a wide set of instances, which includes the largest reported
so far. They called KLD to the basic construction algorithm, and
KLDv2 and MDT to the improved versions of KLD. It must be noted
that in these largest instances with n = 500 elements, the meth-
ods require many hours of running time. Santos, Ribeiro, Plastino,
& Martins (2005) presented a hybrid method, GRASP-DM, combin-
ing GRASP with data mining techniques, which basically consists
of two phases. First, the GRASP phase is executed a certain num-
ber of iterations. Then, the data-mining process extracts patterns
from an elite set of solutions that guide the following GRASP it-
erations. Silva, De Andrade, Ochi, Martins, & Plastino (2007) revis-
ited the problem to propose a hybrid method, GRASP-PR, com-
bining GRASP with Path Relinking (Laguna & Marti, 1999). As in
the hybrid method above, an elite set is populated with the so-
lutions obtained with the application of a GRASP algorithm. Then,
path relinking is applied from each solution in the elite set (ini-
tial solution) to the local optimum obtained in each new GRASP
iteration (guiding solution). In this way, the method creates a path
by adding elements in the guiding solutions to the initial solution
(and dropping those not present in the guiding solution).

As far as we know, the work of Katayama & Narihisa (2006) is
the only one where a standard Memetic Algorithm (MA) is applied
in this period. The algorithm combines a randomized greedy con-
struction method with an evolutionary algorithm, a repair mech-
anism to guarantee the feasibility of the solutions, and a local
search. Aringhieri & Cordone (2006) presented a Scatter Search
procedure, A-SS, which can be considered a special case of a
memetic algorithm. In particular, this method iterates over a small
set of elite solutions, instead of the traditional population of a rel-
atively large size, called the reference set, RefSet. In this particular
implementation of scatter search, the RefSet is divided into two
subsets, one with the best solutions found during the search, and
the other one with solutions that largely differ from each other and
from the best ones. Gallego, Duarte, Laguna, & Marti (2009) pro-
posed an alternative scatter search algorithm, G-SS, for the Max-
Sum problem. In their approach, the distance between solutions is
used to measure how diverse one solution is with respect to a set
of solutions. The method applies a tabu search algorithm to im-
prove the combined solutions, thus creating a hybrid of a memetic
algorithm with a tabu search. It is very interesting that in the fol-
lowing decade, that we call the development period, most of the
proposed algorithms for the MaxSum follow this scheme of com-
bining these two methodologies, which will emerge as the best
choice for this problem.

In the domain of exact methods, the first important approach
was due to Pisinger (2006), who proposed upper bounds for both
MaxSum and MaxMin problems. Based on that bounds, Branch
and Bound methods were respectively derived. The experiments
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showed that in the MaxSum problem, the method is able to solve
the medium size Euclidean instances with n = 80 in about 500 sec-
onds, but it encounter difficulties to find the optimum in the ran-
dom instances, in which requires more than 3 hours in those with
n = 60. A similar situation is described for the MaxMin solver, in
which both types of instances are solved when n < 80. This branch
and bound clearly outperforms the first one proposed by Erkut
(1990).

Duarte & Marti (2007) applied two metaheuristics for the
MaxSum problem. Specifically, the authors introduced a Tabu
Search, LS-TS, and two GRASP algorithms, called GRASP-C2 and
GRASP-D2, and proposed several strategies to explore the typi-
cal neighborhood based on exchanges in an efficient way, to avoid
the long running times of previous tabu search and GRASP im-
plementations. In particular, instead of searching for the best ex-
change at each iteration, their neighborhood exploration performs
two stages. In the first one, it selects the element with the low-
est contribution to the value of the current solution. Then, in the
second stage, the method performs the first improving move to re-
place it (i.e., instead of scanning the whole set of unselected el-
ements searching for the best exchange, it performs the first im-
proving exchange without examining the remaining unselected el-
ements). Their experimentation confirms the effectiveness of the
proposed strategies.

Palubeckis (2007) proposed an Iterated Tabu Search, ITS, that
alternates tabu search with perturbation procedures. Aringhieri,
Cordone, & Melzani (2008) presented XTS, a tabu search with
short and long term memory functions such as LS-TS. A nov-
elty of this method is that the tabu tenure parameter is dynam-
ically set during the execution of the algorithm (i.e,, it is increased
if the solution value has steadily improved, and it is reduced if
the solution value has steadily worsened). Aringhieri & Cordone
(2011) proposed a random re-start method, RR, which constructs
an initial solution with a greedy procedure similar to the simple
method proposed by Erkut (1990). Then, the constructed solution
is improved by means of a simplified version of XTS.

Variable Neighborhood Search (Hansen & Mladenovic, 2005)
(VNS) was applied to the MaxSum problem too. As it is well-
known, this methodology is based on a simple and effective idea,
a systematic change of the neighborhood within a local search al-
gorithm, and proved to be the best option to solve the MaxSum
problem at that time.

Silva et al. (2004) proposed a simple VNS, SOMA, based on
two neighborhoods. It first applies the classic local search (Ghosh,
1996) until no further improvement is possible. Then, a second
local search based on swapping two elements in the solution by
another two not present in the solution is performed. Brimberg,
Mladenovi¢, UroSevi¢, & Ngai (2009) proposed several VNS pro-
cedures originally devoted to the heaviest k-subgraph problem,
which generalizes the MDP. The authors presented a skewed VNS,
a basic VNS (B-VNS), and a combination of a constructive heuristic
followed by VNS. The best variant is B-VNS and consists of three
main elements. The first one, called Data Structure, allows the al-
gorithm to efficiently update the value of the objective function;
the second one, Shaking, generates solutions in the neighborhood
of the current solution by performing random vertex swaps; and
the third one is a local search procedure based on exchanges.

Aringhieri & Cordone (2011) presented four VNS implemen-
tations: Basic VNS, Guided VNS, Accelerated VNS, and Random
VNS. An important characteristic is their hybridization with Tabu
Search to locally improve the generated solutions. Accelerated VNS,
A-VNS, seems to be the best variant, and it makes re-starts much
less frequent because the number of neighborhoods is considerably
larger than the values used in the Basic and Guided variants.

Marti, Gallego, & Duarte (2010) proposed a branch and bound
algorithm for the MaxSum problem. The authors considered an
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implicit enumeration of the solutions (selections of m elements),
and compute upper bounds for partial solutions. Their method is
embedded in the standard search tree to fathom the nodes (sub-
sets of solutions defined by a partial selection), thus discarding
for examination many nodes in the search tree. This combinato-
rial branch and bound solves small instances easily (n = 50), most
of the medium instances with n = 100, and cannot solve the large
ones considered (n = 150) in 1 hour of CPU time.

We close this period on the MaxSum problem with an empiri-
cal comparison of all the methods published so far, performed in
2010 (although published a few years later). Marti et al. (2013) pre-
sented an extensive computational experimentation to compare 10
heuristics and 20 metaheuristics for the MaxSum problem, most of
them summarized in Table 1.

Marti et al. (2013) proposed the first version of the so-called
MDPLIB in which they collected 315 instances introduced by dif-
ferent authors in previous papers. Their empirical comparison with
30 methods was exhaustive, and concluded with the final com-
parison of the five methods identified as the best ones over two
time horizons, 10 and 600 seconds of CPU time. We reproduce here
their final table in Table 2 with the results, average percent devi-
ation (% dev) and number of best solutions (# best), of the best
GRASP method, GRASP-D2, the best local search based methods,
which includes a tabu search, ITS, and two variable neighborhood
search, A-VNS and B-VNS, and the best population based method,
G-SS.

As expected, the average percentage deviations of the meth-
ods are lower when the CPU time increases from 10 seconds to
600 seconds. In this way, after 600 seconds of CPU time, the five
methods under comparison present deviations lower than 1%. In
line with this, the number of best solutions found increases as the
running time increases. The Friedman test confirms the superior-
ity of the VNS based methods, from which B-VNS emerges as the
best method overall, followed by the tabu search ITS as the sec-
ond best.

3.2. The MaxMin model

As described in the previous section, after Kuby's seminal
paper (Kuby, 1988), Erkut (1990) proposed a simple heuristic,
Kincaid (1992) a simulated annealing and a tabu search, and Ghosh
(1996) a multi-start heuristic. Although Kincaid’s heuristics are
based on complex methodologies, his algorithms are straightfor-
ward implementations, in which the neighborhood is scanned by
random sampling. On the other hand, the multi-start by Ghosh
examines the entire neighborhood in the local search, implement-
ing the so-called best strategy. In contrast, Resende, Marti, Gallego,
& Duarte (2010) applied the GRASP methodology to the MaxMin
problem, but with an efficient implementation that is able to ob-
tain high-quality solutions in short running times, outperforming
all previous developments. We describe now this method in detail
since it was the best for the MaxMin in this period.

