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a b s t r a c t 

The problem of maximizing diversity or dispersion deals with selecting a subset of elements from a given 

set in such a way that the distance among the selected elements is maximized. The definition of distance 

between elements is customized to specific applications, and the way that the overall diversity of the 

selected elements is computed results in different mathematical models. Maximizing diversity by means 

of combinatorial optimization models has gained prominence in Operations Research (OR) over the last 

two decades, and constitutes nowadays an important area. In this paper, we review the milestones in 

the development of this area, starting in the late eighties when the first models were proposed, and 

identify three periods of time. The critical analysis from an OR perspective of the previous developments, 

permits us to establish the most appropriate models, their connection with practical problems in terms 

of dispersion and representativeness, and the open problems that are still a challenge. We also revise and 

extend the library of benchmark instances that has been widely used in heuristic comparisons. Finally, 

we perform an empirical review and comparison of the best and more recently proposed procedures, to 

clearly identify the state-of-the art methods for the main diversity models. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Maximum diversity problems arise in many practical settings 

rom facility location to social network analysis, and constitute 

n important class of NP-hard problems in combinatorial opti- 

ization. They were first approached from an Operations Research 

erspective in 1988 by Kuby (1988) and presented in 1993 in 

he annual meeting of the Decision Science Institute, where Kuo, 

lover, and Dhir, proposed integer programming models ( Dhir, 

lover, & Kuo, 1993; Kuo, Glover, & Dhir, 1993 ). There has been a

rowing interest in these problems in the last 30 years, and differ- 

nt mathematical programming models, and their corresponding 

olving methods, have been proposed to capture the notion of 

iversity. They basically consist in selecting a subset of elements of 

 given set, in such a way that a distance measure is maximized, 

nd differ among them in the way that the overall diversity 

f the selected elements is computed. In its graph version, the 
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ost popular dispersion model, the Maximum Diversity Problem 

MDP), is defined as follows. Given the complete graph G = (V, E) 

ith edge distances d i j for every pair i, j ∈ V , and an integer m ,

ompute a subset M of V , such that | M| = m and 

∑ 

i, j∈ M 

d i j is as

arge as possible. 

The study of diversity models, also called dispersion, has 

chieved a level of maturity, and still has a huge potential, which 

akes it especially adequate for a review paper like this one. In 

ur opinion, we are witnessing the typical scenario in science, 

n which a sub-field of research detaches from the main field 

nd creates its own body of knowledge. Diversity problems may 

e considered, in a certain way, a sub-class of location problems 

specially when we refer to location problems with distance con- 

traints as in Moon & Chaudhry, 1984 ), and we can find nowadays 

any researchers specifically devoted to them. In this sense, we 

ay say that maximizing diversity can be considered now as a 

eld in itself. 

As recently pointed out by Parreño, Álvarez-Valdés, & Martí

2021) , the term diversity is somehow ambiguous in the context of 

ombinatorial optimization, and it has been applied to problems 

ooking for dispersion among the selected points, but also in prob- 

ems looking for some kind of representativeness, in which the 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 Martí, R., A. Duarte, A. Martínez-Gavara, and J. Sánchez-Oro. MDPLIB 2.0 - Max- 

imum Diversity Problem Library. https://www.uv.es/rmarti/paper/mdp.html . 
2 Note that some authors use p and others m to denote the number of elements 

to be selected. In this paper we will use both indistinguishably. 
elected points are class representatives of subsets of points in the 

iven set. This argument is not entirely new, since Glover, Kuo, & 

hir (1998) in the late nineties already said that diversity is a rather 

ebulous term with overtones and a vaguely statistical nature , and 

roposed simple heuristics that could easily be adapted to handle 

he particular characteristics of the diversity problem being solved. 

Maximum diversity problems have a wide variety of real-life 

pplications that cover many fields. One of the first applications 

ppears in genetics (see Porter, Rawal, Rachie, Wien, & Williams, 

975 ) where species with desirable traits are selected to obtain 

ew varieties by controlled breeding. These problems can also be 

pplied to other areas related to biology, such as ecology ( Pearce, 

987 ) where diversity is crucial to establish viable systems. The se- 

ection of a diverse group as a representative sample is probably 

ne of the most extended applications which arises in product de- 

ign ( Glover et al., 1998 ), ethnicity ( Swierenga, 1977 ), and in mak-

ng diverse teams at work. The placement of undesirable facilities 

uch as hazardous waste sites, and location problems with asso- 

iated capacity and cost factors, have been also studied as diver- 

ity maximization problems by several researchers (see Church & 

arfinkel, 1978; Erkut & Neuman, 1989; Goldman & Dearing, 1975; 

osenkrantz, Tayi, & Ravi, 20 0 0 and the references cited therein). 

We have identified three periods in the development of diver- 

ity and dispersion problems. The early period , from 1977 to 20 0 0, 

here we can find the first models (MaxMin and MaxSum), and 

elatively simple algorithms to solve them, being the seminal pa- 

ers by Kuby (1988) and Erkut (1990) the origins of the area. We 

an only find a few papers in this period in the OR literature, al- 

hough in other fields of science, such as sociology or biology, di- 

ersity maximization received much more attention. 

In the second period, that we may call the expansion period , 

he first metaheuristics were proposed to target large instances 

ffectively. Duarte & Martí (2007) adapted both the Tabu Search 

nd GRASP methodologies to the MaxSum model, triggering the 

nterest of the metaheuristic community in this family of prob- 

ems. Special mention deserves the work by Prokopyev, Kong, & 

artinez-Torres (2009) , where three new dispersion models were 

ntroduced: the MaxMinSum, the MaxMean, and the MinDiff. In 

his way, these authors clearly stated that there are different ways 

o model diversity maximization, opening many possibilities for fu- 

ure developments. This period lasted over a decade, ending with 

ery efficient methods for some of the models, as shown in the 

mpirical comparison of 30 methods by Martí, Gallego, Duarte, & 

ardo (2013) performed in 2010, and with several solid research 

roups working on them. The boundaries defining the area of max- 

mizing diversity were expanded with the inclusion of more realis- 

ic models built with capacity and cost constraints. 

The third period, that we call the development period , started 

n 2011 and is still in progress. From the heuristic side, the compe- 

ition is now very high, due to the efficient methods published in 

he previous period, so only complex metaheuristics are proposed 

ow. In the exact domain, Sayyady & Fathi (2016) and Sayah & 

rnich (2017) recently proposed integer programming approaches 

or the MaxMin model, which are able to solve large size problems, 

nd somehow changed the game in terms of the need of heuristics 

or real instances. These new efficient methods, exact and meta- 

euristics, made Martí’s comparison ( Martí et al., 2013 ) out of date, 

o one of the objectives of this paper is to update it by including

hem. 

Martínez-Gavara, Corberán, & Martí (2021) elaborated on the 

eminal work by Rosenkrantz et al. (20 0 0) that included capacity 

nd cost constraints in the classic diversity models. The authors 

pproach these theoretical models from an Operations Research 

erspective, opening new research opportunities and modeling 

 wide range of real problems. In this paper, we complete their 

roposals by introducing other variants that may be the subject of 

uture developments as well. 
796 
Most of the studies on diversity problems have been compu- 

ational, and the different methods have been tested on a well- 

stablished benchmark set of instances. The Maximum Diversity 

roblem Library, MDPLIB, was originally collected for the MaxSum 

odel, and contained 315 instances proposed and used in the de- 

elopment period. This library has been used to evaluate heuristics 

or all dispersion models. However, some type of instances are not 

ell suited for some of the models and, additionally, some of them 

re trivial for nowadays complex methods. We therefore revised it, 

emoving some small instances, and adding some new ones, spec- 

fying the models for which they are meant. We call MDPLIB 2.0 1 

o the updated library that contains 770 instances. 

There is no doubt that maximizing diversity is nowadays a 

rending area in many fields of science. Terms like biodiversity, 

eterogeneous workforce, or simply gender diversity have a posi- 

ive connotation and are studied in many disciplines. We obviously 

o not cover them directly in this paper, but our aim is to show 

hat advances in mathematical models related to diversity have a 

uge impact in many other disciplines. Researchers in Operations 

esearch perfectly know the power and wide scope of models, but 

e want to emphasize it here because diversity is a cross cut- 

ing concept, which makes these models applicable to many areas. 

his point is clearly stated in a management science paper ( Hong 

 Page, 2004 ) directly entitled as Groups of diverse problem-solvers 

an outperform groups of high-ability problem solvers , thus reinforc- 

ng the idea that maximizing diversity has benefits even in prob- 

em solving. In the following sections, we review the contributions 

o discrete diversity optimization classifying them into the three 

eriods introduced above. We basically consider models, solving 

ethods, and benchmark instances. We finish our revision with an 

mpirical comparison of the two most studied models, the Max- 

um and the MaxMin, and a recently considered combination of 

hem. 

. The early period (1980–20 0 0) 

Early papers on diversity and dispersion problems can be traced 

ack to the late seventies. It seems that Shier (1977) was the first 

o recognize the p-dispersion as an optimization problem. He con- 

idered the continuous problem of locating a facility at a node 

r any point in the arcs of a tree. Chandrasekaran & Daughety 

1981) studied the p-center and p-dispersion 

2 discrete problems 

n a tree. The p-center minimizes the maximum distance between 

he selected nodes in a tree, while the p-dispersion maximizes 

heir minimum distance. The p-center problem had been studied 

n the previous decade and it was relatively well-known in loca- 

ion theory; however, as the authors mentioned, the p-dispersion 

ad received very little attention in spite of its practical signifi- 

ance to model the location of undesirable facilities. The authors 

tudied the duality between both problems. 

As far as we know, the first publication on discrete versions of 

ispersion problems in general graphs is due to Kuby (1988) . The 

uthor considered the p-dispersion as locating p facilities on the 

odes of a network, so that the minimum distance between any 

air of facilities is maximized. Kuby proposed a linear integer for- 

ulation for this problem and applied it to a small example with 

5 nodes. The author also extended the model to the max-sum 

ase, in which the objective is to maximize the sum of distances 

etween all the pairs of selected facilities (nodes). These problems 

ere later coined as the MaxMin Diversity Problem (MMDP), and 

axSum Diversity Problem (MDP) respectively. 

https://www.uv.es/rmarti/paper/mdp.html
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The MDP can be trivially formulated in mathematical terms as 

 quadratic binary problem, where variable x i takes the value 1 if 

lement i is selected and 0 otherwise, i = 1 , . . . , n . 

Maximize 
∑ 

i< j d i j x i x j 

subject to: 
n ∑ 

i =1 

x i = m 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(1) 

To avoid the non-linearity due to the product of two variables, 

uby formulated the MDP as: 

Maximize 
∑ 

i< j z i j d i j 

subject to: 
n ∑ 

i =1 

x i = m 

z i j ≤ x i i, j = 1 , . . . , n : j > i. 
z i j ≤ x j i, j = 1 , . . . , n : j > i. 
z i j , x i ∈ { 0 , 1 } i, j = 1 , . . . , n. 

(2) 

This author also formulated the m -dispersion problem (MMDP) 

n the following terms, where C is a very large constant number 

hat makes the second constraint active only when facilities i and 

j have been selected ( x i = x j = 1 ): 

Maximize D 

subject to: 
n ∑ 

i =1 

x i = m 

D ≤ d i j (1 + C(1 − x i ) + C(1 − x j )) i, j = 1 , . . . , n : j > i. 
x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(3) 

Erkut and Neuman published in 1989 an invited review in the 

uropean Journal of Operational Research on location models for 

bnoxious facilities ( Erkut & Neuman, 1989 ), where a function dis- 

ance is maximized. The authors mainly focused on continuous 

nd network based models, and pointed out that the only previous 

ork on discrete models is the one by Kuby described above. The 

uthors classified these models according to the following criteria: 

• number of facilities (single / multiple) 
• solution space ( R 

k / network) 
• feasible region (discrete / continuous) 
• distance measure (Euclidean / rectilinear / network) 
• weights (different weights / unweighted) 
• distance function (sum / min) 
• objective (single / multiple) 

Erkut (1990) proposed the first algorithms for the MaxMin. In 

articular, this author introduced a simple heuristic and a branch 

nd bound exact method to solve small problems (with up to 40 

lements) to optimality. Erkut’s heuristic is intentionally naïve and 

reaks ties in the constructive phase at random. As document by 

art & Shogan (1987) , semi-greedy heuristics, which deviate from 

igid selection rules by including random choices, generate many 

olutions, leading to better outcomes than simple greedy heuris- 

ics. This is very interesting since this type of reasoning led to the 

esign of powerful metaheuristics, such as the well-known GRASP 

ethodology ( Feo & Resende, 1995; Festa & Resende, 2016 ). The 

onstruction is coupled with a local search method that scans the 

et of selected elements in search of the best exchange to replace 

 selected element with an unselected one. The method performs 

oves as long as the objective value increases, and stops when 

o improving exchange can be found. This local search has been 

pplied to most of the algorithms proposed for both the Max- 

um (MDP) and the MaxMin (MMDP), introducing successive re- 

nements that resulted in improved outcomes. 