Given a set N with n elements, the construction procedure in
Resende et al. (2010) performs m steps to produce a solution with
m elements. The set Sel represents the partial solution under con-
struction. At each step, the constructive method selects a candi-
date element i* € CL= N\ Sel with a large distance to the ele-
ments in the partial solution Sel. Specifically, it first computes d;
as the minimum distance between element j and the selected el-
ements. Then, it constructs the restricted candidate list RCL with
all the candidate (unselected) elements j with a distance value
d; within a fraction a (0 <« < 1) of the maximum distance d* =
max{d; | j € CL}. Finally, the method randomly selects an element
in RCL.
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Table 1

Metaheuristics for MaxSum in 2010.
Methodology Algorithms References
Simulated Annealing SA Kincaid (1992)

GRASP KLD, KLDv2, MDI, GRASP-DM,
GRASP-C2, GRASP-D2, GRASP-PR

Tabu Search K-TS, M-TS, LS-TS, ITS, XTS, RR

Silva et al. (2004), Santos et al. (2005), Duarte & Marti (2007), Silva et al. (2007)

Kincaid (1992), Macambira (2002), Duarte & Marti (2007), Palubeckis (2007), Aringhieri

et al. (2008), Aringhieri & Cordone (2011)

VNS
Scatter Search
Memetic Algorithms

SOMA, B-VNS, A-VNS
A-SS, G-SS
MA

Silva et al. (2004), Brimberg et al. (2009), Aringhieri & Cordone (2011)
Aringhieri & Cordone (2006), Gallego et al. (2009)
Katayama & Narihisa (2006)

Table 2 Table 3
Best MaxSum methods on MDPLIB instances in 2010. Best MaxMin methods on Geo instances in 2010 .
CPU GRASP-D2  A-VNS  B-VNS ITS G-SS Multi-Start SA TS GRASP GPR
10 seconds % dev 1.7 0.16 0.08 017 024 n=100 % dev 0.75 0.00 0.00 0.76 0.09
# best 10 60 51 51 51 #best 10 19 20 10 17
600 seconds % dev  0.63 0.03 0.02 0.02 0.13 time (s) 245 20.96 33.64 0.68 3.76
# best 32 75 83 62 59 n=250 % dev 1.00 0.68 1.75 1.11 0.16
# best 0 6 2 1 14
. . . . time (s) 30.50 22057 43968 5.8 65.57
Given a set N with n elements, and a solution Sel with m se- n=500 %dev 236 3.48 9.27 2.39 0.04
lected elements, we can compute the following values: #best 0 0 0 0 16
time (s) 282.37 1449.85 3633.36 3499  1465.44

d,‘ = mind,-j,

l d* = mind,,
jeSel

ieSel

where d; is the minimum distance of element i to the selected ele-
ments (those in Sel), and d* is the objective function of the current
solution. It is clear that to improve a solution we need to remove
(and thus replace) the elements i in the solution for which d; = d*.

The local search method in Resende et al. (2010) scans, at each
iteration, the list of elements in the solution (i € Sel) with min-
imum d; value, ie. for which d; = d*, starting with a randomly
selected element. Then, for each element i with a minimum d;-
value, the local search examines the list of unselected elements
(j e N\ Sel) in search for the first improving exchange. The uns-
elected elements are also examined in lexicographical order, start-
ing with a randomly selected element. The method performs the
first improving move (Sel < Sel \ {i} U{j}) and updates d; for all
elements i € Sel as well as the objective function value d*, conclud-
ing the current iteration. The algorithm repeats iterations as long
as improving moves can be performed and stops when no further
improvement is possible.

An important characteristic of this GRASP for the MMDP is the
definition of improving move. To efficiently search the flat land-
scape of the MaxMin problem, the authors introduced in the local
search an extended meaning of the term improving. In particular, a
move is considered to improve the current solution if it increases
the value of d*, or keeps d* fixed and reduces the number of ele-
ments i with d; = d*. The method stops when no further improve-
ment is possible according to this definition.

The GRASP method above is coupled with a Path Relinking (PR)
post-processing for improved outcomes. The PR algorithm operates
on a set of solutions, called elite set (ES), constructed with the best
solutions obtained with GRASP. It basically creates paths of solu-
tions between elite solutions. Let x and y be two solutions, PR
starts with the first solution x, and gradually transforms it into the
second one y, by swapping out elements selected in x with ele-
ments selected in y. The elements selected in both solutions x and
y remain selected in the intermediate solutions generated in the
path between them. The output of each PR iteration is the best
solution, different from x and y, found in the path.

Resende et al. (2010) compiled a benchmark library of instances
reported in the previous papers on the MaxMin problem to per-
form an empirical comparison among the heuristics. In particu-
lar, they considered three sets of instances named Glover, Geo, and
Ran. The first one includes small Euclidean instances (n < 30) from
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0.00 means less than 0.001

randomly generated points in a multi-dimensional space. The sec-
ond one, Geo, extends the first one by including larger instances
(100 < n < 500). The third one, Ran, consists of large matrices with
integer random numbers. These sets are include in the MDP Li-
brary of Benchmark Instances described in Section 5.

We do not reproduce here the entire analysis in Resende et al.
(2010), but we show in Table 3 the comparison of their GRASP, and
GRASP with Path Relinking (GPR), with the Multi-Start method by
Ghosh (1996), Simulated Annealing (SA) and Tabu Search (TS) by
Kincaid (1992). This table shows, for each method, the average rel-
ative percentage deviation (% dev) between the best solution value
obtained with that method and the best known value for that in-
stance. It also reports, for each method, the number of instances
(# best) in which the value of the best solution obtained with this
method matches the best known value. Finally, it reports the asso-
ciated running times in seconds on a Pentium 4 computer running
at 3GHz.

Results from Table 3 has to be interpreted with caution because
we are comparing, at the same time, methodologies and imple-
mentations. This is probably the weakness in the computational
comparison of heuristic papers. It is very difficult to evaluate how
much of the solution’s quality is due to the methodology, and how
much to the specific way in which it is implemented to solve a
problem. Note that implementation not only includes search strate-
gies in the solution space, but also data structures management,
and even computer language. For example, GRASP obtains better
results than TS in the large instances in this table (n = 500), with
2.39% and 9.27% average deviations respectively. However, in the
small instances (n = 100) we observe the opposite situation, since
GRASP has an average deviation value of 0.76% and TS has a value
lower than 0.001%. This seems to indicate that the implementation
strategies, that usually play an important role in large instances,
may be responsible for this difference. In our opinion, we cannot
conclude from this type of experiment that one methodology is
better than the other one, and we can only state that this GRASP
implementation performs better in large instances than this Tabu
Search implementation.
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3.3. Other diversity models

Rosenkrantz et al. (2000) introduced several diversity models
constrained in terms of cost and capacity, motivated by their prac-
tical applications in facility location. For example, the location of
undesirable or hazardous facilities, such as waste sites or nuclear
plants, requires their dispersion while satisfying a certain total de-
mand. Another example can be found in the context of retail fran-
chises, where stores should not be located close to each other.
Facilities and stores have a capacity to provide a service in sys-
tems that require an overall demand, and it is clear in practical
terms that they have an associated setup or operational cost, which
makes appropriate to consider a certain limit in the total expenses
generated. As stated by the authors, “these practical aspects add
a new dimension to the conventional dispersion problem”. Clas-
sical models, such as the MaxSum or MaxMin, indirectly address
the problem requirements by considering a pre-fixed number of
facilities (i.e., the number of points to be selected is an input to
the problem). However, this simplification is not realistic in many
settings.

The work by Rosenkrantz et al. (2000) was mainly theoretical.
The authors proposed different models to tackle diversity, capacity
and cost, where one of them is optimized (plays the role of the
objective function), and the other two are included as constraints.
Specifically, the three variants proposed were:

(i) maximize capacity under distance and cost constraints
(Max-Cap/Dist/Cost),

(ii) minimize cost under capacity and distance constraints (Min-
Cost/Cap/Dist),

(iii) maximize distance under capacity and cost constraints
(Max-Dist/Cap/Cost).

When the capacity is a constraint, the authors introduced a
minimum capacity B reflecting the required level of service. Sim-
ilarly, when the cost is a constraint, a maximum budget K is
considered. The authors also introduced two models with dis-
tance and capacity (Max-Cap/Dist and Max-Dist/Cap). Rosenkrantz
et al. (2000) established the NP-hard complexity of these variants,
proved the existence of an approximate algorithm within a fac-
tor 2 in the Max-Dist/Cap with distances satisfying the triangle
inequality, and the non-approximability results for the other vari-
ants. In particular, they provided proof of the non-existence of a
polynomial-time approximation scheme for the Max-Dist/Cap/Cost
variant, and proposed a greedy heuristic based on binary search
for the Max-Dist/Cap problem. Although no empirical results or ex-
periments are reported, the theoretical study concludes that their
heuristic running time is 0(n?log(n)).

Surprisingly, in spite of its potential impact, this paper was ig-
nored by the metaheuristic community at that time, and we had
to wait until the next decade to see the first complex heuristics
for these new problems.

Prokopyev et al. (2009) introduced four additional dispersion
models, combining and generalizing the well-known MaxSum and
MaxMin models. The MaxMean Dispersion Problem (Max-Mean)
that maximizes the average instead of the sum, can be formulated
as the following 0-1 integer linear programming problem:

n-1 n
> X dijxixg

Maximize = j=i:]
DX
L l (3)
subject to X >2
i=1
x; €{0,1} i=1,...,n

An interesting characteristic in the MaxMean model (5), is that
the cardinality restriction is not imposed, and a solution may be
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formed by an arbitrary number of elements. In this sense we can
say that this model generalizes the MaxSum model, since the num-
ber of elements to be selected is not set beforehand, and the model
selects it when maximizing the objective. A further generalized
version of this problem introduces weights associated to the nodes.
It is called Generalized MaxMean Dispersion Problem and is formu-
lated as follows:

n-1 n
Z di]‘X,'Xj
Maximize =i =nl+]
D Wi (6)
i=1
n
subject to >oxi>2
i=1
x; €{0,1} i=1,...,n

where w; is the weight assigned to element i e V.