Kincaid (1992) proposed two heuristics for the MaxMin, also 

nown as the discrete p-dispersion problem, based on exchanges: 

 simulated annealing (SA) heuristic ( Kirkpatrick, Gelatt, & Vecchi, 

983 ) and a tabu search (TS) heuristic ( Glover, Campos, & Martí, 
797 
021; Glover & Laguna, 1998 ). In a given iteration, these heuris- 

ics generate a random move (an exchange between a selected and 

n unselected element) and apply the standard acceptance rules 

f the methodology, the so-called temperature and cooling sched- 

le in the SA, and the tabu status and aspiration criteria in tabu 

earch. These methods are also adapted to the MaxSum problem, 

alled the p-defense-sum problem in that paper. The author exam- 

ned the performance of both methods on these two models on a 

educed benchmark of 30 instances of size n = 25 (in three groups 

f ten with different characteristics) and p ranging from 5 to 15. 

Kuo et al. (1993) proposed several models to maximize diver- 

ity based on their seminal working papers elaborated in 1977. In- 

ependently to Kuby and Erkut, the authors presented some effi- 

ient binary programming models for the MaxSum and MaxMin. 

n particular, for the MaxSum, called there the Maximum Diversity 

roblem, they proposed the following zero-one formulation that 

as been considered the most efficient one until now: 

Maximize 
∑ 

i<n w i 

subject to: 
n ∑ 

i =1 

x i = m 

−U i x i + w i ≤ 0 i = 1 , . . . , n − 1 . 

−
n ∑ 

j= i +1 

d i j x j + L i (1 − x i ) + w i ≤ 0 i = 1 , . . . , n − 1 . 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(4) 

here U i = 

∑ n 
j= i +1 max (0 , d i j ) and L i = 

∑ n 
j= i +1 min (0 , d i j ) . The au-

hors proved that the MDP is NP-hard both with and without re- 

tricting distances to non-negative values. Kuo, Glover, and Dhir 

lso proposed a binary model for the MaxMin, and illustrated its 

erformance on a small example of size 10. The same authors ap- 

lied these models to solve a practical case in biological diversity 

 Glover, Kuo, & Dhir, 1995 ). 

Ghosh (1996) proved that the MaxMin problem is NP-hard us- 

ng a reduction from the vertex cover problem. The author pro- 

osed a greedy randomized heuristic, that can be considered the 

rst step of extending simple heuristics to complex metaheuris- 

ic, and presented a limited computational experience on small in- 

tances (up to n = 40 ) to show its merit. 

Glover et al. (1998) proposed four different heuristics for the 

axSum problem. The authors highlighted that different versions 

f this problem include additional constraints, so the objective is 

o design heuristics whose basic moves for transitioning from one 

olution to another are both simple and flexible, allowing these 

oves to be adapted to multiple settings. In this line, they con- 

ider moves that are especially attractive in this context: construc- 

ive and destructive, that drive the search to approach and cross 

easibility boundaries. These type of moves are natural in the max- 

mum diversity problem, where the goal is to determine an opti- 

al composition for a set of selected elements. The authors com- 

are the solutions obtained with their heuristics with the optimal 

olutions in small instances (up to n = 30 ), and conclude that the 

onstructive method C2 , and the destructive method D2 perform 

ery well considering their simplicity. Specifically, C2 starts by ran- 

omly selecting an initial element. Then, it selects at each step, the 

lement with the maximum sum of distances to the already se- 

ected elements. On the other hand, D2 starts with all the elements 

elected, and deselects the element with the minimum distance to 

he selected elements at each step. Both methods finish when m 

lements are selected. 

At the end of this period, A ̆gca, Eksioglu, & Ghosh (20 0 0) pro-

osed a Lagrangian approach and provided both lower and up- 

er bounds for the MaxSum problem. The authors also proposed a 

ariation of their method to target the MaxMin problem. Extensive 

xperimentation with small size instances (up to n = 100 ) showed 

he good quality of the results in comparison with previous heuris- 
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Fig. 1. Timeline of early OR diversity contributions (1988–20 0 0). 
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ics; however, as the authors admit, this comes with a cost of sig- 

ificant longer running times. 

Fig. 1 shows a timeline diagram, in which the main contribu- 

ions in this early period are depicted. 

. The expansion period (20 0 0–2010) 

This second period witnessed a huge growth in the area. Most 

f the effort s were devoted to the MaxSum model, with a total of 

0 methods, as documented in Martí et al. (2013) . The MaxMin 

odel on the other hand, also received attention, although mod- 

rate, probably because it poses a challenge to heuristic methods 

ue to the flat landscape in the search space created by the com- 

ination of the maximum and minimum in the objective function. 

inally, new models were also proposed, introducing new ways to 

ompute diversity and including constraints to target more realistic 

ariants. We call it the expansion period since the limits defining 

he area were substantially expanded in this decade. 

From a graph-theoretic point of view, we may highlight the 

ork by Chandra & Halldórsson (2001) in which many disper- 

ion problems are classified in terms of its nodes and edges. In 

articular, given a graph G with set of vertices V , and an inte- 

er value p, a dispersion problem can be defined as obtaining a 

et of p vertices P ⊆ V in a way that the sum of the weights of

ertain edges in the subgraph induced by P is maximized. The 

dge set definition characterizes the dispersion problem. It in- 

ludes cliques, trees, k -trees, stars, pseudo-forests, cycles or match- 

ngs. The authors proved the NP-hardness of these problems and 

roposed simple heuristics with performance approximation ratios 

epending of the metric of the space. In line with that, Fekete & 

eijer (2004) consider the MaxSum problem, called the heaviest 

ubgraph problem, in the case of d-dimensional spaces with recti- 

inear distances, and establish a linear-time algorithm that finds an 

ptimal solution. In this way, they improve upon the best known 

esult so far of an approximation algorithm with performance 

atio 2. 

From the practical side, most of the papers published consider 

he complete subgraph induced by the selected points. This is spe- 

ially true in the metaheuristic field, as shown below. 

.1. The MaxSum model 

Many metaheuristic methodologies were implemented in this 

eriod to the MaxSum problem. They were relatively simple at 

he beginning, but as the competition among methods became 

arder, more sophisticated search strategies were proposed, end- 

ng up with very complex algorithms. GRASP, Tabu Search, and VNS 

layed an important role in this period. 

As mentioned, Kincaid (1992) was the first to apply metaheuris- 

ics, namely SA and K-TS , to the MaxSum problem, although they 

ere straightforward implementations. Macambira (2002) pro- 

osed a similar implementation of the tabu search methodology, 

alled M-TS , to solve the MDP. Note that K-TS starts with a 
798 
andom solution while M-TS starts with a greedy constructed 

olution. 

Silva, Ochi, & Martins (2004) proposed several heuristics based 

n the GRASP methodology ( Feo & Resende, 1995 ). They com- 

ined different constructions with local searches and tested them 

n a wide set of instances, which includes the largest reported 

o far. They called KLD to the basic construction algorithm, and 

LDv2 and MDI to the improved versions of KLD . It must be noted 

hat in these largest instances with n = 500 elements, the meth- 

ds require many hours of running time. Santos, Ribeiro, Plastino, 

 Martins (2005) presented a hybrid method, GRASP-DM , combin- 

ng GRASP with data mining techniques, which basically consists 

f two phases. First, the GRASP phase is executed a certain num- 

er of iterations. Then, the data-mining process extracts patterns 

rom an elite set of solutions that guide the following GRASP it- 

rations. Silva, De Andrade, Ochi, Martins, & Plastino (2007) revis- 

ted the problem to propose a hybrid method, GRASP-PR , com- 

ining GRASP with Path Relinking ( Laguna & Martí, 1999 ). As in 

he hybrid method above, an elite set is populated with the so- 

utions obtained with the application of a GRASP algorithm. Then, 

ath relinking is applied from each solution in the elite set (ini- 

ial solution) to the local optimum obtained in each new GRASP 

teration (guiding solution). In this way, the method creates a path 

y adding elements in the guiding solutions to the initial solution 

and dropping those not present in the guiding solution). 

As far as we know, the work of Katayama & Narihisa (2006) is 

he only one where a standard Memetic Algorithm ( MA ) is applied 

n this period. The algorithm combines a randomized greedy con- 

truction method with an evolutionary algorithm, a repair mech- 

nism to guarantee the feasibility of the solutions, and a local 

earch. Aringhieri & Cordone (2006) presented a Scatter Search 

rocedure, A-SS , which can be considered a special case of a 

emetic algorithm. In particular, this method iterates over a small 

et of elite solutions, instead of the traditional population of a rel- 

tively large size, called the reference set, RefSet. In this particular 

mplementation of scatter search, the RefSet is divided into two 

ubsets, one with the best solutions found during the search, and 

he other one with solutions that largely differ from each other and 

rom the best ones. Gallego, Duarte, Laguna, & Martí (2009) pro- 

osed an alternative scatter search algorithm, G-SS , for the Max- 

um problem. In their approach, the distance between solutions is 

sed to measure how diverse one solution is with respect to a set 

f solutions. The method applies a tabu search algorithm to im- 

rove the combined solutions, thus creating a hybrid of a memetic 

lgorithm with a tabu search. It is very interesting that in the fol- 

owing decade, that we call the development period, most of the 

roposed algorithms for the MaxSum follow this scheme of com- 

ining these two methodologies, which will emerge as the best 

hoice for this problem. 

In the domain of exact methods, the first important approach 

as due to Pisinger (2006) , who proposed upper bounds for both 

axSum and MaxMin problems. Based on that bounds, Branch 

nd Bound methods were respectively derived. The experiments 
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howed that in the MaxSum problem, the method is able to solve 

he medium size Euclidean instances with n = 80 in about 500 sec- 

nds, but it encounter difficulties to find the optimum in the ran- 

om instances, in which requires more than 3 hours in those with 

 = 60 . A similar situation is described for the MaxMin solver, in

hich both types of instances are solved when n < 80 . This branch

nd bound clearly outperforms the first one proposed by Erkut 

1990) . 

Duarte & Martí (2007) applied two metaheuristics for the 

axSum problem. Specifically, the authors introduced a Tabu 

earch , LS-TS , and two GRASP algorithms, called GRASP-C2 and 

RASP-D2 , and proposed several strategies to explore the typi- 

al neighborhood based on exchanges in an efficient way, to avoid 

he long running times of previous tabu search and GRASP im- 

lementations. In particular, instead of searching for the best ex- 

hange at each iteration, their neighborhood exploration performs 

wo stages. In the first one, it selects the element with the low- 

st contribution to the value of the current solution. Then, in the 

econd stage, the method performs the first improving move to re- 

lace it (i.e., instead of scanning the whole set of unselected el- 

ments searching for the best exchange, it performs the first im- 

roving exchange without examining the remaining unselected el- 

ments). Their experimentation confirms the effectiveness of the 

roposed strategies. 

Palubeckis (2007) proposed an Iterated Tabu Search, ITS , that 

lternates tabu search with perturbation procedures. Aringhieri, 

ordone, & Melzani (2008) presented XTS , a tabu search with 

hort and long term memory functions such as LS-TS . A nov- 

lty of this method is that the tabu tenure parameter is dynam- 

cally set during the execution of the algorithm (i.e., it is increased 

f the solution value has steadily improved, and it is reduced if 

he solution value has steadily worsened). Aringhieri & Cordone 

2011) proposed a random re-start method, RR , which constructs 

n initial solution with a greedy procedure similar to the simple 

ethod proposed by Erkut (1990) . Then, the constructed solution 

s improved by means of a simplified version of XTS . 
Variable Neighborhood Search ( Hansen & Mladenovi ́c, 2005 ) 

VNS) was applied to the MaxSum problem too. As it is well- 

nown, this methodology is based on a simple and effective idea, 

 systematic change of the neighborhood within a local search al- 

orithm, and proved to be the best option to solve the MaxSum 

roblem at that time. 

Silva et al. (2004) proposed a simple VNS, SOMA , based on 

wo neighborhoods. It first applies the classic local search ( Ghosh, 

996 ) until no further improvement is possible. Then, a second 

ocal search based on swapping two elements in the solution by 

nother two not present in the solution is performed. Brimberg, 

ladenovi ́c, Uroševi ́c, & Ngai (2009) proposed several VNS pro- 

edures originally devoted to the heaviest k -subgraph problem, 

hich generalizes the MDP. The authors presented a skewed VNS, 

 basic VNS ( B-VNS ), and a combination of a constructive heuristic 

ollowed by VNS. The best variant is B-VNS and consists of three 

ain elements. The first one, called Data Structure, allows the al- 

orithm to efficiently update the value of the objective function; 

he second one, Shaking, generates solutions in the neighborhood 

f the current solution by performing random vertex swaps; and 

he third one is a local search procedure based on exchanges. 