Prokopyev et al. (2009) introduced two other models in
the context of diversity called equity models, which incorporate
the concept of fairness among candidates. These models ap-
pear in different settings, such as urban public facility location,
diverse/similar group selection, and sub-graph identification, in
which one may address fair diversification or assimilation among
members of a network. The MaxMinSum diversity problem max-
imizes the minimum aggregate dispersion among the chosen ele-
ments, while the Minimum Differential Dispersion model, MinDiff,
minimizes extreme equity values of the selected elements.

The Maximum MinSum Dispersion Problem, MaxMinSum, con-
sists of selecting a set M € V of m elements such that the smallest
total dispersion associated with each selected element i is max-
imized. The problem is formulated in Prokopyev et al. (2009) as
follows:

Maximize min ) d;x
irx;=1 z#:l He
. o (7)
subject to S xi=
i=1
x; €{0,1} i=1,...,n

The Minimum Differential Dispersion model, MinDiff, is prob-
ably the most elaborated one in terms of its objective function
definition. It basically consists of computing the maximum and
minimum total dispersion associated to the m selected elements,
minimizing their difference. In this way, we obtain a balance
selection of elements in the sense that their associated dispersion
values are very similar, and this is why it is introduced as an
equity model. This problem can be formulated in simple terms
as follows, although more efficient formulations are proposed in
Prokopyev et al. (2009).

Minimize max d; ix; — min d;ix;
Jii#i Jiii
n
subject to Y xi=m
i=1
x; € {0,1} i=1,...,n
(8)

Table 4 collects the diversity models introduced so far. For the
sake of simplicity we do not include the weighted MaxMean pro-
posed by Prokopyev et al. (2009), and the variations of capacity
and cost in Rosenkrantz et al. (2000).

It is worth mentioning the connection between diversity mod-
els and Unconstrained Binary Quadratic Programming (UBQP). As
described in the survey by Kochenberger et al. (2014), UBQP refers
to a relatively simple model that represents a wide range of prob-
lems, from facility location to partitioning. Diversity problems fit
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Table 4
Diversity models.
Problem Obj. function Constraints Cardinality =~ Context
MaxSum Kuby (1988) z d;; M| =m fixed Diversity
i<jijeM
MaxMin Kuby (1988) _ r_ni_nMd,»]- M| =m fixed Dispersion & Equity
i<jije
MaxMin/Cap/Cost Rosenkrantz et al. (2000) ) minMd,-]- CAP(M) > B COST(M) <K  variable Dispersion & Equity
i<jije
S
MaxMean Prokopyev et al. (2009) % M| > 2 variable Diversity
MaxMinSum Prokopyev et al. (2009) mriv? Z d;j M| =m fixed Diversity
1€
JeM. j#i
MinDiff Prokopyev et al. (2009) max > dij- min > dj  IMl=m fixed Equity

JeM.j#i

JeM.j#i

well in that general model, in which the objective function con-
sists of a quadratic expression with the standard form x’Qx, where
Q is a square matrix (with the distances in the case of diversity
problems). Starting with the early mathematical models by Prof.
Glover for the MaxSum problem, diversity models and their solu-
tion methods have certainly benefited from the extensive research
in UBQP. Other researchers in the field, such as Profs. Palubeckis,
Hao, or L5, worked in both UBQP and diversity models, thus tak-
ing advantage of the connections between both models. We believe
that these connections will inspire in the near future new ideas for
better solving problems of both sides.

4. The development period (2010-2021)

Considering that in the previous decade many methods were
proposed for both MaxSum and MaxMin, it is expected that the
scientific production in these problems is now moderate in terms
of the number of papers but contains very complex methods to
compete with the vast existing literature. On the other hand, the
other diversity models proposed received very little attention
and we will see that researchers are developing now efficient
methods for them. It is especially true in the case of restricted
models, which, despite being proposed at the beginning of the
previous period, had to wait until this one to trigger the interest
of researchers.

4.1. The MaxSum model

At the end of the expansion period, Marti et al. (2013) reviewed
30 methods for the MaxSum, compared them on the MDPLIB, and
concluded that a tabu search, ITS, and a variable neighborhood
search, B-VNS, were the best overall. We have identified in the
current period five papers proposing advanced methods that try to
improve these two previous methods.

An open question in the heuristic community is if it is better
to perform independent constructions, as GRASP typically does, or
improved outcomes can be obtained if we use information about
past constructions when performing new ones. Lozano, Molina,
& Garcia-Martinez (2011) proposed an iterated greedy, IG, for
the MaxSum problem, based on this multi-start framework. This
method alternates constructive and destructive phases linked by
an improvement process. Specifically, after an initial construction,
a destruction mechanism removes selected elements, and then re-
constructs the partial solution with a greedy method. The result-
ing solution is improved with a typical local search. An empirical
comparison shows that this method is able to obtain solutions of
similar quality than the ITS by Palubeckis (2007).

Wang, Zhou, Cai, & Yin (2012) proposed an interesting combina-
tion of a Tabu Search with an Estimation of Distribution Algorithm
(EDA). The rationale behind this hybrid method, called LTS-EDA,
is that the EDA is a knowledge model that implements the infor-
mation repository in which the experience of the history is stored,
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to extract the required information by the learnable tabu search
for an efficient search exploration of the solution space. Their em-
pirical comparison with previous methods shows that this hybrid
method is able to improve previous approaches, especially on large
instances. It must be noted that the authors considered very long
running times, of 5 hours of CPU time, for the largest instances
with n = 5000 elements.

Wang, Hao, Glover, & Lii (2014) integrate Tabu Search and Scat-
ter Search in a memetic algorithm. The design of this algorithm
is clearly in line with our comments above, that methods in this
period are very complex in order to obtain high-quality solutions.
In particular, their tabu memetic algorithm, called TS-MA popu-
lates an initial reference set with local optima obtained with the
application of tabu search to random initial solutions. This tabu
search is based on the same neighborhood of previous tabu search
implementations for the MaxSum problem, consisting on swap-
ping a selected with an unselected element. However, to reduce
the computational effort associated with exploring the neighbor-
hood, they apply a successive filter candidate list strategy, and
subdivide the move into its two natural components: first remove
an element, and then add another element. The authors explain
that one of the key elements in their memetic algorithm is the
combination operator based on solution properties by reference
to the analysis of strongly determined and consistent variables.
The method performs iterations combining the solutions in the
reference set as long as the resulting solutions qualify to enter
to this set. This method is an improved version of the hybrid
metaheuristic published in Wu & Hao (2013). The authors per-
form an empirical analysis to compare TS-MA with IG (Lozano
et al, 2011), ITS (Palubeckis, 2007), B-VNS (Brimberg et al.,
2009), and LTS-EDA (Wang et al., 2012). The comparison shows
the superiority of the proposed TS-MA; however, it is performed
on a limited set of instances, ignoring many instances in the
MDPLIB.

De Freitas, Guimardes, Pedrosa Silva, & Souza (2014) proposed
a Memetic Self-adaptive Evolution Strategy, MSES. It is basically a
population based algorithm that iterates over generations in which
parents are mutated to produce children. A strength variable asso-
ciated with each individual manages the mutation, and it is self-
adjusted favoring that best configurations survive over time. As it
is customary in memetic algorithms, the method includes a local
search and a crossover, and as in previous implementations of the
classic exchange-based local search, the authors propose an effi-
cient implementation based on splitting the move evaluation be-
tween the removed and the added contribution of its elements.
The method is coupled with a tabu search that is selectively ap-
plied to the best children in the generation. The algorithm is im-
plemented in Matlab, and it is compared with previous heuristics
reimplemented in Matlab as well. The comparison on the MDPLIB
instances favors the proposed method.

The last paper published so far on the MaxSum model at the
time of writing this review is due to Zhou, Hao, & Duval (2017),
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and it describes a memetic algorithm, called O0BMA, improved with
three search strategies:

» An opposition-based learning to reinforce population initializa-
tion as well as the evolutionary search process.

¢ A tabu search to intensify the search in promising regions.

e A rank-based quality-and-distance pool updating maintain a
good level of diversity in the population.

The opposition-based learning basically considers a candidate
solution and its corresponding opposite solution. In the case of
the MaxSum problem, the opposite solution is simply obtained by
selecting some of the elements not selected in a given solution.
The tabu search, on the other hand, is based on a constrained
swap strategy that manages the size of the explored neighborhood
to speed up the method. As all the local search based methods
for this problem, it is built upon a swap move that exchanges
a selected with an unselected element in the solution. Finally, a
rank-pool updating strategy decides whether an improved solu-
tion qualifies or not to enter into the population pool in which
the memetic algorithm iterates. In particular, this strategy com-
putes a score based on both quality and diversity to rank solutions
in the updating process of the pool. The authors compare their
OBMA method with five previous methods described above: ITS
(Palubeckis, 2007), G-SS (Gallego et al., 2009), B-VNS (Brimberg
et al,, 2009), IG (Lozano et al., 2011), and LTS-EDA (Wang et al.,
2012). The comparison clearly shows that the proposed method
consistently obtains the best results in the instances considered.
The authors argue that MSES (De Freitas et al,, 2014) is not in-
cluded in this comparison because it is very similar to the TS-MA
method. On the other hand, as other empirical comparisons per-
formed in this last decade, it does not consider the entire bench-
mark of instances published. In Section 6, we perform an exhaus-
tive comparison of the methods identified as the best on the entire
MDPLIB benchmark instances.

4.2. The MaxMin model

In this period we have only found two exact methods and one
heuristic algorithm for the MaxMin model. These procedures in-
troduce important changes in the way the problem is approached,
and therefore they deserve to be described in detail.

Sayyady & Fathi (2016) solve an alternative model consecutively
to obtain the optimal solution of the MaxMin model. In particular,
they consider the node packing problem, in which given a thresh-
old value [, a graph G(l) is defined with the set V of n nodes of
graph G = (V,E), and the set of edges E(l) = {(i,j) € E : d;; < I}.
The node packing problem consists in finding a maximum cardi-
nality subset of nodes so that no two nodes in this subset are ad-
jacent to each other. It can be formulated in mathematical terms
with binary variables, x;, indicating if node i is selected as:

Maximize S X
subject to: xi+xj<1 i<jdj<l (9)
x;e{0,1} i=1,...,n

The authors solve the node packing model above for different
values of I. In this way, an optimal solution of the node pack-
ing problem in G provides a set of points with minimum distance
larger than or equal to I. Note however than in the MaxMin prob-
lem, we specifically seek for a set of m points, and the set obtained
with the node packing has an arbitrary number of points, called
v(l). Sayyady and Fathi proposed to solve a sequence of node pack-
ing problems for different values of | according to a binary search,
until they obtain a set of v(l) = m points, which turns out to be
the optimal solution of the MaxMin model. This method is able to
solve large problems to optimality. Specifically, they solve the Eu-
clidean instances with n =250 in less than 200 seconds, and the
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random instances with n = 100 in less than 50 seconds (although
they cannot solve the random instances with n = 250).

Sayah & Irnich (2017) propose a compact formulation that
is able to solve large problems. Let D® < D! < ... < Dkmax be
the different non-zero distance sorted values in (d;;), and let
E(D¥) = {(i., j) € E : d;j < D¥}. The location binary variable x; indi-
cates whether location i is opened, and binary variable z, indicate
whether the location decisions satisfy a minimum distance of at
least DX, Their first formulation follows:

Maximize DO+ Zﬁ:{ix (Dk — Dk-1yz,
n
subject to Y xi=m
i=1
Zk = Zk—1 k=1,..., kmax
Xi+Xj+2, <2 (i, j) € E(D*) \ E(Dk-1)
Xi z € {0, 1} i=1,...,n k=1,..., max

(10)

Sayah & Irnich (2017) propose bounds and valid inequalities to
strength formulation (10). Their empirical analysis ignores the in-
stances used in previous diversity paper, and considers the pmed
instances in the OR library. Results are, on the other hand, impres-
sive, since they are able to solve to optimality instances with up to
n =900 elements.

Porumbel, Hao, & Glover (2011) proposed a fast local search for
a model that combines the MaxMin and the MaxSum problems.
In particular, the authors minimize the MaxMin objective function
and consider the MaxSum as a secondary objective. The inclusion
of this secondary objective is motivated by the fact that there may
be a relative large number of solutions that qualify as optimal for
the MaxMin, and it makes sense to choose the best one among
them in terms of the MaxSum objective. Although not mentioned
by these authors, we can find this proposal in the very first paper
published for these problems. Kuby (1988) introduced the Max-
Sum, the MaxMin, and what this author called a multi-criteria ap-
proach, arguing that the MaxSum model is an appropriate way to
choose among the many alternate optima of the MaxMin problem.

Parrefio et al. (2021) perform a numerical and geometrical anal-
ysis of four diversity models: MaxMin, MaxSum, MaxMinSum, and
MinDiff. Their analysis reveals that the MaxMin avoids very close
elements but may select points either at a medium or at a large
distance. On the other hand, the MaxSum favors the selection of
points at a large distance but permits very close elements. There-
fore, one of the conclusions of their study is that the combina-
tion of these two first models, in the way described above, would
lead to a more robust model. The authors formulate this combined
model, called the bi-level MaxSum problem, by introducing d* as
the optimal value of the MaxMin model (solved first), as follows:

Maximize icj dijXix;
n
subject to: Xi=m
J 5" (11)
dij >d*xx; i, j=1,....,n
X,’E{O,]} i:‘l,..‘,n.

Fig. 2 shows the MaxMin optimal solution (left), the MaxSum
optimal solution (center), and the Bi-level optimal solution (right),
of an Euclidean instance with n = 50 elements from which we se-
lect m = 5.

The MaxMin optimal solution depicted in the left diagram of
Fig. 2 shows the typical disposition of the solutions of this model
identified by Parrefio et al. (2021), in which the elements are scat-
tered in the plane providing a disperse selection that may include
the central region. A criticism of that selection, however, would
be the point in the left part of the diagram, around coordinates
(5,40), instead of which we could easily select a better one in
terms of global dispersion. As a matter of fact, the MaxSum value
of that solution is 829.8, which is relatively low compared with
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Fig. 2. MaxMin, MaxSum, and Bi-level optimal solutions.

the MaxSum optimal value of 942.8. The optimal MaxSum solution
corresponding to that value is shown in the center diagram of the
figure, and also has the typical disposition of that model, avoiding
the central part and with the issue of selecting two points very
close (see the upper left corner of the square). The diagram on
the right clearly shows that the bi-level model provides an “in-
between” solution, considering the optimal solutions of the two
original models. Instead of the point around coordinates (5,40),
it selects the point around coordinates (15,5). This “swap” does
not change the MaxMin objective function, which is 51.4 in both
models, but is able to increase the MaxSum value from 829.8 to
885.2 in the bi-level model.

A natural extension of the bi-level model is the bi-objective
model, in which both objectives, MaxSum and MaxMin, are con-
sidered as equally important, and treated with the standard multi-
objective methodology. Colmenar, Marti, & Duarte (2018) first
adapt the standard solvers NSGA-II and SPEA, and then propose
several metaheuristics to the bi-objective problem. In particu-
lar, the authors consider two construction-based methods, namely
GRASP and Iterated Greedy, and two trajectory-based, namely tabu
search and VNS. The comparison of the methods include the hy-
pervolume, coverage, and epsilon indicator of the approximation
of the Pareto front obtained with each method. The comparison
shows that tabu search is able to obtain the best solutions.

4.3. The MaxMean model

Marti & Sandoya (2013) propose an advanced GRASP for the
MaxMean problem introduced by Prokopyev et al. (2009) that they
called the Equitable Dispersion problem, in which the number of
selected elements is not set beforehand. In particular, the authors
target general instances in which distances can take positive and
negative values and do not necessarily satisfy the usual distance
properties, such as the triangular inequality, reflecting for example
the polarization that occurs when people get together in groups,
in which we can identify clusters of individuals, with a high at-
traction within clusters and a high repulsion between clusters, and
with no room for indifference. Note that the Max-Mean Disper-
sion Problem is polynomially solvable if all the distances are non-
negative, but it is strongly NP-hard if they can take positive and
negative values. The authors propose a GRASP constructive algo-
rithm based on a non-standard combination of greediness and ran-
domization, a local search strategy based on the variable neighbor-
hood descent methodology, and a path relinking post-processing.
This later method is based on a measure to control the diversity in
the search process. The empirical comparison with a previous stan-
dard GRASP (Prokopyev et al., 2009) favors the proposed method.

The paper by Marti & Sandoya (2013) drew the attention of re-
searchers working on diversity problems to the MaxMean model.
A few years later, Carrasco et al. (2015) propose a tabu search
based on constructive and destructive moves, and three local
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search methods with nested neighborhoods. Their tabu search al-
gorithm, built upon short-term and long-term strategies, outper-
forms the previous GRASP methods. Della Croce, Garraffa, & Salassa
(2016) propose a very interesting combination of methods in a 3-
stage algorithm: a quadratic integer solver to find promising values
for the number of selected elements to generate initial solutions, a
local branching scheme, and a path relinking post-processing. Lai
& Hao (2016) hybridize the tabu search methodology with an evo-
lutionary method thus creating a memetic algorithm that improves
upon previous methods according to their extensive computational
comparison. As shown in the subsection on the MaxSum problem,
this type of memetic algorithm has been already applied to other
diversity models, and we can therefore conclude that it is a robust
method that performs well across different models.

Brimberg, Mladenovi¢, Todosijevi¢, & Urosevi¢ (2019) propose a
simple VNS for the MaxMean problem. The authors identify the
minimum number of ingredients that makes a VNS based heuris-
tic as simple and user friendly as possible, while at the same time
achieving high-quality results. To clearly state this goal, the paper
title starts with the expression Less is more, and the proposed algo-
rithm follows the general variable neighborhood search methodol-
ogy. The experimental comparison shows that, in spite of its sim-
plicity, this VNS competes very well with the complex tabu search
by Carrasco et al. (2015).

We end the revision on the MaxMean model with an exact al-
gorithm. Garraffa, Della Croce, & Salassa (2017) consider the non-
convex quadratic fractional formulation (see (5)) from which a
semidefinite programming (SDP) relaxation can be derived. This re-
laxation is tightened by means of a cutting plane algorithm which
iteratively adds the most violated inequalities. The proposed ap-
proach embeds the SDP relaxation and the cutting plane algorithm
into a branch and bound framework. Computational experiments
show that the proposed method is able to solve to optimality in-
stances with up to 100 elements in less than 5 hours of CPU time.

Lai, Hao, & Glover (2020) adapted their memetic algorithm pro-
posed for the MaxMean (Lai & Hao, 2016) to the Generalized
MaxMean (see formulation (6) above), in which some weights mul-
tiply the objective function. This is the first heuristic for this ex-
tended model introduced in Prokopyev et al. (2009).

4.4. Other unconstrained diversity models

As mentioned in Section 3.3, Prokopyev et al. (2009) introduced
in the previous period several diversity models that did not receive
attention at that time. We have just reviewed above several con-
tributions on the MaxMean model, and we are going to see now a
few more on the MaxMinSum and MinDiff as well.