Aringhieri & Cordone (2011) presented four VNS implemen- 

ations: Basic VNS, Guided VNS, Accelerated VNS, and Random 

NS. An important characteristic is their hybridization with Tabu 

earch to locally improve the generated solutions. Accelerated VNS, 

-VNS , seems to be the best variant, and it makes re-starts much 

ess frequent because the number of neighborhoods is considerably 

arger than the values used in the Basic and Guided variants. 

Martí, Gallego, & Duarte (2010) proposed a branch and bound 

lgorithm for the MaxSum problem. The authors considered an 
799 
mplicit enumeration of the solutions (selections of m elements), 

nd compute upper bounds for partial solutions. Their method is 

mbedded in the standard search tree to fathom the nodes (sub- 

ets of solutions defined by a partial selection), thus discarding 

or examination many nodes in the search tree. This combinato- 

ial branch and bound solves small instances easily ( n = 50 ), most 

f the medium instances with n = 100 , and cannot solve the large 

nes considered ( n = 150 ) in 1 hour of CPU time. 

We close this period on the MaxSum problem with an empiri- 

al comparison of all the methods published so far, performed in 

010 (although published a few years later). Martí et al. (2013) pre- 

ented an extensive computational experimentation to compare 10 

euristics and 20 metaheuristics for the MaxSum problem, most of 

hem summarized in Table 1 . 

Martí et al. (2013) proposed the first version of the so-called 

DPLIB in which they collected 315 instances introduced by dif- 

erent authors in previous papers. Their empirical comparison with 

0 methods was exhaustive, and concluded with the final com- 

arison of the five methods identified as the best ones over two 

ime horizons, 10 and 600 seconds of CPU time. We reproduce here 

heir final table in Table 2 with the results, average percent devi- 

tion ( % de v ) and number of best solutions ( # best), of the best

RASP method, GRASP-D2 , the best local search based methods, 

hich includes a tabu search, ITS , and two variable neighborhood 

earch, A-VNS and B-VNS , and the best population based method, 

-SS . 
As expected, the average percentage deviations of the meth- 

ds are lower when the CPU time increases from 10 seconds to 

00 seconds. In this way, after 600 seconds of CPU time, the five 

ethods under comparison present deviations lower than 1%. In 

ine with this, the number of best solutions found increases as the 

unning time increases. The Friedman test confirms the superior- 

ty of the VNS based methods, from which B-VNS emerges as the 

est method overall, followed by the tabu search ITS as the sec- 

nd best. 

.2. The MaxMin model 

As described in the previous section, after Kuby’s seminal 

aper ( Kuby, 1988 ), Erkut (1990) proposed a simple heuristic, 

incaid (1992) a simulated annealing and a tabu search, and Ghosh 

1996) a multi-start heuristic. Although Kincaid’s heuristics are 

ased on complex methodologies, his algorithms are straightfor- 

ard implementations, in which the neighborhood is scanned by 

andom sampling. On the other hand, the multi-start by Ghosh 

xamines the entire neighborhood in the local search, implement- 

ng the so-called best strategy. In contrast, Resende, Martí, Gallego, 

 Duarte (2010) applied the GRASP methodology to the MaxMin 

roblem, but with an efficient implementation that is able to ob- 

ain high-quality solutions in short running times, outperforming 

ll previous developments. We describe now this method in detail 

ince it was the best for the MaxMin in this period. 

Given a set N with n elements, the construction procedure in 

esende et al. (2010) performs m steps to produce a solution with 

 elements. The set Sel represents the partial solution under con- 

truction. At each step, the constructive method selects a candi- 

ate element i ∗ ∈ CL = N \ Sel with a large distance to the ele-

ents in the partial solution Sel . Specifically, it first computes d j 
s the minimum distance between element j and the selected el- 

ments. Then, it constructs the restricted candidate list RCL with 

ll the candidate (unselected) elements j with a distance value 

 j within a fraction α (0 ≤ α ≤ 1) of the maximum distance d ∗ = 

ax { d j | j ∈ CL } . Finally, the method randomly selects an element 

n RCL . 
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Table 1 

Metaheuristics for MaxSum in 2010. 

Methodology Algorithms References 

Simulated Annealing SA Kincaid (1992) 

GRASP KLD , KLDv2 , MDI , GRASP-DM , 
GRASP-C2 , GRASP-D2 , GRASP-PR 

Silva et al. (2004) , Santos et al. (2005) , Duarte & Martí (2007) , Silva et al. (2007) 

Tabu Search K-TS , M-TS , LS-TS , ITS , XTS , RR Kincaid (1992) , Macambira (2002) , Duarte & Martí (2007) , Palubeckis (2007) , Aringhieri 

et al. (2008) , Aringhieri & Cordone (2011) 

VNS SOMA , B-VNS , A-VNS Silva et al. (2004) , Brimberg et al. (2009) , Aringhieri & Cordone (2011) 

Scatter Search A-SS , G-SS Aringhieri & Cordone (2006) , Gallego et al. (2009) 

Memetic Algorithms MA Katayama & Narihisa (2006) 

Table 2 

Best MaxSum methods on MDPLIB instances in 2010. 

CPU GRASP-D2 A-VNS B-VNS ITS G-SS 

10 seconds % de v 1.57 0.16 0.08 0.17 0.24 

# best 10 60 51 51 51 

600 seconds % de v 0.63 0.03 0.02 0.02 0.13 

# best 32 75 83 62 59 
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Table 3 

Best MaxMin methods on Geo instances in 2010 . 

Multi-Start SA TS GRASP GPR 

n = 100 % de v 0.75 0.00 0.00 0.76 0.09 

# best 10 19 20 10 17 

time (s ) 2.45 20.96 33.64 0.68 3.76 

n = 250 % de v 1.00 0.68 1.75 1.11 0.16 

# best 0 6 2 1 14 

time (s ) 30.50 220.57 439.68 5.58 65.57 

n = 500 % de v 2.36 3.48 9.27 2.39 0.04 

# best 0 0 0 0 16 

time (s ) 282.37 1449.85 3633.36 34.99 1465.44 

0.00 means less than 0.001 
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Given a set N with n elements, and a solution Sel with m se- 

ected elements, we can compute the following values: 

 i = min 

j∈ Sel 
d i j , d ∗ = min 

i ∈ Sel 
d i , 

here d i is the minimum distance of element i to the selected ele- 

ents (those in Sel ), and d ∗ is the objective function of the current 

olution. It is clear that to improve a solution we need to remove 

and thus replace) the elements i in the solution for which d i = d ∗.

The local search method in Resende et al. (2010) scans, at each 

teration, the list of elements in the solution ( i ∈ Sel ) with min-

mum d i value, i.e. for which d i = d ∗, starting with a randomly

elected element. Then, for each element i with a minimum d i - 

alue, the local search examines the list of unselected elements 

 j ∈ N \ Sel ) in search for the first improving exchange. The uns-

lected elements are also examined in lexicographical order, start- 

ng with a randomly selected element. The method performs the 

rst improving move ( Sel ← Sel \ { i } ∪ { j} ) and updates d i for all

lements i ∈ Sel as well as the objective function value d ∗, conclud- 

ng the current iteration. The algorithm repeats iterations as long 

s improving moves can be performed and stops when no further 

mprovement is possible. 

An important characteristic of this GRASP for the MMDP is the 

efinition of improving move. To efficiently search the flat land- 

cape of the MaxMin problem, the authors introduced in the local 

earch an extended meaning of the term improving. In particular, a 

ove is considered to improve the current solution if it increases 

he value of d ∗, or keeps d ∗ fixed and reduces the number of ele-

ents i with d i = d ∗. The method stops when no further improve-

ent is possible according to this definition. 

The GRASP method above is coupled with a Path Relinking (PR) 

ost-processing for improved outcomes. The PR algorithm operates 

n a set of solutions, called elite set ( ES ), constructed with the best

olutions obtained with GRASP. It basically creates paths of solu- 

ions between elite solutions. Let x and y be two solutions, PR 

tarts with the first solution x , and gradually transforms it into the 

econd one y , by swapping out elements selected in x with ele- 

ents selected in y . The elements selected in both solutions x and 

 remain selected in the intermediate solutions generated in the 

ath between them. The output of each PR iteration is the best 

olution, different from x and y , found in the path. 

Resende et al. (2010) compiled a benchmark library of instances 

eported in the previous papers on the MaxMin problem to per- 

orm an empirical comparison among the heuristics. In particu- 

ar, they considered three sets of instances named Glover , Geo , and 

an . The first one includes small Euclidean instances ( n ≤ 30 ) from 
800 
andomly generated points in a multi-dimensional space. The sec- 

nd one, Geo , extends the first one by including larger instances 

 100 ≤ n ≤ 500 ). The third one, Ran , consists of large matrices with

nteger random numbers. These sets are include in the MDP Li- 

rary of Benchmark Instances described in Section 5 . 

We do not reproduce here the entire analysis in Resende et al. 

2010) , but we show in Table 3 the comparison of their GRASP, and

RASP with Path Relinking ( GPR ), with the Multi-Start method by 

hosh (1996) , Simulated Annealing ( SA ) and Tabu Search ( TS ) by

incaid (1992) . This table shows, for each method, the average rel- 

tive percentage deviation ( % de v ) between the best solution value 

btained with that method and the best known value for that in- 

tance. It also reports, for each method, the number of instances 

 # best) in which the value of the best solution obtained with this 

ethod matches the best known value. Finally, it reports the asso- 

iated running times in seconds on a Pentium 4 computer running 

t 3 GHz. 

Results from Table 3 has to be interpreted with caution because 

e are comparing, at the same time, methodologies and imple- 

entations. This is probably the weakness in the computational 

omparison of heuristic papers. It is very difficult to evaluate how 

uch of the solution’s quality is due to the methodology, and how 

uch to the specific way in which it is implemented to solve a 

roblem. Note that implementation not only includes search strate- 

ies in the solution space, but also data structures management, 

nd even computer language. For example, GRASP obtains better 

esults than TS in the large instances in this table ( n = 500 ), with

.39% and 9.27% average deviations respectively. However, in the 

mall instances ( n = 100 ) we observe the opposite situation, since 

RASP has an average deviation value of 0.76% and TS has a value 

ower than 0.001%. This seems to indicate that the implementation 

trategies, that usually play an important role in large instances, 

ay be responsible for this difference. In our opinion, we cannot 

onclude from this type of experiment that one methodology is 

etter than the other one, and we can only state that this GRASP 

mplementation performs better in large instances than this Tabu 

earch implementation. 
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.3. Other diversity models 

Rosenkrantz et al. (20 0 0) introduced several diversity models 

onstrained in terms of cost and capacity, motivated by their prac- 

ical applications in facility location. For example, the location of 

ndesirable or hazardous facilities, such as waste sites or nuclear 

lants, requires their dispersion while satisfying a certain total de- 

and. Another example can be found in the context of retail fran- 

hises, where stores should not be located close to each other. 

acilities and stores have a capacity to provide a service in sys- 

ems that require an overall demand, and it is clear in practical 

erms that they have an associated setup or operational cost, which 

akes appropriate to consider a certain limit in the total expenses 

enerated. As stated by the authors, “these practical aspects add 

 new dimension to the conventional dispersion problem”. Clas- 

ical models, such as the MaxSum or MaxMin, indirectly address 

he problem requirements by considering a pre-fixed number of 

acilities (i.e., the number of points to be selected is an input to 

he problem). However, this simplification is not realistic in many 

ettings. 

The work by Rosenkrantz et al. (20 0 0) was mainly theoretical. 

he authors proposed different models to tackle diversity, capacity 

nd cost, where one of them is optimized (plays the role of the 

bjective function), and the other two are included as constraints. 

pecifically, the three variants proposed were: 

(i) maximize capacity under distance and cost constraints 

(Max-Cap/Dist/Cost), 

(ii) minimize cost under capacity and distance constraints (Min- 

Cost/Cap/Dist), 

(iii) maximize distance under capacity and cost constraints 

(Max-Dist/Cap/Cost). 

When the capacity is a constraint, the authors introduced a 

inimum capacity B reflecting the required level of service. Sim- 

larly, when the cost is a constraint, a maximum budget K is 

onsidered. The authors also introduced two models with dis- 

ance and capacity (Max-Cap/Dist and Max-Dist/Cap). Rosenkrantz 

t al. (20 0 0) established the NP-hard complexity of these variants, 

roved the existence of an approximate algorithm within a fac- 

or 2 in the Max-Dist/Cap with distances satisfying the triangle 

nequality, and the non-approximability results for the other vari- 

nts. In particular, they provided proof of the non-existence of a 

olynomial-time approximation scheme for the Max-Dist/Cap/Cost 

ariant, and proposed a greedy heuristic based on binary search 

or the Max-Dist/Cap problem. Although no empirical results or ex- 

eriments are reported, the theoretical study concludes that their 

euristic running time is O (n 2 log (n )) . 

Surprisingly, in spite of its potential impact, this paper was ig- 

ored by the metaheuristic community at that time, and we had 

o wait until the next decade to see the first complex heuristics 

or these new problems. 

Prokopyev et al. (2009) introduced four additional dispersion 

odels, combining and generalizing the well-known MaxSum and 

axMin models. The MaxMean Dispersion Problem (Max-Mean) 

hat maximizes the average instead of the sum, can be formulated 

s the following 0–1 integer linear programming problem: 

Maximize 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

d i j x i x j 

n ∑ 

i =1 

x i 

subject to 

n ∑ 

i =1 

x i ≥ 2 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(5) 

n interesting characteristic in the MaxMean model (5) , is that 

he cardinality restriction is not imposed, and a solution may be 
801 
ormed by an arbitrary number of elements. In this sense we can 

ay that this model generalizes the MaxSum model, since the num- 

er of elements to be selected is not set beforehand, and the model 

elects it when maximizing the objective. A further generalized 

ersion of this problem introduces weights associated to the nodes. 

t is called Generalized MaxMean Dispersion Problem and is formu- 

ated as follows: 

Maximize 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

d i j x i x j 

n ∑ 

i =1 

w i x i 

subject to 

n ∑ 

i =1 

x i ≥ 2 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(6) 

here w i is the weight assigned to element i ∈ V . 

Prokopyev et al. (2009) introduced two other models in 

he context of diversity called equity models , which incorporate 

he concept of fairness among candidates. These models ap- 

ear in different settings, such as urban public facility location, 

iverse/similar group selection, and sub-graph identification, in 

hich one may address fair diversification or assimilation among 

embers of a network. The MaxMinSum diversity problem max- 

mizes the minimum aggregate dispersion among the chosen ele- 

ents, while the Minimum Differential Dispersion model, MinDiff, 

inimizes extreme equity values of the selected elements. 

The Maximum MinSum Dispersion Problem , MaxMinSum, con- 

ists of selecting a set M ⊆ V of m elements such that the smallest 

otal dispersion associated with each selected element i is max- 

mized. The problem is formulated in Prokopyev et al. (2009) as 

ollows: 

Maximize 

{ 

min 

i : x i =1 

∑ 

j : j 	 = i 
d i j x j 

} 

subject to 

n ∑ 

i =1 

x i = m 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(7) 

The Minimum Differential Dispersion model, MinDiff, is prob- 

bly the most elaborated one in terms of its objective function 

efinition. It basically consists of computing the maximum and 

inimum total dispersion associated to the m selected elements, 

inimizing their difference. In this way, we obtain a balance 

election of elements in the sense that their associated dispersion 

alues are very similar, and this is why it is introduced as an 

quity model. This problem can be formulated in simple terms 

s follows, although more efficient formulations are proposed in 

rokopyev et al. (2009) . 

Minimize 

{ 

max 
i : x i =1 

∑ 

j : j 	 = i 
d i j x j − min 

i : x i =1 

∑ 

j : j 	 = i 
d i j x j 

} 

subject to 

n ∑ 

i =1 

x i = m 

x i ∈ { 0 , 1 } i = 1 , . . . , n.

(8) 

Table 4 collects the diversity models introduced so far. For the 

ake of simplicity we do not include the weighted MaxMean pro- 

osed by Prokopyev et al. (2009) , and the variations of capacity 

nd cost in Rosenkrantz et al. (20 0 0) . 

It is worth mentioning the connection between diversity mod- 

ls and Unconstrained Binary Quadratic Programming (UBQP). As 

escribed in the survey by Kochenberger et al. (2014) , UBQP refers 

o a relatively simple model that represents a wide range of prob- 

ems, from facility location to partitioning. Diversity problems fit 
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Table 4 

Diversity models. 

Problem Obj. function Constraints Cardinality Context 

MaxSum Kuby (1988) 
∑ 

i< j,i, j∈ M 
d i j | M| = m fixed Diversity 

MaxMin Kuby (1988) min 
i< j,i, j∈ M 

d i j | M| = m fixed Dispersion & Equity 

MaxMin/Cap/Cost Rosenkrantz et al. (2000) min 
i< j,i, j∈ M 

d i j CAP(M) ≥ B COST (M) ≤ K variable Dispersion & Equity 

MaxMean Prokopyev et al. (2009) 

∑ 

i< j,i, j∈ M d i j 

| M| | M| ≥ 2 variable Diversity 

MaxMinSum Prokopyev et al. (2009) min 
i ∈ M 

∑ 

j∈ M, j 	 = i 
d i j | M| = m fixed Diversity 

MinDiff Prokopyev et al. (2009) max 
i ∈ M 

∑ 

j∈ M, j 	 = i 
d i j − min 

i ∈ M 

∑ 

j∈ M, j 	 = i 
d i j | M| = m fixed Equity 
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t  
ell in that general model, in which the objective function con- 

ists of a quadratic expression with the standard form x ′ Qx , where 

is a square matrix (with the distances in the case of diversity 

roblems). Starting with the early mathematical models by Prof. 

lover for the MaxSum problem, diversity models and their solu- 

ion methods have certainly benefited from the extensive research 

n UBQP. Other researchers in the field, such as Profs. Palubeckis, 

ao, or L ȭ , worked in both UBQP and diversity models, thus tak- 

ng advantage of the connections between both models. We believe 

hat these connections will inspire in the near future new ideas for 

etter solving problems of both sides. 

. The development period (2010–2021) 

Considering that in the previous decade many methods were 

roposed for both MaxSum and MaxMin, it is expected that the 

cientific production in these problems is now moderate in terms 

f the number of papers but contains very complex methods to 

ompete with the vast existing literature. On the other hand, the 

ther diversity models proposed received very little attention 

nd we will see that researchers are developing now efficient 

ethods for them. It is especially true in the case of restricted 

odels, which, despite being proposed at the beginning of the 

revious period, had to wait until this one to trigger the interest 

f researchers. 

.1. The MaxSum model 

At the end of the expansion period, Martí et al. (2013) reviewed 

0 methods for the MaxSum, compared them on the MDPLIB, and 

oncluded that a tabu search, ITS , and a variable neighborhood 

earch, B-VNS , were the best overall. We have identified in the 

urrent period five papers proposing advanced methods that try to 

mprove these two previous methods. 

An open question in the heuristic community is if it is better 

o perform independent constructions, as GRASP typically does, or 

mproved outcomes can be obtained if we use information about 

ast constructions when performing new ones. Lozano, Molina, 

 García-Martínez (2011) proposed an iterated greedy, IG , for 

he MaxSum problem, based on this multi-start framework. This 

ethod alternates constructive and destructive phases linked by 

n improvement process. Specifically, after an initial construction, 

 destruction mechanism removes selected elements, and then re- 

onstructs the partial solution with a greedy method. The result- 

ng solution is improved with a typical local search. An empirical 

omparison shows that this method is able to obtain solutions of 

imilar quality than the ITS by Palubeckis (2007) . 

Wang, Zhou, Cai, & Yin (2012) proposed an interesting combina- 

ion of a Tabu Search with an Estimation of Distribution Algorithm 

EDA). The rationale behind this hybrid method, called LTS-EDA , 
s that the EDA is a knowledge model that implements the infor- 

ation repository in which the experience of the history is stored, 
802 
o extract the required information by the learnable tabu search 

or an efficient search exploration of the solution space. Their em- 

irical comparison with previous methods shows that this hybrid 

ethod is able to improve previous approaches, especially on large 

nstances. It must be noted that the authors considered very long 

unning times, of 5 hours of CPU time, for the largest instances 

ith n = 50 0 0 elements. 

Wang, Hao, Glover, & Lü (2014) integrate Tabu Search and Scat- 

er Search in a memetic algorithm. The design of this algorithm 

s clearly in line with our comments above, that methods in this 

eriod are very complex in order to obtain high-quality solutions. 

n particular, their tabu memetic algorithm, called TS-MA popu- 

ates an initial reference set with local optima obtained with the 

pplication of tabu search to random initial solutions. This tabu 

earch is based on the same neighborhood of previous tabu search 

mplementations for the MaxSum problem, consisting on swap- 

ing a selected with an unselected element. However, to reduce 

he computational effort associated with exploring the neighbor- 

ood, they apply a successive filter candidate list strategy, and 

ubdivide the move into its two natural components: first remove 

n element, and then add another element. The authors explain 

hat one of the key elements in their memetic algorithm is the 

ombination operator based on solution properties by reference 

o the analysis of strongly determined and consistent variables. 

he method performs iterations combining the solutions in the 

eference set as long as the resulting solutions qualify to enter 

o this set. This method is an improved version of the hybrid 

etaheuristic published in Wu & Hao (2013) . The authors per- 

orm an empirical analysis to compare TS-MA with IG ( Lozano 

t al., 2011 ), ITS ( Palubeckis, 2007 ), B-VNS ( Brimberg et al., 

009 ), and LTS-EDA ( Wang et al., 2012 ). The comparison shows 

he superiority of the proposed TS-MA ; however, it is performed 

n a limited set of instances, ignoring many instances in the 

DPLIB. 

De Freitas, Guimarães, Pedrosa Silva, & Souza (2014) proposed 

 Memetic Self-adaptive Evolution Strategy, MSES . It is basically a 

opulation based algorithm that iterates over generations in which 

arents are mutated to produce children. A strength variable asso- 

iated with each individual manages the mutation, and it is self- 

djusted favoring that best configurations survive over time. As it 

s customary in memetic algorithms, the method includes a local 

earch and a crossover, and as in previous implementations of the 

lassic exchange-based local search, the authors propose an effi- 

ient implementation based on splitting the move evaluation be- 

ween the removed and the added contribution of its elements. 

he method is coupled with a tabu search that is selectively ap- 

lied to the best children in the generation. The algorithm is im- 

lemented in Matlab, and it is compared with previous heuristics 

eimplemented in Matlab as well. The comparison on the MDPLIB 

nstances favors the proposed method. 

The last paper published so far on the MaxSum model at the 

ime of writing this review is due to Zhou, Hao, & Duval (2017) ,
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nd it describes a memetic algorithm, called OBMA , improved with 

hree search strategies: 

• An opposition-based learning to reinforce population initializa- 

tion as well as the evolutionary search process. 
• A tabu search to intensify the search in promising regions. 
• A rank-based quality-and-distance pool updating maintain a 

good level of diversity in the population. 

The opposition-based learning basically considers a candidate 

olution and its corresponding opposite solution. In the case of 

he MaxSum problem, the opposite solution is simply obtained by 

electing some of the elements not selected in a given solution. 

he tabu search, on the other hand, is based on a constrained 

wap strategy that manages the size of the explored neighborhood 

o speed up the method. As all the local search based methods 

or this problem, it is built upon a swap move that exchanges 

 selected with an unselected element in the solution. Finally, a 

ank-pool updating strategy decides whether an improved solu- 

ion qualifies or not to enter into the population pool in which 

he memetic algorithm iterates. In particular, this strategy com- 

utes a score based on both quality and diversity to rank solutions 

n the updating process of the pool. The authors compare their 

BMA method with five previous methods described above: ITS 
 Palubeckis, 2007 ), G-SS ( Gallego et al., 2009 ), B-VNS ( Brimberg

t al., 2009 ), IG ( Lozano et al., 2011 ), and LTS-EDA ( Wang et al.,

012 ). The comparison clearly shows that the proposed method 

onsistently obtains the best results in the instances considered. 

he authors argue that MSES ( De Freitas et al., 2014 ) is not in-

luded in this comparison because it is very similar to the TS-MA 
ethod. On the other hand, as other empirical comparisons per- 

ormed in this last decade, it does not consider the entire bench- 

ark of instances published. In Section 6 , we perform an exhaus- 

ive comparison of the methods identified as the best on the entire 

DPLIB benchmark instances. 

.2. The MaxMin model 

In this period we have only found two exact methods and one 

euristic algorithm for the MaxMin model. These procedures in- 

roduce important changes in the way the problem is approached, 

nd therefore they deserve to be described in detail. 