Building on the main ideas applied to different metaheuristics
for the MaxSum and MaxMin models, Aringhieri, Cordone, &
Grosso (2015) propose some constructive procedures and a Tabu
Search algorithm for the MaxMinSum and MinDiff models. In
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particular, the authors investigate the extension to this new con-
text of key features such as initialization, tenure management and
diversification mechanisms. The computational experiments show
that the proposed algorithms perform effectively on the publicly
available benchmarks. Martinez-Gavara, Campos, Laguna, & Marti
(2017) integrate GRASP and Tabu Search in a scheme in which
elements are selected and des-selected thus oscillating around
the feasibility boundary defined by the problem constraint. The
authors tested six different variants of GRASP, and three variants of
the strategic oscillation. The final method is compared with a com-
mercially available optimization software for combinatorial prob-
lems www.localsolver.com. Amirgaliyeva, Mladenovi¢, Todosijevic,
& UrosSevic (2017) apply different variants of the variable neighbor-
hood search methodology to the MaxMinSum, including the vari-
able formulation search that iterates over different formulations
to escape from local optima. The authors compare their method
with the tabu search by Aringhieri et al. (2015), obtaining better
results.

The most recent approach for the MaxMinSum is due to Lai,
Yue, Hao, & Glover (2018), in which a solution-based tabu search
is proposed. It is worth mentioning that the standard tabu search
implementation is based on attributive memory, in which only key
properties (called attributes) of moves or solutions are stored to
avoid cycling. In this implementation however, the authors con-
sider an interesting variant in which instead of an attribute, they
record the entire solution by means of hash functions to speed up
its management. An exhaustive empirical comparison with previ-
ous methods identifies this tabu search as the best method pub-
lished so far for the MaxMinSum.

We consider now the MinDiff model, for which Duarte,
Sanchez-Oro, Resende, Glover, & Marti (2015) proposed a GRASP
with Exterior Path Relinking. Given two solutions, S and S/, the
standard implementation of the path relinking starts from the initi-
ating solution S and gradually transforms it into the guiding solution
§’. This transformation is accomplished by swapping out elements
selected in S with elements in S’, generating a set of intermedi-
ate solutions. The exterior Path Relinking introduces in the initiat-
ing solution characteristics not present in the guiding solution with
diversification purposes. Specifically, it removes from the initiating
solution those elements which also belong to the guiding solution,
obtaining intermediate solutions which are further away from both
the initiating and the guiding solutions. The authors show that this
method is able to obtain high quality solutions by comparing them
with the optimal values obtained with CPLEX.

After Duarte’s GRASP with Exterior Path Relinking, three heuris-
tics have been proposed. They are basically adaptations of methods
proposed for other diversity models to target the specific character-
istics of the MinDiff model. In particular, Mladenovi¢, Todosijevic,
& UroSevic (2016) propose a VNS, Zhou & Hao (2017) an iterated
local search, and Lai, Hao, Yue, & Gao (2019) a solution-based tabu
search, which according to their computational testing, is currently
the state-of-the-art method for this problem.

A major criticism of the two models reviewed in this subsection
is its lack of practical significance. Parrefio et al. (2021) analyze
these two models, in connection with the rest of diversity mod-
els. The first conclusion of their study is that the MaxSum and
MaxMinSum provide similar solutions, and considering the rel-
atively large amount of research already done in the MaxSum
model, it is not well justified the need of the recently introduced
MaxMinSum one (especially because it is more complicated). In
particular, their empirical analysis reveals that the optimal solution
obtained with one model scores very well in the other model,
presenting a small deviation with respect to its optimum (0.8%
on average on the MDPLIB). Additionally, both models present an
average correlation of 0.74, and in many cases it is larger than 0.9.
Regarding the geometrical disposition of its solutions, they select
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points close to the borders of the space, and with no points in the
central region. Fig. 3 shows the MaxMinSum optimal solution (left),
and the MaxSum optimal solution (right), of a Euclidean instance
with n =100 elements from which we select m = 20. It is clear
that both solutions are very similar (they only differ in one point).

Regarding the MinDiff, Parrefio et al. (2021) also recommend to
avoid the use of this model in its current formulation. Their anal-
ysis reveals that it seeks for inter-distance equality among the se-
lected points, but ignores how large or small these distances are.
This model balances the selection of points, achieving equity in
this way; however, it seems difficult to justify the selection of bal-
anced points at a very small distance, as shown in the example of
Fig. 4 with n = 25 elements from which we select m = 3.

To sum it up, it seems that researchers have focused their at-
tention on these two problems as a way to evaluate complex meta-
heuristics, but without considering their true practical significance.
More research is needed to conclude if they are artificial problems
or require a better formulation to capture diversity and equity in a
more realistic way.

4.5. Constrained dispersion models

As mentioned above, in the previous decade Rosenkrantz et al.
(2000) introduced several diversity models constrained in terms of
cost and capacity, motivated by their practical applications in fa-
cility location. In these last few years, several models have been
developed from this seminal paper.

Peir6, Jiménez, Laguardia, & Marti (2021) considered the model
of maximizing the diversity subject to capacity constraints. This
model, as stated in Rosenkrantz et al. (2000), is built upon the
MaxMin, by replacing the typical cardinality constraint with ca-
pacity constraints. The authors called it the Capacitated Disper-
sion Problem (CDP), and proposed a hybridization of GRASP and
VND implemented within the Strategic Oscillation framework. A
straightforward formulation, based on the standard binary vari-
ables x;, a capacity value c; for each node i, and a capacity thresh-
old B indicating the desired level of service, follows:

Maximize Min; jem  djj
n
subject to: Cix; > B
.] g ™M = (12)
M={ieV:x =1}
x; € {0, 1} i=1,...,n

Marti, Martinez-Gavara, & Sanchez-Oro (2021) propose a math-
ematical model and a heuristic based on the Scatter Search
methodology to maximize the diversity while satisfying the capac-
ity constraint in the CDP. Their heuristic algorithm outperforms the
previous heuristic on the 100 instances tested, and the model is
able to solve the medium size instances in this set to optimality. In
particular, the authors adapt the exact method by Sayyady & Fathi
(2016) for the MaxMin to the CDP. It basically solves iteratively the
node packing problem, which finds a maximum cardinality subset
of nodes in an auxiliary graph, so that no two nodes in this sub-
set are adjacent to each other. With a time limit of 3600 seconds,
Gurobi is able to solve all the instances with n =50, and n = 150,
and some of the instances with n = 500.

This same year in which we are writing this paper, 2021, a
new constrained model has been published. Martinez-Gavara et al.
(2021) consider the model in which capacity and cost constraints
are included. This model was labeled as Max-Dist/Cap/Cost by
Rosenkrantz et al. (2000), and it is coined now as the Generalized
Dispersion Problem (GDP). It basically adds a cost constraint to
the CDP. For each element i, it considers an associated cost, a;, and
a maximum budget K that cannot be exceeded. Martinez-Gavara
et al. (2021) also propose another model that includes both fixed
and variable costs, to model in a more realistic way some location
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n
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1?1
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m<dj+D(1-x)+D(1-%x)) ij=1..,n:j>i
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(13)

It is noteworthy the relative relationship between these con-
strained models and the well-known discrete p-median problem.
In both models we want to select some locations to establish some
facilities; however, the p-median solution assigns each client to a
facility, which is not the case of dispersion problems. In general
terms, we may say that p-median models emphasize the distance
between facility and clients, while dispersion models emphasize
the distance among facilities.

Martinez-Gavara et al. (2021) illustrate the practical use of this
model with the location problem of a medical corporation that
wants to set several facilities, such as clinics or hospitals, in a cer-
tain territory. In this context, the set of nodes would represent the
potential locations for the facilities (such as hospitals or clinics),
the capacity value B the minimum number of patients that they
want to attend, and the cost limit K their budget. Maximizing the
inter-distance between facilities translates the objective of scatter
the clinics over the territory to cover it, in a similar way that the
p-median minimizes the distance between the facility and the
assigned patients. Note however, that in this model, we are not
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assigning the clients (patients) to clinics, and we are giving them
the freedom to select the one that they prefer, which is precisely
what many medical corporations do.

5. The MDPLIB library of benchmark instances

The benchmark instances for the diversity problem come from
different sources that have been added over the years. The most
used library is the MDPLIB; however, other instances have also
been considered, such as the OR-Lib. On the other hand, the li-
brary for the constrained dispersion problems is quite recent, and
since it is derived from the MDPLIB, we propose to include all of
them in an extended version of the MDPLIB, called MDPLIB 2.0. A
detailed description of the different sets of instances follows.

The original MDPLIB collects a total of 315 instances avail-
able at www.uv.es/rmarti/paper/mdp.html with a mirror server in
www.optsicom.es/mdp. Marti et al. (2010) compiled ten years ago
this comprehensive set of benchmark instances representative of
the collections used for computational experiments in the MDP.
The library contains three sets of instances collected from differ-
ent papers and named after their authors: GKD (Glover, Kuo, and
Dhir), MDG (Marti, Duarte, and Gallego), and SOM (Silva, Ochi, and
Martins). All the instances were randomly generated. The genera-
tors were not built according to any specific application, but they
were designed with the purpose of being a challenge for heuris-
tic methods, mainly on the MaxSum problem. However, these in-
stances have been extensively used in all the diversity models pro-
posed, and some studies point out that not all of them are appro-
priate for some models.

In this section, we first describe in detail each set of instances,
which contains different subsets according to their source. We con-
sider three sets of instances depending on the type of values in
their distance matrices: Euclidean, Real, and Integer. In our de-
scriptions below, we analyze these sets, and propose some changes
to update the library. We will refer to the new library as MDPLIB
2.0.

1. Euclidean instances set. This data set consists of 215 matrices
for which the values were calculated as the Euclidean distances
from randomly generated points with coordinates in the 0 to
10 range. It collects four subsets, namely GKD-a, GKD-b, GKD-c,
and GKD-d:

(a) GKD-a: Glover et al. (1998) introduced these 75 instances in
which the number of coordinates for each point is generated
randomly in the 2 to 21 range. The instance sizes are such
that forn=10,m=2,3,4,6 and 8; forn=15, m=3,4,6,9
and 12; and for n =30, m = 6,9, 12, 18 and 24.

(b) GKD-b: Marti et al. (2010) generated these 50 matrices for
which the number of coordinates for each point is generated
randomly in the 2 to 21 range and the instance sizes are
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such that for n=25, m=2 and 7; for n=50, m=5 and

15; for n = 100, m = 10 and 30; for n = 125, m = 12 and 37;
and for n = 150, m = 15 and 45.

GKD-c: Duarte & Marti (2007) generated these 20 matrices

with 10 coordinates for each point and n = 500 and m =

50.

GKD-d: Parrefio et al. (2021) generated 70 matrices for

which the values were calculated as the Euclidean dis-

tances from randomly generated points with two coor-
dinates in the O to 100 range. For each value of n=

25,50, 100, 250, 500, 1000, and 2000, they considered 10

instances with m = [n/10] and 10 instances with m =

2[n/107, totalizing 140 instances. The main motivation of

this new set is to include the original coordinates in the

instances files that unfortunately are not publicly available
nowadays for the other subsets. In this way, researchers may
represent the solutions in line with the work in Parrefio

et al. (2021).

We replace the original sets GKD-a and GKD-b in the bench-
mark library with the new set GKD-d, in which the instances
are generated in the same way but their corresponding files
contain the coordinates. Note that the new set contains very
large instances not considered in the original sets.

Real instances set. This data set consists of 140 matrices with
real numbers randomly selected according to a uniform distri-
bution.

(a) MDG-a. This data set contains 60 instances. Duarte & Marti

(2007) generated 40 matrices with real numbers randomly

selected in [0, 10] and called them Random Type I instances,

20 of them with n =500 and m =50, and the other 20

with n =2000 and m = 200. Parrefio et al. (2021) gener-

ated 20 additional matrices with n =100 and real num-
bers randomly selected in [0, 10] that can be solved to
optimality.

MDG-b. This data set contains 60 instances. Originally,

Duarte & Marti (2007) created this set with 40 matrices
generated with real numbers randomly selected in [0, 1000]
and called them Random Type II instances. 20 of them have
n =500 and m =50, and the other 20 have n = 2000 and
m = 200. Parrefio et al. (2021) generated 20 additional ma-
trices with n = 100 and real numbers randomly selected in
[0, 1000],

MDG-c. Considering that many heuristics were able to

match the best-known results in many of the instances pre-

viously introduced, Marti et al. (2013) proposed this data set
with very large instances in 2013. It consists of 20 matrices
with randomly generated numbers according to a uniform
distribution in the range [0, 1000], and with n = 3000 and

m = 300, 400, 500 and 600.

. Integer instances set. This data set consists of 170 instances
where the distance matrices are integer random numbers gen-
erated from an integer uniform distribution.

(a) ORLIB: This is a set of 10 instances with n = 2500 and
m = 1000 that were proposed for binary problems (Beasley,
1990). The distances are integers generated at random in
[—100, 100] where the diagonal distances are ignored.

PI: Palubeckis (2007) generated 10 instances where the dis-

tances are integers from a [0,100] uniform distribution. 5 of

them are generated with n = 3000 and m = 0.5n, and 5 with

n =5000 and m = 0.5n. The density of the distance matrix

is 10%, 30%, 50%, 80% and 100%.

SOM-a. These 50 instances were generated by Marti

et al. (2010) with a generator developed by Silva et al.

(2004) with integer random numbers between 0 and 9 gen-

erated from an integer uniform distribution. The instance

sizes are such that for n =25, m=2 and 7; for n =50,
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Fig. 5. Number of solutions of an instance with n = 25.

m=>5 and 15; for n=100, m =10 and 30; for n= 125,
m =12 and 37; and for n = 150, m = 15 and 45.

SOM-b. These 20 instances were generated by Silva et al.
(2004) with the same random generator from SOM-a. The
instance sizes are such that for n = 100, m = 10, 20, 30 and
40; for n =200, m = 20,40,60 and 80; for n =300, m=
30,60,90 and 120; for n =400, m = 40, 80, 120, and 160;
and for n = 500, m = 50, 100, 150 and 200.

MGPO: To complement the sets above, we consider 80 large
matrices with relatively low m values. Specifically, we gen-
erate 40 instances with n = 1000 and integer numbers ran-
domly selected in [1, 100], 20 of them with m = 50 and 20
with m = 100. Similarly, we generate 40 matrices with n =
2000 and integer numbers randomly selected in [1, 100], 20
of them with m = 50, and 20 with m = 100.

A final note on the use of instances is its applicability to the differ-
ent models. It must be noted that some of them were introduced
for the MaxSum model, and could not be adequate for other diver-
sity models. This is especially true in the case of some instances in
the SOM set that contain so many O values that all feasible solu-
tions have a minimum distance value of 0. Our empirical analysis
in Section 6 shows that 23 instances in the SOM set have an opti-
mal MaxMin value of 0, and therefore if we apply a heuristic and
obtain a solution with a value of 0 in the MaxMin objective, this
is not a reliable measure of its assessment. Researchers have to be
very careful when using this set to test other models than the clas-
sic MaxSum. We are including a note in the MDPLIB 2.0 identifying
these 23 instances.

A simple but important argument when considering an instance
to compare methods is its difficulty based on the ratio between
the total number of elements n, and the number of them to be
selected, m. Since any selection of m elements is a solution, the
number of feasible solutions is simply C%} #lm), Therefore, for
a given value of n, the closer m is to n/2, the more difficult the in-
stance is. For example, an instance with n = 25 and m = 2 only has
300 solutions, while an instance with n =25 and m = 10 has more
than 3 million solutions. Fig. 5 shows the number of solutions as a
function of m for an instance with n = 25.

5.1. Constrained benchmark instances

The benchmark set of instances in the constrained dispersion
problem is derived from the MDPLIB described above. Specifically,
Peir6 et al. (2021) and Martinez-Gavara et al. (2021) select a subset
of 50 instances to generate the new benchmark set. It consists of
30 instances from GKD set, 10 of each size (n =50, n = 150, and
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Table 5

MDPLIB 2.0 benchmark library.
Set # Instances  Type Range of n Range of m
GKD-c 20 Euclidean 500 50
GKD-d 140 [25, 2000] [3, 400]
MDG-a 60 [100, 2000] [50, 200]
MDG-b 60 Real numbers  [100, 2000] [50, 200]
MDG-c 20 3000 [300, 600]
ORLIB 10 Integer 2500 1000
Pl 10 numbers {3000,5000} {1500, 2500}
SOM-a 50 [25, 150] [2, 45]
SOM-b 20 [100, 500] [10, 200]
MGPO 80 [1000, 2000]  [50, 100]
Const - (CDP) 100 Constrained [50, 500] -
Const - (GDP) 200 Constrained [50, 500] -
Total 770 [25, 5000] [2, 2500]

n = 500), 10 instances of size 500 from the MDG set, and finally,
10 more instances of size 50 are selected from the SOM set.

The capacity of each node i, ¢; in Eq. (12), is randomly generated
with a uniform distribution between [1,1000] for each of these
original instances. Then, the minimum capacity B is computed as
the total capacity multiplied by 0.2 or 0.3, thus two instances are
created for each of these 50 instances. So, the Const.-(CDP) bench-
mark contains 100 instances. Moreover, in the GDP, for each of
these 100 instances, the cost g; of a node i, see Eq. (13), is gen-
erated by a uniform distribution between the values c;/2 and 2c;.
As in the capacity constraint, the maximum budget K is computed
as the sum of all the costs values multiplied by a factor between
0.2 and 0.3. Therefore, in the Const.-(GDP) benchmark, each origi-
nal instance in the MDPLIB produces 4 instances, thus obtaining a
set of 200 instances.

We have generated an additional set of large instances. In par-
ticular, we consider 20 new instances in each set: 20 Euclidean
(GKD-d) with n = 2000, 20 Real (MDG-c) with n =3000, and 20
Integer (MGPO) with n = 2000. The capacity and cost values are
generated as described above.

We finish the description of the instances, summarizing the
new library, MDPLIB 2.0, in Table 5. This table shows the num-
ber of instances, type, and the range of n and m in each subset. In
general terms, Euclidean instances are based on location problems,
Real instances were generated to pose a challenge for heuristics,
and Integer instances somehow are related to rankings and prefer-
ences. However, none of them are directly based on applications.
A major criticism of most of these instances is their lack of con-
nection with real problems. In our opinion they should be closely
linked to real applications. In fact, related fields, such as location
or grouping, have well-known data sets based on important ap-
plications, which constitutes one of the foundations of Operations
Research. We would suggest the study of real problems to generate
future benchmarks.