Sayyady & Fathi (2016) solve an alternative model consecutively 

o obtain the optimal solution of the MaxMin model. In particular, 

hey consider the node packing problem, in which given a thresh- 

ld value l, a graph G (l) is defined with the set V of n nodes of

raph G = (V, E) , and the set of edges E(l) = { (i, j) ∈ E : d i j < l} .
he node packing problem consists in finding a maximum cardi- 

ality subset of nodes so that no two nodes in this subset are ad- 

acent to each other. It can be formulated in mathematical terms 

ith binary variables, x i , indicating if node i is selected as: 

Maximize 
∑ n 

i =1 x i 
subject to: x i + x j ≤ 1 i < j, d i j < l 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(9) 

The authors solve the node packing model above for different 

alues of l. In this way, an optimal solution of the node pack- 

ng problem in G provides a set of points with minimum distance 

arger than or equal to l. Note however than in the MaxMin prob- 

em, we specifically seek for a set of m points, and the set obtained

ith the node packing has an arbitrary number of points, called 

 (l) . Sayyady and Fathi proposed to solve a sequence of node pack- 

ng problems for different values of l according to a binary search, 

ntil they obtain a set of v (l) = m points, which turns out to be

he optimal solution of the MaxMin model. This method is able to 

olve large problems to optimality. Specifically, they solve the Eu- 

lidean instances with n = 250 in less than 200 seconds, and the 
803 
andom instances with n = 100 in less than 50 seconds (although 

hey cannot solve the random instances with n = 250 ). 

Sayah & Irnich (2017) propose a compact formulation that 

s able to solve large problems. Let D 

0 < D 

1 < . . . < D 

k max be

he different non-zero distance sorted values in (d i j ) , and let 

(D 

k ) = { (i, j) ∈ E : d i j < D 

k } . The location binary variable x i indi-

ates whether location i is opened, and binary variable z k indicate 

hether the location decisions satisfy a minimum distance of at 

east D 

k . Their first formulation follows: 

Maximize D 

0 + 

∑ k max 
k =1 

(D 

k − D 

k −1 ) z k 

subject to 
n ∑ 

i =1 

x i = m 

z k ≤ z k −1 k = 1 , . . . , k max 

x i + x j + z k ≤ 2 (i, j) ∈ E(D 

k ) \ E(D 

k −1 ) 
x i , z k ∈ { 0 , 1 } i = 1 , . . . , n, k = 1 , . . . , k max 

(10) 

Sayah & Irnich (2017) propose bounds and valid inequalities to 

trength formulation (10) . Their empirical analysis ignores the in- 

tances used in previous diversity paper, and considers the pmed

nstances in the OR library. Results are, on the other hand, impres- 

ive, since they are able to solve to optimality instances with up to 

 = 900 elements. 

Porumbel, Hao, & Glover (2011) proposed a fast local search for 

 model that combines the MaxMin and the MaxSum problems. 

n particular, the authors minimize the MaxMin objective function 

nd consider the MaxSum as a secondary objective. The inclusion 

f this secondary objective is motivated by the fact that there may 

e a relative large number of solutions that qualify as optimal for 

he MaxMin, and it makes sense to choose the best one among 

hem in terms of the MaxSum objective. Although not mentioned 

y these authors, we can find this proposal in the very first paper 

ublished for these problems. Kuby (1988) introduced the Max- 

um, the MaxMin, and what this author called a multi-criteria ap- 

roach, arguing that the MaxSum model is an appropriate way to 

hoose among the many alternate optima of the MaxMin problem. 

Parreño et al. (2021) perform a numerical and geometrical anal- 

sis of four diversity models: MaxMin, MaxSum, MaxMinSum, and 

inDiff. Their analysis reveals that the MaxMin avoids very close 

lements but may select points either at a medium or at a large 

istance. On the other hand, the MaxSum favors the selection of 

oints at a large distance but permits very close elements. There- 

ore, one of the conclusions of their study is that the combina- 

ion of these two first models, in the way described above, would 

ead to a more robust model. The authors formulate this combined 

odel, called the bi-level MaxSum problem, by introducing d ∗ as 

he optimal value of the MaxMin model (solved first), as follows: 

Maximize 
∑ 

i< j d i j x i x j 

subject to: 
n ∑ 

i =1 

x i = m 

d i j ≥ d ∗x i x j i, j = 1 , . . . , n. 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(11) 

Fig. 2 shows the MaxMin optimal solution (left), the MaxSum 

ptimal solution (center), and the Bi-level optimal solution (right), 

f an Euclidean instance with n = 50 elements from which we se- 

ect m = 5 . 

The MaxMin optimal solution depicted in the left diagram of 

ig. 2 shows the typical disposition of the solutions of this model 

dentified by Parreño et al. (2021) , in which the elements are scat- 

ered in the plane providing a disperse selection that may include 

he central region. A criticism of that selection, however, would 

e the point in the left part of the diagram, around coordinates 

5,40), instead of which we could easily select a better one in 

erms of global dispersion. As a matter of fact, the MaxSum value 

f that solution is 829.8, which is relatively low compared with 
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Fig. 2. MaxMin, MaxSum, and Bi-level optimal solutions. 

t

c

fi

t

c

t

b

o

i

n

m

8

m

s

o

a

s

l

G

s

p

o

s

4

M

c

s

t

n

p

t

i

t

w

s

n

n

r

d

h

T

t

d

s

A

b

s

g

f

(

s

f

l

&

l

u

c

t

d

m

s

m

t

a

t

r

o

p

b

g

c

s

l

i

p

i

s

s

p

M

t

t

4

i

a

t

f

f

G

S

he MaxSum optimal value of 942.8. The optimal MaxSum solution 

orresponding to that value is shown in the center diagram of the 

gure, and also has the typical disposition of that model, avoiding 

he central part and with the issue of selecting two points very 

lose (see the upper left corner of the square). The diagram on 

he right clearly shows that the bi-level model provides an “in- 

etween” solution, considering the optimal solutions of the two 

riginal models. Instead of the point around coordinates (5,40), 

t selects the point around coordinates (15,5). This “swap” does 

ot change the MaxMin objective function, which is 51.4 in both 

odels, but is able to increase the MaxSum value from 829.8 to 

85.2 in the bi-level model. 

A natural extension of the bi-level model is the bi-objective 

odel, in which both objectives, MaxSum and MaxMin, are con- 

idered as equally important, and treated with the standard multi- 

bjective methodology. Colmenar, Martí, & Duarte (2018) first 

dapt the standard solvers NSGA-II and SPEA, and then propose 

everal metaheuristics to the bi-objective problem. In particu- 

ar, the authors consider two construction-based methods, namely 

RASP and Iterated Greedy, and two trajectory-based, namely tabu 

earch and VNS. The comparison of the methods include the hy- 

ervolume, coverage, and epsilon indicator of the approximation 

f the Pareto front obtained with each method. The comparison 

hows that tabu search is able to obtain the best solutions. 

.3. The MaxMean model 

Martí & Sandoya (2013) propose an advanced GRASP for the 

axMean problem introduced by Prokopyev et al. (2009) that they 

alled the Equitable Dispersion problem, in which the number of 

elected elements is not set beforehand. In particular, the authors 

arget general instances in which distances can take positive and 

egative values and do not necessarily satisfy the usual distance 

roperties, such as the triangular inequality, reflecting for example 

he polarization that occurs when people get together in groups, 

n which we can identify clusters of individuals, with a high at- 

raction within clusters and a high repulsion between clusters, and 

ith no room for indifference. Note that the Max-Mean Disper- 

ion Problem is polynomially solvable if all the distances are non- 

egative, but it is strongly NP-hard if they can take positive and 

egative values. The authors propose a GRASP constructive algo- 

ithm based on a non-standard combination of greediness and ran- 

omization, a local search strategy based on the variable neighbor- 

ood descent methodology, and a path relinking post-processing. 

his later method is based on a measure to control the diversity in 

he search process. The empirical comparison with a previous stan- 

ard GRASP ( Prokopyev et al., 2009 ) favors the proposed method. 

The paper by Martí & Sandoya (2013) drew the attention of re- 

earchers working on diversity problems to the MaxMean model. 

 few years later, Carrasco et al. (2015) propose a tabu search 

ased on constructive and destructive moves, and three local 
804 
earch methods with nested neighborhoods. Their tabu search al- 

orithm, built upon short-term and long-term strategies, outper- 

orms the previous GRASP methods. Della Croce, Garraffa, & Salassa 

2016) propose a very interesting combination of methods in a 3- 

tage algorithm: a quadratic integer solver to find promising values 

or the number of selected elements to generate initial solutions, a 

ocal branching scheme, and a path relinking post-processing. Lai 

 Hao (2016) hybridize the tabu search methodology with an evo- 

utionary method thus creating a memetic algorithm that improves 

pon previous methods according to their extensive computational 

omparison. As shown in the subsection on the MaxSum problem, 

his type of memetic algorithm has been already applied to other 

iversity models, and we can therefore conclude that it is a robust 

ethod that performs well across different models. 

Brimberg, Mladenovi ́c, Todosijevi ́c, & Uroševi ́c (2019) propose a 

imple VNS for the MaxMean problem. The authors identify the 

inimum number of ingredients that makes a VNS based heuris- 

ic as simple and user friendly as possible, while at the same time 

chieving high-quality results. To clearly state this goal, the paper 

itle starts with the expression Less is more , and the proposed algo- 

ithm follows the general variable neighborhood search methodol- 

gy. The experimental comparison shows that, in spite of its sim- 

licity, this VNS competes very well with the complex tabu search 

y Carrasco et al. (2015) . 

We end the revision on the MaxMean model with an exact al- 

orithm. Garraffa, Della Croce, & Salassa (2017) consider the non- 

onvex quadratic fractional formulation (see (5) ) from which a 

emidefinite programming (SDP) relaxation can be derived. This re- 

axation is tightened by means of a cutting plane algorithm which 

teratively adds the most violated inequalities. The proposed ap- 

roach embeds the SDP relaxation and the cutting plane algorithm 

nto a branch and bound framework. Computational experiments 

how that the proposed method is able to solve to optimality in- 

tances with up to 100 elements in less than 5 hours of CPU time. 

Lai, Hao, & Glover (2020) adapted their memetic algorithm pro- 

osed for the MaxMean ( Lai & Hao, 2016 ) to the Generalized 

axMean (see formulation (6) above), in which some weights mul- 

iply the objective function. This is the first heuristic for this ex- 

ended model introduced in Prokopyev et al. (2009) . 

.4. Other unconstrained diversity models 

As mentioned in Section 3.3 , Prokopyev et al. (2009) introduced 

n the previous period several diversity models that did not receive 

ttention at that time. We have just reviewed above several con- 

ributions on the MaxMean model, and we are going to see now a 

ew more on the MaxMinSum and MinDiff as well. 

Building on the main ideas applied to different metaheuristics 

or the MaxSum and MaxMin models, Aringhieri, Cordone, & 

rosso (2015) propose some constructive procedures and a Tabu 

earch algorithm for the MaxMinSum and MinDiff models. In 
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articular, the authors investigate the extension to this new con- 

ext of key features such as initialization, tenure management and 

iversification mechanisms. The computational experiments show 

hat the proposed algorithms perform effectively on the publicly 

vailable benchmarks. Martínez-Gavara, Campos, Laguna, & Martí

2017) integrate GRASP and Tabu Search in a scheme in which 

lements are selected and des-selected thus oscillating around 

he feasibility boundary defined by the problem constraint. The 

uthors tested six different variants of GRASP, and three variants of 

he strategic oscillation. The final method is compared with a com- 

ercially available optimization software for combinatorial prob- 

ems www.localsolver.com . Amirgaliyeva, Mladenovi ́c, Todosijevi ́c, 

 Uroševi ́c (2017) apply different variants of the variable neighbor- 

ood search methodology to the MaxMinSum, including the vari- 

ble formulation search that iterates over different formulations 

o escape from local optima. The authors compare their method 

ith the tabu search by Aringhieri et al. (2015) , obtaining better 

esults. 

The most recent approach for the MaxMinSum is due to Lai, 

ue, Hao, & Glover (2018) , in which a solution-based tabu search 

s proposed. It is worth mentioning that the standard tabu search 

mplementation is based on attributive memory, in which only key 

roperties (called attributes) of moves or solutions are stored to 

void cycling. In this implementation however, the authors con- 

ider an interesting variant in which instead of an attribute, they 

ecord the entire solution by means of hash functions to speed up 

ts management. An exhaustive empirical comparison with previ- 

us methods identifies this tabu search as the best method pub- 

ished so far for the MaxMinSum. 

We consider now the MinDiff model , for which Duarte, 

ánchez-Oro, Resende, Glover, & Martí (2015) proposed a GRASP 

ith Exterior Path Relinking. Given two solutions, S and S ′ , the 

tandard implementation of the path relinking starts from the initi- 

ting solution S and gradually transforms it into the guiding solution 

 

′ . This transformation is accomplished by swapping out elements 

elected in S with elements in S ′ , generating a set of intermedi- 

te solutions . The exterior Path Relinking introduces in the initiat- 

ng solution characteristics not present in the guiding solution with 

iversification purposes. Specifically, it removes from the initiating 

olution those elements which also belong to the guiding solution, 

btaining intermediate solutions which are further away from both 

he initiating and the guiding solutions. The authors show that this 

ethod is able to obtain high quality solutions by comparing them 

ith the optimal values obtained with CPLEX. 