6. Computational experiments

In this section we address the two diversity problems that have
been extensively studied, the MaxSum and MaxMin. Considering
that the number of methods proposed for them is very large and,
in many cases, the comparisons performed are partial, with just a
few methods and a fraction of the instances described in Section 5,
we perform a complete comparison to clearly established the state-
of-the-art methods for these two problems. We would like to
thank the authors who kindly made their codes available to us. All
the experiments are conducted on a computer with a 2.8 GHz Intel
369 Core i7 processor with 16 GB of RAM.
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6.1. The MaxSum model

Marti et al. (2013) presented an extensive computational ex-
perimentation to compare 10 heuristics and 20 metaheuristics for
the MaxSum problem (see Table 1). This comparison reveals that,
the first heuristics proposed in the early period, C2 and D2, per-
form very well considering their simplicity, and in the set of
complex metaheuristics proposed in the expansion period, B-VNS
(Brimberg et al., 2009) and ITS (Palubeckis, 2007) exhibit the best
results (see Table 2). Since then, several new efficient methods
have been published (see Section 4), being the Memetic Evolution
Strategy MSES (De Freitas et al., 2014), the Memetic Tabu Search
TS-MA (Wang et al., 2014) and the opposition-based memetic al-
gorithm OBMA (Zhou & Hao, 2017) the most recent ones. We con-
sider these seven methods and the solutions obtained with CPLEX
in our comparison.

In line with the previous comparisons previously published, we
consider two time horizons in our testing: 10 seconds and 600 sec-
onds of CPU time. In our first experiment, we exclude the MSES
(De Freitas et al.,, 2014) because we are running its Matlab code
provided by the authors that requires much more than the 10 sec-
onds considered in this experiment. Table 6 reports the results of
the other six heuristics referenced above run for 10 seconds. It
also reports the solutions of the CPLEX solver with mathemati-
cal model (4) described above run for 1 hour. Note that in many
cases CPLEX is not able to certify the optimality, and we report its
best feasible solution found (current lower bound when the time
limit expires). This table shows the average percentage deviation
from the best solution known (% dev), and the number of best so-
lutions found (# best). Results are reported for each instance set. In
the case of CPLEX, % dev is only reported in a set, when it obtains
feasible solutions in all the instances in that set.

Table 6 shows that, as expected, metaheuristics obtain better
results than simple heuristics. In particular, the most recent pub-
lished method, OBMA, obtains the best results overall, with an aver-
age percentage deviation of 0.16% and 327 best solutions found in
the experiment. Note that TS-MA is able to slightly improve OBMA
in terms of the average percentage deviation; however, a p-value
< 0.001 of the one-sided pairwise Wilcoxon test confirms the su-
periority of OBMA. On the other hand, this table also shows that
most of the problems are too large to be solved with CPLEX, and
only in some of the instances sets it obtains feasible solutions.

If we compare the best method proposed in each period, we
can see that in the early period, the best results were obtained
with D2 that presents an average deviation of 36.95%. In the ex-
pansion period (second decade in our study), the best method is
B-VNS, and the percentage deviation drops to 0.2%. Finally, in the
development period (last decade) a slight improvement is achieved
with very complex methods, being OBMA the best method (closely
followed by TS-MA), with a deviation of 0.16 (and 0.02 for TS-MA).

In the next experiment, we compare the best methods identi-
fied for each period time, namely D2, B-VNS, and OBMA, run with
a time limit of 600 seconds per instance. We include in this experi-
ment the solutions obtained with CPLEX and MSES which require
on average about an hour of CPU time. Table 7 shows the same
statistical parameters than the previous table. The results in this
table show that simple heuristics are not able to improve complex
metaheuristics over a long period of time, and OBMA emerges as
the best algorithm again, obtaining the best percentage deviation
overall. Furthermore, OBMA exhibits a remarkable 99% of the best
solutions, while this percentage in the B-VNS is around 70%. The
pairwise Wilcoxon statistical test confirms that 0BMA outperforms
B-VNS, with a p-value less than 0.001. These comments are in line
with the results in the previous experiment.

The last experiment in this subsection evaluates how close the
solutions of the algorithms are with respect to the optimal values.
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Comparison of the best methods for the Max-Sum problem in 10 seconds.

Instance class

GKD-c  GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b  SOM-c all
# inst. 20 140 60 60 20 50 20 80 450
% dev
CPLEX 3.83 3.05 - - - 2.45 6.40 - -
Cc2 97.35 16.54 74.51 74.04 99.56 85.65 96.45 19.05 70.39
D2 22.27 41.33 40.59 28.27 76.23 41.01 22.73 23.21 36.95
B-VNS 0.00 0.06 1.18 0.07 0.08 0.00 0.00 0.20 0.20
ITS 0.00 0.58 1.19 0.10 0.20 0.05 0.00 0.25 0.30
TS-MA 0.02 0.06 0.01 0.04 0.04 0.00 0.00 0.02 0.02
0BMA 0.00 0.06 1.14 0.03 0.00 0.00 0.00 0.03 0.16
# best
CPLEX 0 46 0 0 0 18 0 0 65
Cc2 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0
B-VNS 19 108 22 0 0 50 20 13 232
ITS 19 109 20 24 0 48 19 10 249
TS-MA 1 45 58 44 0 50 20 63 281
OBMA 19 108 28 24 20 50 20 58 327
0.00 means less than 0.001.
Table 7
Comparison of the best methods for the Max-Sum problem in 600 seconds.
Instance class
GKD-c  GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b  SOM-c all
# inst. 20 140 60 60 20 50 20 80 450
% dev
CPLEX 3.83 2.98 - - 0.00 2.45 6.40 - -
D2 10.05 24.99 20.03 18.44 76.23 26.92 19.26 19.48 29.92
B-VNS 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.05 0.01
MSES 0.00 0.71 1.15 0.72 0.41 0.00 0.07 0.89 0.49
OBMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
# best
CPLEX 0 79 3 5 0 18 0 0 105
D2 0 0 0 0 0 0 0 0 0
B-VNS 20 138 43 0 2 50 20 45 318
MSES 20 126 17 12 0 50 9 0 244
0BMA 20 138 60 60 20 50 20 80 447
0.00 means less than 0.001.
Table 8 ) ) ) ) ) in the previous period, and many of them would be adequate for a
Comparison with 45 optimal values obtained with CPLEX in the MaxSum. large range of applications in which a medium size instance has to
Procedure  C2 D2 B-VNS ITS 0BMA TS-MA MSES be solved. Regarding the optimal values, the MaxSum model im-
% gap 3354 2503 0.00 005 0.0 0.00 0.00 plemented‘m CPLEXlls only able to certify optimal solutl.ons.m a
# opt 0 0 45 44 45 44 45 small fraction of the instances (around a 10% overall), which indi-

0.00 means less than 0.001.

We can compute it for the 45 small instances that CPLEX is able
to optimally solve. Table 8 shows the average percentage deviation
from the optimal solution (% gap) and the number of optimal so-
lutions found by each algorithm (# opt) over the set of these 45
instances. Since the size of these instances is small (n e {25, 50}),
and the number of elements to be selected is less than 7 (< n/3),
we may consider these 45 instances as easy to solve. However,
simple heuristics, such as C2 and D2, are not able to match the
optimal solutions, while metaheuristics can achieve almost all of
them. Furthermore, the results obtained by the heuristics are on
average less than 34.0% away from the optimal value.

To summarize the situation on the MaxSum problem, we con-
clude that simple heuristics obtain low quality solutions, and we
should avoid their use. The efforts made in the last two decades on
this problem, result in very efficient metaheuristics that are able to
obtain good solutions even in very short running times, such as the
10 seconds tested. Results obtained with the metaheuristics in the
development period (last decade analyzed) slightly improve those
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cates that this model is still a challenge for the operation research
community, and further research is necessary to obtain a model
that could increase the number of optimal solutions found.

6.2. The MaxMin model

This section describes the numerical experiments that we have
performed to test the efficiency of the most representative algo-
rithms for the MaxMin model. The first two algorithms that we
include in the comparison belong to the early period, and fall
under the category of heuristic algorithms. Specifically, we adapt
the constructive and destructive algorithms proposed by Glover
et al. (1998) to the MaxMin problem, and we name them as C2Ad
and D2Ad, respectively. They are similar to those proposed by
Erkut (1990). At the end of the expansion period, Resende et al.
(2010) performed a numerical analysis to compare their proposed
algorithm GPR with the previous metaheuristics, and conclude that
GPR outperformed the state-of-art at that time (see Table 3). So,
we consider GPR in the next comparison as the representative al-
gorithm of that period. Finally, in the development period (the last
decade in our study), we can only find the metaheuristic proposed
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Comparison of the best methods for the Max-Min problem in 10 seconds.

Instance class

GKD-c  GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b  SOM-c all
# inst. 20 140 60 60 20 50 20 80 450
% dev
CPLEX 4.55 0.22 - - - 0.00 15.00 - -
C2Ad 56.06 91.35 65.38 98.16 100.00 68.61 35.00 100.00 76.82
D2Ad 16.01 42.41 44.51 74.54 75.23 62.53 35.00 86.09 54.54
GPR 4.00 30.46 7.87 54.02 100.00 7.30 10.00 64.21 34.73
DropAdd-TS  0.01 21.00 1.35 25.43 0.00 2.72 0.00 0.00 6.31
# best
CPLEX 2 139 40 20 0 50 17 0 268
C2Ad 0 0 20 0 0 15 13 0 48
D2Ad 0 0 20 0 0 12 13 0 45
GPR 0 29 39 14 0 44 18 0 144
DropAdd-TS 20 32 58 39 20 47 20 80 316

0.00 means less than 0.001.

Table 10

Comparison with 227 optimal values in the MaxMin model.
Procedure ~ C2Ad  D2Ad DropAdd-TS GPR
% gap 88.84  52.03 18.76 23.08
# opt 28 25 114 107

by Porumbel et al. (2011), which consists in combining add and
drop operations with a simple tabu search (named DropAdd-TS).

In contrast to what happens with the MaxSum model, in the
last decade, new formulations have been proposed to the MaxMin,
increasing the number of optimal solutions that can be solved with
CPLEX. Results in Tables 9 and 10 are obtained with the model
proposed by Sayyady & Fathi (2016), running it with a time limit
of 1 hour per instance.

As in the previous section, we first compare the results ob-
tained with the four algorithms run with a small time limit
(10 seconds), including in the comparison the CPLEX results.
Table 9 summarizes the results by instance set, and shows the av-
erage percentage deviation from the best solution known (% dev),
and the number of best solutions found (# best). As in the pre-
vious section, the average percentage deviation for CPLEX is only
reported in a set, when it obtains feasible solutions in all the in-
stances in that set.

As expected, Table 9 shows that metaheuristics outperform
heuristics, and DropAdd-TS arises as the best algorithm overall,
with an average percentage deviation of 6.31% and 316 best solu-
tion found in the experiment. It is worth mentioning that CPLEX,
with the Sayyady & Fathi (2016) formulation, is able to obtain a
total of 268 bests solutions out of 450 in the experiment (around
60% overall), even improving the results achieve by GPR. This for-
mulation solves to optimality many instances of large size (with
n =1000), and is able to obtain high quality lower bounds in
even larger instances (n = 2000). Finally, comparing the two sim-
ple heuristics considered, we can see that the destructive method
D2Ad obtains better solutions than the constructive one (C2Ad).
Specifically, D2Ad presents an average deviation of 54.51% in con-
trast to the average deviation of 76.82% that C2Ad obtains.

We repeat the same experiment performed above with a time
horizon of 600 seconds. The results obtained are similar to those
presented in Table 9 for 10 seconds, so we do not include the re-
sults here. It must be emphasized that GPR is able to decrease
by 10% the percentage deviation to the best solution found in this
experiment, and to increase its number of bests solution (# best)
from 144 to 159. This makes sense since the methodology applied
in this algorithm usually requires longer running times due to the
combination of solutions.
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Finally, the last experiment in this section has the objective to
evaluate how far the solutions provided by the algorithms are from
optima, or if they are able to match them. As in the previous sec-
tion, we compare the four algorithms in the subset of instances
that CPLEX optimally solves. In particular, the MaxMin model im-
plemented in CPLEX is able to certify optimal solutions in 227 in-
stances out of 450 (around 50%). Clearly, the new formulations that
have been recently proposed for the MaxMin model allow to opti-
mally solve instances with large size (n < 1000 in our benchmark
set) with relatively low running times, as opposite to what hap-
pens in the MaxSum model. Table 10 shows the average percent-
age deviation from the optimal solution (% gap) and the number
of optimal solutions found by each algorithm (# opt) over the set
of these 227 instances. None of them is able to compete with the
results obtained by CPLEX, although it must be noted that they
require smaller running times.

6.3. The bi-level MaxSum model

As mentioned, Porumbel et al. (2011) proposed a combined
model between the MaxMin and the MaxSum problems. They con-
sidered the MaxMin objective function, subject to the MaxSum as
a secondary objective, based on the fact that there is a large num-
ber of optimal solutions for the MaxMin, so we look for the best
one among them in terms of the MaxSum objective. Parrefio et al.
(2021) support this point with a geometrical argument since they
disclose that the MaxMin avoids the selection of very close ele-
ments but can be at medium distances (not very far away from
each other), while the MaxSum favors the selection of points at a
large distance but permits very close elements, so in a way they
complement each other. The authors called it the Bi-level MaxSum
problem.

Porumbel et al. (2011) designed a tabu search heuristic,
DropAdd-TS, specifically for this problem, in which the method
tries to maximize both objectives (being the MaxSum secondary).
Since we consider the bi-level model as a very interesting one, we
perform an experiment to evaluate how good this algorithm is in
maximizing the sum of distances over the set of optimal solutions
of the MaxMin, and at the same time the practical significance of
the model. Note that, since we are applying heuristics, we cannot
guarantee the optimality, and therefore what we do to evaluate the
quality of this method, is to compare it with a previous heuris-
tic. In particular, we run the GRASP with Path Relinking, GPR by
Resende et al. (2010) and the DropAdd-TS to solve our bench-
mark set of instances. Although GPR only minimizes the MaxMin,
we evaluate both objectives, MaxMin and MaxSum, in its output
solution. We do the same for the output of the DropAdd-TS.
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Fig. 6. MaxSum percentage improvement of DropAdd-TS with respect to GPR.

To perform a fair test about the ability of the DropAdd-TS
to find good solutions in terms of the MaxSum, we only consider
the instances in which both methods obtain the same value of
the MaxMin objective. Fig. 6 shows the percentage improvement
(% dev) of the DropAdd-TS MaxSum value with respect to the
GPR MaxSum value. This figure shows a boxplot of the average per-
centage deviations in each instance set. Their positive values indi-
cate that DropAdd-TS always obtains a better (larger) sum of dis-
tances than GPR in all the instances in which both methods obtain
the same MaxMin value. This confirms that the Bi-level model per-
mits to discriminate among solutions, selecting the best one over-
all. It also quantifies the relative contribution of the DropAdd-TS
algorithm with respect to the GPR, thus certifying its superiority.
We believe that this new model brings new research opportunities,
since it clearly deserves to be further studied.

7. Conclusions

In the early period (1980-2000) two mathematical models
were proposed to capture the notion of diversity, the MaxSum and
MaxMin, and simple heuristics were applied to solve these models
in short computational times. On the other hand, in this decade
only small instances were considered. In the following decade, that
we called the expansion period, the three main open problems
at that time were approached. In particular, researchers consider
other models to include different aspects of diversity, they intro-
duce larger instances that pose a challenge to simple heuristics,
and apply complex metaheuristics to efficiently solve the problems.

During the last decade, called the development period (2010
- to now), researchers have been mainly working on the lines
proposed in the previous decade (described in Section 3). This is
why we call it the development period because it intensifies the
research over the known models (collected in Table 4), without
proposing new ones. Authors limit themselves to the strict compe-
tition among methods, without extending the boundaries that cur-
rently define the field. We want to give credit to them because the
competition among methods is now very hard, and the proposed
methods both exact and heuristics are very sophisticated, but we
believe that there is still some work to do on expanding the area.
In the same way that heuristic methods require intensification and
diversification for an efficient exploration of the solution space, we
believe that the scientific methodology requires to revisit the mod-
els and problems to improve solving methods, but also to propose
and explore new models to approach in a more realistic way the
complexity of real problems, connecting in this way the area with
related fields of knowledge.

Considering the characteristics of the solutions obtained by the
different models, the most important conclusions are:
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e The MaxSum and MaxMinSum provide similar solutions in
terms of their geometrical location, since they select points
close to the borders of the space, and with no points in the cen-
tral region. Thus, it seems quite artificial the use of this latter
complicated model. These models may select a few elements
that are very close to each other. They reflect what we usually
understand as dispersion.

o The MaxMin model generates solutions with a different struc-
ture than the MaxSum. It usually obtains equidistant points,
and it does not avoid to select points in the central part. This
mathematical formulation induces representativeness, more
than dispersion.

o The MinDiff only seeks for inter-distance equality (equity)
among the selected points, and ignores how large or small
these distances are, thus neglecting diversity or dispersion,
which could be an issue in many contexts.

7.1. Open problems

We finish our review pointing to potential new areas that, in
our opinion, deserve the attention of researchers.

It is shown in this review that for every diversity model, many
heuristics have been proposed, but only a few exact methods, if
any. In spite of being the most studied model, we can only solve
to optimality medium size instances for the MaxSum. The study
of valid inequalities to strength mathematical models is nowadays
a well established technique; however, it has not been applied to
diversity models yet, with the exception of the MaxMin (with ex-
cellent results). The adaptation of these techniques to the diver-
sity problems, including the polyhedral study of their feasible re-
gions, may lead to significant progress in this field. On the other
hand, considering that the MaxMin exact methods are very effi-
cient, the challenge is now to design powerful metaheuristics that
can obtain the already known optimal solutions in short running
times.

In the last few years, constrained models have emerged as a
natural extension of the classic ones to adapt diversity to real situ-
ations. Cost or capacity, that are common elements in many other
location models, have been largely ignored in diversity models. In
our opinion, their study in this context has just started, and we
will witness important developments in these lines.

The two equity models proposed so far, MaxMinSum and Min-
Diff, present drawbacks that discourage their use as they are
formulated now. However, we believe that the concept of eq-
uity may find its realm in Operations Research, but only requires
to be better formulated. As a matter of fact, in facility loca-
tion problems, there is a vast literature of equity measures. The
bi-level formulation, recently considered for the MaxMin, may
well be a good way to overcome the limitations of their initial
formulations.

Although many papers on diversity mention some applications,
such as biological preservation or obnoxious location, they usually
do not elaborate on them. In fact, early papers pay more attention
to describe the applications and connect solving methods with real
problems (see for example Glover et al., 1995), but now most of
the research in the field concentrates on the comparison among
heuristics, solving instances artificially generated to pose a chal-
lenge to them. In line with the Operations Research perspective,
we would suggest to connect models and solving methods with
the applications that originated them, and to incorporate into the
models and instances the specific characteristics of the applica-
tions. In our view, that would create many research opportunities,
and what is more important, would transfer knowledge between
theoretical research to real-life problems.
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