After Duarte’s GRASP with Exterior Path Relinking, three heuris- 

ics have been proposed. They are basically adaptations of methods 

roposed for other diversity models to target the specific character- 

stics of the MinDiff model. In particular, Mladenovi ́c, Todosijevi ́c, 

 Uroševi ́c (2016) propose a VNS, Zhou & Hao (2017) an iterated 

ocal search, and Lai, Hao, Yue, & Gao (2019) a solution-based tabu 

earch, which according to their computational testing, is currently 

he state-of-the-art method for this problem. 

A major criticism of the two models reviewed in this subsection 

s its lack of practical significance. Parreño et al. (2021) analyze 

hese two models, in connection with the rest of diversity mod- 

ls. The first conclusion of their study is that the MaxSum and 

axMinSum provide similar solutions, and considering the rel- 

tively large amount of research already done in the MaxSum 

odel, it is not well justified the need of the recently introduced 

axMinSum one (especially because it is more complicated). In 

articular, their empirical analysis reveals that the optimal solution 

btained with one model scores very well in the other model, 

resenting a small deviation with respect to its optimum (0.8% 

n average on the MDPLIB). Additionally, both models present an 

verage correlation of 0.74, and in many cases it is larger than 0.9. 

egarding the geometrical disposition of its solutions, they select 
805 
oints close to the borders of the space, and with no points in the 

entral region. Fig. 3 shows the MaxMinSum optimal solution (left), 

nd the MaxSum optimal solution (right), of a Euclidean instance 

ith n = 100 elements from which we select m = 20 . It is clear

hat both solutions are very similar (they only differ in one point). 

Regarding the MinDiff, Parreño et al. (2021) also recommend to 

void the use of this model in its current formulation. Their anal- 

sis reveals that it seeks for inter-distance equality among the se- 

ected points, but ignores how large or small these distances are. 

his model balances the selection of points, achieving equity in 

his way; however, it seems difficult to justify the selection of bal- 

nced points at a very small distance, as shown in the example of 

ig. 4 with n = 25 elements from which we select m = 3 . 

To sum it up, it seems that researchers have focused their at- 

ention on these two problems as a way to evaluate complex meta- 

euristics, but without considering their true practical significance. 

ore research is needed to conclude if they are artificial problems 

r require a better formulation to capture diversity and equity in a 

ore realistic way. 

.5. Constrained dispersion models 

As mentioned above, in the previous decade Rosenkrantz et al. 

20 0 0) introduced several diversity models constrained in terms of 

ost and capacity, motivated by their practical applications in fa- 

ility location. In these last few years, several models have been 

eveloped from this seminal paper. 

Peiró, Jiménez, Laguardia, & Martí (2021) considered the model 

f maximizing the diversity subject to capacity constraints. This 

odel, as stated in Rosenkrantz et al. (20 0 0) , is built upon the

axMin, by replacing the typical cardinality constraint with ca- 

acity constraints. The authors called it the Capacitated Disper- 

ion Problem (CDP), and proposed a hybridization of GRASP and 

ND implemented within the Strategic Oscillation framework. A 

traightforward formulation, based on the standard binary vari- 

bles x i , a capacity value c i for each node i , and a capacity thresh-

ld B indicating the desired level of service, follows: 

Maximize Min i, j∈ M 

d i j 

subject to: 
n ∑ 

i =1 

c i x i ≥ B 

M = { i ∈ V : x i = 1 } 
x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(12) 

Martí, Martínez-Gavara, & Sánchez-Oro (2021) propose a math- 

matical model and a heuristic based on the Scatter Search 

ethodology to maximize the diversity while satisfying the capac- 

ty constraint in the CDP. Their heuristic algorithm outperforms the 

revious heuristic on the 100 instances tested, and the model is 

ble to solve the medium size instances in this set to optimality. In 

articular, the authors adapt the exact method by Sayyady & Fathi 

2016) for the MaxMin to the CDP. It basically solves iteratively the 

ode packing problem, which finds a maximum cardinality subset 

f nodes in an auxiliary graph, so that no two nodes in this sub- 

et are adjacent to each other. With a time limit of 3600 seconds, 

urobi is able to solve all the instances with n = 50 , and n = 150 ,

nd some of the instances with n = 500 . 

This same year in which we are writing this paper, 2021, a 

ew constrained model has been published. Martínez-Gavara et al. 

2021) consider the model in which capacity and cost constraints 

re included. This model was labeled as Max-Dist/Cap/Cost by 

osenkrantz et al. (20 0 0) , and it is coined now as the Generalized

ispersion Problem (GDP). It basically adds a cost constraint to 

he CDP. For each element i , it considers an associated cost, a i , and

 maximum budget K that cannot be exceeded. Martínez-Gavara 

t al. (2021) also propose another model that includes both fixed 

nd variable costs, to model in a more realistic way some location 

http://www.localsolver.com
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Fig. 3. MaxMinSum (left) and MaxSum (right) optimal solutions. 

Fig. 4. MinDiff optimal solution. 
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roblems. 

Maximize m 

subject to: 
n ∑ 

i =1 

c i x i ≥ B 

n ∑ 

i =1 

a i x i ≤ K 

m ≤ d i j + D (1 − x i ) + D (1 − x j ) i, j = 1 , . . . , n : j > i. 
x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(13) 

It is noteworthy the relative relationship between these con- 

trained models and the well-known discrete p-median problem. 

n both models we want to select some locations to establish some 

acilities; however, the p-median solution assigns each client to a 

acility, which is not the case of dispersion problems. In general 

erms, we may say that p-median models emphasize the distance 

etween facility and clients, while dispersion models emphasize 

he distance among facilities. 

Martínez-Gavara et al. (2021) illustrate the practical use of this 

odel with the location problem of a medical corporation that 

ants to set several facilities, such as clinics or hospitals, in a cer- 

ain territory. In this context, the set of nodes would represent the 

otential locations for the facilities (such as hospitals or clinics), 

he capacity value B the minimum number of patients that they 

ant to attend, and the cost limit K their budget. Maximizing the 

nter-distance between facilities translates the objective of scatter 

he clinics over the territory to cover it, in a similar way that the 

p-median minimizes the distance between the facility and the 

ssigned patients. Note however, that in this model, we are not 
806 
ssigning the clients (patients) to clinics, and we are giving them 

he freedom to select the one that they prefer, which is precisely 

hat many medical corporations do. 

. The MDPLIB library of benchmark instances 

The benchmark instances for the diversity problem come from 

ifferent sources that have been added over the years. The most 

sed library is the MDPLIB; however, other instances have also 

een considered, such as the OR-Lib. On the other hand, the li- 

rary for the constrained dispersion problems is quite recent, and 

ince it is derived from the MDPLIB, we propose to include all of 

hem in an extended version of the MDPLIB, called MDPLIB 2.0. A 

etailed description of the different sets of instances follows. 

The original MDPLIB collects a total of 315 instances avail- 

ble at www.uv.es/rmarti/paper/mdp.html with a mirror server in 

ww.optsicom.es/mdp . Martí et al. (2010) compiled ten years ago 

his comprehensive set of benchmark instances representative of 

he collections used for computational experiments in the MDP. 

he library contains three sets of instances collected from differ- 

nt papers and named after their authors: GKD (Glover, Kuo, and 

hir), MDG (Martí, Duarte, and Gallego), and SOM (Silva, Ochi, and 

artins). All the instances were randomly generated. The genera- 

ors were not built according to any specific application, but they 

ere designed with the purpose of being a challenge for heuris- 

ic methods, mainly on the MaxSum problem. However, these in- 

tances have been extensively used in all the diversity models pro- 

osed, and some studies point out that not all of them are appro- 

riate for some models. 

In this section, we first describe in detail each set of instances, 

hich contains different subsets according to their source. We con- 

ider three sets of instances depending on the type of values in 

heir distance matrices: Euclidean, Real, and Integer. In our de- 

criptions below, we analyze these sets, and propose some changes 

o update the library. We will refer to the new library as MDPLIB 

.0. 

1. Euclidean instances set. This data set consists of 215 matrices 

for which the values were calculated as the Euclidean distances 

from randomly generated points with coordinates in the 0 to 

10 range. It collects four subsets, namely GKD-a, GKD-b, GKD-c, 

and GKD-d: 

(a) GKD-a: Glover et al. (1998) introduced these 75 instances in 

which the number of coordinates for each point is generated 

randomly in the 2 to 21 range. The instance sizes are such 

that for n = 10 , m = 2 , 3 , 4 , 6 and 8; for n = 15 , m = 3 , 4 , 6 , 9

and 12; and for n = 30 , m = 6 , 9 , 12 , 18 and 24. 

(b) GKD-b: Martí et al. (2010) generated these 50 matrices for 

which the number of coordinates for each point is generated 

randomly in the 2 to 21 range and the instance sizes are 

http://www.uv.es/rmarti/paper/mdp.html
http://www.optsicom.es/mdp
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Fig. 5. Number of solutions of an instance with n = 25 . 
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such that for n = 25 , m = 2 and 7; for n = 50 , m = 5 and

15; for n = 100 , m = 10 and 30; for n = 125 , m = 12 and 37;

and for n = 150 , m = 15 and 45. 

(c) GKD-c: Duarte & Martí (2007) generated these 20 matrices 

with 10 coordinates for each point and n = 500 and m = 

50. 

(d) GKD-d: Parreño et al. (2021) generated 70 matrices for 

which the values were calculated as the Euclidean dis- 

tances from randomly generated points with two coor- 

dinates in the 0 to 100 range. For each value of n = 

25 , 50 , 100 , 250 , 500 , 1000 , and 2000, they considered 10

instances with m = � n/ 10 � and 10 instances with m = 

2 � n/ 10 � , totalizing 140 instances. The main motivation of 

this new set is to include the original coordinates in the 

instances files that unfortunately are not publicly available 

nowadays for the other subsets. In this way, researchers may 

represent the solutions in line with the work in Parreño 

et al. (2021) . 

We replace the original sets GKD-a and GKD-b in the bench- 

mark library with the new set GKD-d, in which the instances 

are generated in the same way but their corresponding files 

contain the coordinates. Note that the new set contains very 

large instances not considered in the original sets. 

2. Real instances set. This data set consists of 140 matrices with 

real numbers randomly selected according to a uniform distri- 

bution. 

(a) MDG-a. This data set contains 60 instances. Duarte & Martí

(2007) generated 40 matrices with real numbers randomly 

selected in [0 , 10] and called them Random Type I instances , 

20 of them with n = 500 and m = 50 , and the other 20

with n = 20 0 0 and m = 200 . Parreño et al. (2021) gener-

ated 20 additional matrices with n = 100 and real num- 

bers randomly selected in [0 , 10] that can be solved to 

optimality. 

(b) MDG-b. This data set contains 60 instances. Originally, 

Duarte & Martí (2007) created this set with 40 matrices 

generated with real numbers randomly selected in [0, 10 0 0] 

and called them Random Type II instances . 20 of them have 

n = 500 and m = 50 , and the other 20 have n = 2000 and

m = 200 . Parreño et al. (2021) generated 20 additional ma- 

trices with n = 100 and real numbers randomly selected in 

[0 , 10 0 0] , 

(c) MDG-c. Considering that many heuristics were able to 

match the best-known results in many of the instances pre- 

viously introduced, Martí et al. (2013) proposed this data set 

with very large instances in 2013. It consists of 20 matrices 

with randomly generated numbers according to a uniform 

distribution in the range [0, 10 0 0], and with n = 30 0 0 and

m = 30 0 , 40 0, 50 0 and 60 0. 

3. Integer instances set. This data set consists of 170 instances 

where the distance matrices are integer random numbers gen- 

erated from an integer uniform distribution. 

(a) ORLIB: This is a set of 10 instances with n = 2500 and 

m = 10 0 0 that were proposed for binary problems ( Beasley, 

1990 ). The distances are integers generated at random in 

[ −100 , 100 ] where the diagonal distances are ignored. 

(b) PI: Palubeckis (2007) generated 10 instances where the dis- 

tances are integers from a [0,100] uniform distribution. 5 of 

them are generated with n = 30 0 0 and m = 0 . 5 n , and 5 with

n = 50 0 0 and m = 0 . 5 n . The density of the distance matrix

is 10% , 30% , 50% , 80% and 100% . 

(c) SOM-a. These 50 instances were generated by Martí

et al. (2010) with a generator developed by Silva et al. 

(2004) with integer random numbers between 0 and 9 gen- 

erated from an integer uniform distribution. The instance 

sizes are such that for n = 25 , m = 2 and 7; for n = 50 ,
807 
m = 5 and 15; for n = 100 , m = 10 and 30; for n = 125 ,

m = 12 and 37; and for n = 150 , m = 15 and 45. 

(d) SOM-b. These 20 instances were generated by Silva et al. 

(2004) with the same random generator from SOM-a. The 

instance sizes are such that for n = 100 , m = 10 , 20 , 30 and

40; for n = 200 , m = 20 , 40 , 60 and 80; for n = 300 , m =
30 , 60 , 90 and 120; for n = 400 , m = 40 , 80 , 120 , and 160;

and for n = 500 , m = 50 , 100 , 150 and 200. 

(e) MGPO: To complement the sets above, we consider 80 large 

matrices with relatively low m values. Specifically, we gen- 

erate 40 instances with n = 10 0 0 and integer numbers ran- 

domly selected in [1 , 100] , 20 of them with m = 50 and 20

with m = 100 . Similarly, we generate 40 matrices with n = 

20 0 0 and integer numbers randomly selected in [1 , 100] , 20 

of them with m = 50 , and 20 with m = 100 . 

 final note on the use of instances is its applicability to the differ- 

nt models. It must be noted that some of them were introduced 

or the MaxSum model, and could not be adequate for other diver- 

ity models. This is especially true in the case of some instances in 

he SOM set that contain so many 0 values that all feasible solu- 

ions have a minimum distance value of 0. Our empirical analysis 

n Section 6 shows that 23 instances in the SOM set have an opti-

al MaxMin value of 0, and therefore if we apply a heuristic and 

btain a solution with a value of 0 in the MaxMin objective, this 

s not a reliable measure of its assessment. Researchers have to be 

ery careful when using this set to test other models than the clas- 

ic MaxSum. We are including a note in the MDPLIB 2.0 identifying 

hese 23 instances. 

A simple but important argument when considering an instance 

o compare methods is its difficulty based on the ratio between 

he total number of elements n , and the number of them to be 

elected, m . Since any selection of m elements is a solution, the 

umber of feasible solutions is simply C n m 

= 

n ! 
m !(n −m )! 

. Therefore, for 

 given value of n , the closer m is to n/ 2 , the more difficult the in-

tance is. For example, an instance with n = 25 and m = 2 only has

00 solutions, while an instance with n = 25 and m = 10 has more

han 3 million solutions. Fig. 5 shows the number of solutions as a 

unction of m for an instance with n = 25 . 

.1. Constrained benchmark instances 

The benchmark set of instances in the constrained dispersion 

roblem is derived from the MDPLIB described above. Specifically, 

eiró et al. (2021) and Martínez-Gavara et al. (2021) select a subset 

f 50 instances to generate the new benchmark set. It consists of 

0 instances from GKD set, 10 of each size ( n = 50 , n = 150 , and
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Table 5 

MDPLIB 2.0 benchmark library. 

Set # Instances Type Range of n Range of m 

GKD-c 20 Euclidean 500 50 

GKD-d 140 [25, 2000] [3, 400] 

MDG-a 60 [100, 2000] [50, 200] 

MDG-b 60 Real numbers [100, 2000] [50, 200] 

MDG-c 20 3000 [300, 600] 

ORLIB 10 Integer 

numbers 

2500 1000 

PI 10 { 30 0 0 , 50 0 0 } { 150 0 , 250 0 } 
SOM-a 50 [25, 150] [2, 45] 

SOM-b 20 [100, 500] [10, 200] 

MGPO 80 [1000, 2000] [50, 100] 

Const - (CDP) 100 Constrained [50, 500] –

Const - (GDP) 200 Constrained [50, 500] –

Total 770 [25, 5000] [2, 2500] 
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 = 500 ), 10 instances of size 500 from the MDG set, and finally,

0 more instances of size 50 are selected from the SOM set. 

The capacity of each node i , c i in Eq. (12) , is randomly generated

ith a uniform distribution between [ 1 , 10 0 0 ] for each of these 

riginal instances. Then, the minimum capacity B is computed as 

he total capacity multiplied by 0.2 or 0.3, thus two instances are 

reated for each of these 50 instances. So, the Const.-(CDP) bench- 

ark contains 100 instances. Moreover, in the GDP, for each of 

hese 100 instances, the cost a i of a node i , see Eq. (13) , is gen-

rated by a uniform distribution between the values c i / 2 and 2 c i .

s in the capacity constraint, the maximum budget K is computed 

s the sum of all the costs values multiplied by a factor between 

.2 and 0.3. Therefore, in the Const.-(GDP) benchmark, each origi- 

al instance in the MDPLIB produces 4 instances, thus obtaining a 

et of 200 instances. 

We have generated an additional set of large instances. In par- 

icular, we consider 20 new instances in each set: 20 Euclidean 

GKD-d) with n = 20 0 0 , 20 Real (MDG-c) with n = 30 0 0 , and 20

nteger (MGPO) with n = 20 0 0 . The capacity and cost values are

enerated as described above. 

We finish the description of the instances, summarizing the 

ew library, MDPLIB 2.0, in Table 5 . This table shows the num- 

er of instances, type, and the range of n and m in each subset. In

eneral terms, Euclidean instances are based on location problems, 

eal instances were generated to pose a challenge for heuristics, 

nd Integer instances somehow are related to rankings and prefer- 

nces. However, none of them are directly based on applications. 

 major criticism of most of these instances is their lack of con- 

ection with real problems. In our opinion they should be closely 

inked to real applications. In fact, related fields, such as location 

r grouping, have well-known data sets based on important ap- 

lications, which constitutes one of the foundations of Operations 

esearch. We would suggest the study of real problems to generate 

uture benchmarks. 

. Computational experiments 

In this section we address the two diversity problems that have 

een extensively studied, the MaxSum and MaxMin. Considering 

hat the number of methods proposed for them is very large and, 

n many cases, the comparisons performed are partial, with just a 

ew methods and a fraction of the instances described in Section 5 , 

e perform a complete comparison to clearly established the state- 

f-the-art methods for these two problems. We would like to 

hank the authors who kindly made their codes available to us. All 

he experiments are conducted on a computer with a 2.8 GHz Intel 

69 Core i7 processor with 16 GB of RAM. 
808 
.1. The MaxSum model 

Martí et al. (2013) presented an extensive computational ex- 

erimentation to compare 10 heuristics and 20 metaheuristics for 

he MaxSum problem (see Table 1 ). This comparison reveals that, 

he first heuristics proposed in the early period, C2 and D2 , per- 

orm very well considering their simplicity, and in the set of 

omplex metaheuristics proposed in the expansion period, B-VNS 
 Brimberg et al., 2009 ) and ITS ( Palubeckis, 2007 ) exhibit the best

esults (see Table 2 ). Since then, several new efficient methods 

ave been published (see Section 4 ), being the Memetic Evolution 

trategy MSES ( De Freitas et al., 2014 ), the Memetic Tabu Search 

S-MA ( Wang et al., 2014 ) and the opposition-based memetic al- 

orithm OBMA ( Zhou & Hao, 2017 ) the most recent ones. We con- 

ider these seven methods and the solutions obtained with CPLEX 
n our comparison. 

In line with the previous comparisons previously published, we 

onsider two time horizons in our testing: 10 seconds and 600 sec- 

nds of CPU time. In our first experiment, we exclude the MSES 
 De Freitas et al., 2014 ) because we are running its Matlab code 

rovided by the authors that requires much more than the 10 sec- 

nds considered in this experiment. Table 6 reports the results of 

he other six heuristics referenced above run for 10 seconds. It 

lso reports the solutions of the CPLEX solver with mathemati- 

al model (4) described above run for 1 hour. Note that in many 

ases CPLEX is not able to certify the optimality, and we report its 

est feasible solution found (current lower bound when the time 

imit expires). This table shows the average percentage deviation 

rom the best solution known ( % de v ), and the number of best so-

utions found ( # best). Results are reported for each instance set. In 

he case of CPLEX , % de v is only reported in a set, when it obtains

easible solutions in all the instances in that set. 

Table 6 shows that, as expected, metaheuristics obtain better 

esults than simple heuristics. In particular, the most recent pub- 

ished method, OBMA , obtains the best results overall, with an aver- 

ge percentage deviation of 0 . 16% and 327 best solutions found in 

he experiment. Note that TS-MA is able to slightly improve OBMA 
n terms of the average percentage deviation; however, a p-value 

 0 . 001 of the one-sided pairwise Wilcoxon test confirms the su- 

eriority of OBMA . On the other hand, this table also shows that 

ost of the problems are too large to be solved with CPLEX , and 

nly in some of the instances sets it obtains feasible solutions. 

If we compare the best method proposed in each period, we 

an see that in the early period, the best results were obtained 

ith D2 that presents an average deviation of 36 . 95% . In the ex-

ansion period (second decade in our study), the best method is 

-VNS , and the percentage deviation drops to 0 . 2% . Finally, in the

evelopment period (last decade) a slight improvement is achieved 

ith very complex methods, being OBMA the best method (closely 

ollowed by TS-MA ), with a deviation of 0.16 (and 0.02 for TS-MA ). 
In the next experiment, we compare the best methods identi- 

ed for each period time, namely D2 , B-VNS , and OBMA , run with

 time limit of 600 seconds per instance. We include in this experi- 

ent the solutions obtained with CPLEX and MSES which require 

n average about an hour of CPU time. Table 7 shows the same 

tatistical parameters than the previous table. The results in this 

able show that simple heuristics are not able to improve complex 

etaheuristics over a long period of time, and OBMA emerges as 

he best algorithm again, obtaining the best percentage deviation 

verall. Furthermore, OBMA exhibits a remarkable 99% of the best 

olutions, while this percentage in the B-VNS is around 70% . The 

airwise Wilcoxon statistical test confirms that OBMA outperforms 

-VNS , with a p-value less than 0.001. These comments are in line 

ith the results in the previous experiment. 

The last experiment in this subsection evaluates how close the 

olutions of the algorithms are with respect to the optimal values. 
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Table 6 

Comparison of the best methods for the Max-Sum problem in 10 seconds. 

Instance class 

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all 

# inst. 20 140 60 60 20 50 20 80 450 

% de v 
CPLEX 3.83 3.05 – – – 2.45 6.40 – - 

C2 97.35 16.54 74.51 74.04 99.56 85.65 96.45 19.05 70.39 

D2 22.27 41.33 40.59 28.27 76.23 41.01 22.73 23.21 36.95 

B-VNS 0.00 0.06 1.18 0.07 0.08 0.00 0.00 0.20 0.20 

ITS 0.00 0.58 1.19 0.10 0.20 0.05 0.00 0.25 0.30 

TS-MA 0.02 0.06 0.01 0.04 0.04 0.00 0.00 0.02 0.02 

OBMA 0.00 0.06 1.14 0.03 0.00 0.00 0.00 0.03 0.16 

# best

CPLEX 0 46 0 0 0 18 0 0 65 

C2 0 0 0 0 0 0 0 0 0 

D2 0 0 0 0 0 0 0 0 0 

B-VNS 19 108 22 0 0 50 20 13 232 

ITS 19 109 20 24 0 48 19 10 249 

TS-MA 1 45 58 44 0 50 20 63 281 

OBMA 19 108 28 24 20 50 20 58 327 

0.00 means less than 0.001. 

Table 7 

Comparison of the best methods for the Max-Sum problem in 600 seconds. 

Instance class 

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all 

# inst. 20 140 60 60 20 50 20 80 450 

% de v 
CPLEX 3.83 2.98 – – 0.00 2.45 6.40 – –

D2 10.05 24.99 20.03 18.44 76.23 26.92 19.26 19.48 29.92 

B-VNS 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.05 0.01 

MSES 0.00 0.71 1.15 0.72 0.41 0.00 0.07 0.89 0.49 

OBMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

# best

CPLEX 0 79 3 5 0 18 0 0 105 

D2 0 0 0 0 0 0 0 0 0 

B-VNS 20 138 43 0 2 50 20 45 318 

MSES 20 126 17 12 0 50 9 0 244 

OBMA 20 138 60 60 20 50 20 80 447 

0.00 means less than 0.001. 

Table 8 

Comparison with 45 optimal values obtained with CPLEX in the MaxSum. 

Procedure C2 D2 B-VNS ITS OBMA TS-MA MSES 

% gap 33.54 25.03 0.00 0.05 0.00 0.00 0.00 

# opt 0 0 45 44 45 44 45 

0.00 means less than 0.001. 
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e can compute it for the 45 small instances that CPLEX is able 

o optimally solve. Table 8 shows the average percentage deviation 

rom the optimal solution ( % gap) and the number of optimal so- 

utions found by each algorithm ( # opt) over the set of these 45 

nstances. Since the size of these instances is small ( n ∈ { 25 , 50 } ),
nd the number of elements to be selected is less than 7 ( < n/ 3 ),

e may consider these 45 instances as easy to solve. However, 

imple heuristics, such as C2 and D2 , are not able to match the 

ptimal solutions, while metaheuristics can achieve almost all of 

hem. Furthermore, the results obtained by the heuristics are on 

verage less than 34 . 0% away from the optimal value. 

To summarize the situation on the MaxSum problem, we con- 

lude that simple heuristics obtain low quality solutions, and we 

hould avoid their use. The effort s made in the last two decades on 

his problem, result in very efficient metaheuristics that are able to 

btain good solutions even in very short running times, such as the 

0 seconds tested. Results obtained with the metaheuristics in the 

evelopment period (last decade analyzed) slightly improve those 
809 
n the previous period, and many of them would be adequate for a 

arge range of applications in which a medium size instance has to 

e solved. Regarding the optimal values, the MaxSum model im- 

lemented in CPLEX is only able to certify optimal solutions in a 

mall fraction of the instances (around a 10% overall), which indi- 

ates that this model is still a challenge for the operation research 

ommunity, and further research is necessary to obtain a model 

hat could increase the number of optimal solutions found. 

.2. The MaxMin model 

This section describes the numerical experiments that we have 

erformed to test the efficiency of the most representative algo- 

ithms for the MaxMin model. The first two algorithms that we 

nclude in the comparison belong to the early period, and fall 

nder the category of heuristic algorithms. Specifically, we adapt 

he constructive and destructive algorithms proposed by Glover 

t al. (1998) to the MaxMin problem, and we name them as C2Ad 
nd D2Ad , respectively. They are similar to those proposed by 

rkut (1990) . At the end of the expansion period, Resende et al. 

2010) performed a numerical analysis to compare their proposed 

lgorithm GPR with the previous metaheuristics, and conclude that 

PR outperformed the state-of-art at that time (see Table 3 ). So, 

e consider GPR in the next comparison as the representative al- 

orithm of that period. Finally, in the development period (the last 

ecade in our study), we can only find the metaheuristic proposed 
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Table 9 

Comparison of the best methods for the Max-Min problem in 10 seconds. 

Instance class 

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all 

# inst. 20 140 60 60 20 50 20 80 450 

% de v 
CPLEX 4.55 0.22 – – – 0.00 15.00 – –

C2Ad 56.06 91.35 65.38 98.16 100.00 68.61 35.00 100.00 76.82 

D2Ad 16.01 42.41 44.51 74.54 75.23 62.53 35.00 86.09 54.54 

GPR 4.00 30.46 7.87 54.02 100.00 7.30 10.00 64.21 34.73 

DropAdd-TS 0.01 21.00 1.35 25.43 0.00 2.72 0.00 0.00 6.31 

# best

CPLEX 2 139 40 20 0 50 17 0 268 

C2Ad 0 0 20 0 0 15 13 0 48 

D2Ad 0 0 20 0 0 12 13 0 45 

GPR 0 29 39 14 0 44 18 0 144 

DropAdd-TS 20 32 58 39 20 47 20 80 316 

0.00 means less than 0.001. 

Table 10 

Comparison with 227 optimal values in the MaxMin model. 

Procedure C2Ad D2Ad DropAdd-TS GPR 

% gap 88.84 52.03 18.76 23.08 

# opt 28 25 114 107 
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y Porumbel et al. (2011) , which consists in combining add and 

rop operations with a simple tabu search (named DropAdd-TS ). 
In contrast to what happens with the MaxSum model, in the 

ast decade, new formulations have been proposed to the MaxMin, 

ncreasing the number of optimal solutions that can be solved with 

PLEX . Results in Tables 9 and 10 are obtained with the model 

roposed by Sayyady & Fathi (2016) , running it with a time limit 

f 1 hour per instance. 

As in the previous section, we first compare the results ob- 

ained with the four algorithms run with a small time limit 

10 seconds), including in the comparison the CPLEX results. 

able 9 summarizes the results by instance set, and shows the av- 

rage percentage deviation from the best solution known ( % de v ), 
nd the number of best solutions found ( # best). As in the pre-

ious section, the average percentage deviation for CPLEX is only 

eported in a set, when it obtains feasible solutions in all the in- 

tances in that set. 

As expected, Table 9 shows that metaheuristics outperform 

euristics, and DropAdd-TS arises as the best algorithm overall, 

ith an average percentage deviation of 6 . 31% and 316 best solu- 

ion found in the experiment. It is worth mentioning that CPLEX , 
ith the Sayyady & Fathi (2016) formulation, is able to obtain a 

otal of 268 bests solutions out of 450 in the experiment (around 

0% overall), even improving the results achieve by GPR . This for- 

ulation solves to optimality many instances of large size (with 

 = 10 0 0 ), and is able to obtain high quality lower bounds in

ven larger instances ( n = 20 0 0 ). Finally, comparing the two sim-

le heuristics considered, we can see that the destructive method 

2Ad obtains better solutions than the constructive one ( C2Ad ). 
pecifically, D2Ad presents an average deviation of 54 . 51% in con- 

rast to the average deviation of 76 . 82% that C2Ad obtains. 

We repeat the same experiment performed above with a time 

orizon of 600 seconds. The results obtained are similar to those 

resented in Table 9 for 10 seconds, so we do not include the re-

ults here. It must be emphasized that GPR is able to decrease 

y 10% the percentage deviation to the best solution found in this 

xperiment, and to increase its number of bests solution ( # best) 

rom 144 to 159. This makes sense since the methodology applied 

n this algorithm usually requires longer running times due to the 

ombination of solutions. 
810 
Finally, the last experiment in this section has the objective to 

valuate how far the solutions provided by the algorithms are from 

ptima, or if they are able to match them. As in the previous sec- 

ion, we compare the four algorithms in the subset of instances 

hat CPLEX optimally solves. In particular, the MaxMin model im- 

lemented in CPLEX is able to certify optimal solutions in 227 in- 

tances out of 450 (around 50% ). Clearly, the new formulations that 

ave been recently proposed for the MaxMin model allow to opti- 

ally solve instances with large size ( n ≤ 10 0 0 in our benchmark 

et) with relatively low running times, as opposite to what hap- 

ens in the MaxSum model. Table 10 shows the average percent- 

ge deviation from the optimal solution ( % gap) and the number 

f optimal solutions found by each algorithm ( # opt) over the set 

f these 227 instances. None of them is able to compete with the 

esults obtained by CPLEX , although it must be noted that they 

equire smaller running times. 

.3. The bi-level MaxSum model 

As mentioned, Porumbel et al. (2011) proposed a combined 

odel between the MaxMin and the MaxSum problems. They con- 

idered the MaxMin objective function, subject to the MaxSum as 

 secondary objective, based on the fact that there is a large num- 

er of optimal solutions for the MaxMin, so we look for the best 

ne among them in terms of the MaxSum objective. Parreño et al. 

2021) support this point with a geometrical argument since they 

isclose that the MaxMin avoids the selection of very close ele- 

ents but can be at medium distances (not very far away from 

ach other), while the MaxSum favors the selection of points at a 

arge distance but permits very close elements, so in a way they 

omplement each other. The authors called it the Bi-level MaxSum 

roblem. 

Porumbel et al. (2011) designed a tabu search heuristic, 

ropAdd-TS , specifically for this problem, in which the method 

ries to maximize both objectives (being the MaxSum secondary). 

ince we consider the bi-level model as a very interesting one, we 

erform an experiment to evaluate how good this algorithm is in 

aximizing the sum of distances over the set of optimal solutions 

f the MaxMin, and at the same time the practical significance of 

he model. Note that, since we are applying heuristics, we cannot 

uarantee the optimality, and therefore what we do to evaluate the 

uality of this method, is to compare it with a previous heuris- 

ic. In particular, we run the GRASP with Path Relinking, GPR by 

esende et al. (2010) and the DropAdd-TS to solve our bench- 

ark set of instances. Although GPR only minimizes the MaxMin, 

e evaluate both objectives, MaxMin and MaxSum, in its output 

olution. We do the same for the output of the DropAdd-TS . 
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Fig. 6. MaxSum percentage improvement of DropAdd-TS with respect to GPR . 
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To perform a fair test about the ability of the DropAdd-TS 
o find good solutions in terms of the MaxSum, we only consider 

he instances in which both methods obtain the same value of 

he MaxMin objective. Fig. 6 shows the percentage improvement 

 % de v ) of the DropAdd-TS MaxSum value with respect to the

PR MaxSum value. This figure shows a boxplot of the average per- 

entage deviations in each instance set. Their positive values indi- 

ate that DropAdd-TS always obtains a better (larger) sum of dis- 

ances than GPR in all the instances in which both methods obtain 

he same MaxMin value. This confirms that the Bi-level model per- 

its to discriminate among solutions, selecting the best one over- 

ll. It also quantifies the relative contribution of the DropAdd-TS 
lgorithm with respect to the GPR , thus certifying its superiority. 

e believe that this new model brings new research opportunities, 

ince it clearly deserves to be further studied. 

. Conclusions 

In the early period (1980–20 0 0) two mathematical models 

ere proposed to capture the notion of diversity, the MaxSum and 

axMin, and simple heuristics were applied to solve these models 

n short computational times. On the other hand, in this decade 

nly small instances were considered. In the following decade, that 

e called the expansion period , the three main open problems 

t that time were approached. In particular, researchers consider 

ther models to include different aspects of diversity, they intro- 

uce larger instances that pose a challenge to simple heuristics, 

nd apply complex metaheuristics to efficiently solve the problems. 

During the last decade, called the development period (2010 

 to now), researchers have been mainly working on the lines 

roposed in the previous decade (described in Section 3 ). This is 

hy we call it the development period because it intensifies the 

esearch over the known models (collected in Table 4 ), without 

roposing new ones. Authors limit themselves to the strict compe- 

ition among methods, without extending the boundaries that cur- 

ently define the field. We want to give credit to them because the 

ompetition among methods is now very hard, and the proposed 

ethods both exact and heuristics are very sophisticated, but we 

elieve that there is still some work to do on expanding the area. 

n the same way that heuristic methods require intensification and 

iversification for an efficient exploration of the solution space, we 

elieve that the scientific methodology requires to revisit the mod- 

ls and problems to improve solving methods, but also to propose 

nd explore new models to approach in a more realistic way the 

omplexity of real problems, connecting in this way the area with 

elated fields of knowledge. 

Considering the characteristics of the solutions obtained by the 

ifferent models, the most important conclusions are: 
811 
• The MaxSum and MaxMinSum provide similar solutions in 

terms of their geometrical location, since they select points 

close to the borders of the space, and with no points in the cen- 

tral region. Thus, it seems quite artificial the use of this latter 

complicated model. These models may select a few elements 

that are very close to each other. They reflect what we usually 

understand as dispersion . 
• The MaxMin model generates solutions with a different struc- 

ture than the MaxSum. It usually obtains equidistant points, 

and it does not avoid to select points in the central part. This 

mathematical formulation induces representativeness , more 

than dispersion. 
• The MinDiff only seeks for inter-distance equality ( equity ) 

among the selected points, and ignores how large or small 

these distances are, thus neglecting diversity or dispersion, 

which could be an issue in many contexts. 

.1. Open problems 

We finish our review pointing to potential new areas that, in 

ur opinion, deserve the attention of researchers. 

It is shown in this review that for every diversity model, many 

euristics have been proposed, but only a few exact methods , if 

ny. In spite of being the most studied model, we can only solve 

o optimality medium size instances for the MaxSum. The study 

f valid inequalities to strength mathematical models is nowadays 

 well established technique; however, it has not been applied to 

iversity models yet, with the exception of the MaxMin (with ex- 

ellent results). The adaptation of these techniques to the diver- 

ity problems, including the polyhedral study of their feasible re- 

ions, may lead to significant progress in this field. On the other 

and, considering that the MaxMin exact methods are very effi- 

ient, the challenge is now to design powerful metaheuristics that 

an obtain the already known optimal solutions in short running 

imes. 

In the last few years, constrained models have emerged as a 

atural extension of the classic ones to adapt diversity to real situ- 

tions. Cost or capacity, that are common elements in many other 

ocation models, have been largely ignored in diversity models. In 

ur opinion, their study in this context has just started, and we 

ill witness important developments in these lines. 

The two equity models proposed so far, MaxMinSum and Min- 

iff, present drawbacks that discourage their use as they are 

ormulated now. However, we believe that the concept of eq- 

ity may find its realm in Operations Research, but only requires 

o be better formulated. As a matter of fact, in facility loca- 

ion problems, there is a vast literature of equity measures. The 

i-level formulation, recently considered for the MaxMin, may 

ell be a good way to overcome the limitations of their initial 

ormulations. 

Although many papers on diversity mention some applications , 

uch as biological preservation or obnoxious location, they usually 

o not elaborate on them. In fact, early papers pay more attention 

o describe the applications and connect solving methods with real 

roblems (see for example Glover et al., 1995 ), but now most of 

he research in the field concentrates on the comparison among 

euristics, solving instances artificially generated to pose a chal- 

enge to them. In line with the Operations Research perspective, 

e would suggest to connect models and solving methods with 

he applications that originated them, and to incorporate into the 

odels and instances the specific characteristics of the applica- 

ions. In our view, that would create many research opportunities, 

nd what is more important, would transfer knowledge between 

heoretical research to real-life problems. 
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