
Computers and Operations Research 91 (2018) 1–12

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Tabu search for the dynamic Bipartite Drawing Problem

Rafael Martí a , ∗, Anna Martínez-Gavara

a , Jesús Sánchez-Oro

b , Abraham Duarte

b

a Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
b Department Computer Sciences, Universidad Rey Juan Carlos, Spain

a r t i c l e i n f o

Article history:

Received 14 August 2017

Revised 27 October 2017

Accepted 30 October 2017

Available online 1 November 2017

Key Words:

Graph drawing

Incremental drawing

Bipartite graphs

Dynamic representations

a b s t r a c t

Drawings of graphs have many applications and they are nowadays well-established tools in computer

science in general, and optimization in particular. Project scheduling is one of the many areas in which

representation of graphs constitutes an important instrument. The experience shows that the main qual-

ity desired for drawings of graphs is readability, and crossing reduction is a fundamental aesthetic cri-

terion to achieve it. Incremental or dynamic graph drawing is an emerging topic in this context, where

we seek to preserve the layout of a graph over successive drawings. In this paper, we target the edge

crossing reduction in the context of incremental graph drawing. Specifically, we apply a mathematical

programming formulation and several heuristic methods based on the tabu search methodology to solve

it. In line with the previous paper on this topic, we consider bipartite graphs in our experimentation.

The extensive computational experiments with more than 10 0 0 instances show the superiority of our

proposals in both, quality and computing time.

© 2017 Elsevier Ltd. All rights reserved.

1

a

G

p

n

h

r

t

G

o

f

o

f

c

o

b

p

i

t

G

D

h

p

q

t

g

t

c

p

o

r

t

c

p

1

d

A

i

h

0

. Introduction

Information systems are nowadays commonly represented with

 drawing, which makes them easier to interpret and understand.

raphs are the basic modeling unit in a wide variety of areas, like

roject management, production scheduling, line balancing, busi-

ess plans or software visualization. This is why graph drawing

as become an important research area, with a large number of

elated publications. We refer the reader to the book by Di Bat-

ista et al. (1999) for a survey on graph drawing techniques. In

ibson et al. (2012) and Beck et al. (2016) more recent studies

n drawing conventions, models and aesthetic criteria can also be

ound.

The selection of a measure or criterion to evaluate the quality

f a graph drawing is somehow controversial given the many dif-

erent approaches to this problem. However, the number of edge

rossings is a widely-admitted criterion for evaluating the quality

f a drawing. As stated by Carpano (1980) , the fewer crossings the

etter the drawing. Since this seminal work, many authors have

roposed crossing minimization methods to improve the readabil-

ty of the drawing. In particular, Garey and Johnson (1983) proved

hat the problem of minimizing the number of crossings is NP-
∗ Corresponding author.

E-mail addresses: Rafael.Marti@uv.es (R. Martí), gavara@uv.es (A. Martínez-

avara), jesus.sanchezoro@urjc.es (J. Sánchez-Oro), Abraham.Duarte@urjc.es (A.

uarte).

A

w

T

d

t

A

ttps://doi.org/10.1016/j.cor.2017.10.011

305-0548/© 2017 Elsevier Ltd. All rights reserved.
ard, and Purchase (2002) proved it to be one of the most im-

ortant measures among seven aesthetic metrics to evaluate the

uality of a graph drawing. This author performed a thorough aes-

hetic analysis of graph drawings produced by traditional layout al-

orithms, where crossing reduction emerged as a key objective.

Jünger and Mutzel (1997) presented several exact and heuris-

ic algorithms for crossing minimization in bipartite graphs (also

alled 2-layered straight-line hierarchies). In particular, they com-

ared the results obtained by fixing the ordering of the vertices in

ne layer and moving only the vertices in the other layer with the

esults of solving the general problem of moving (reordering) all

he vertices in the graph. The authors also proposed a mathemati-

al programming formulation to the general crossing minimization

roblem that we adapt in this paper to the dynamic case.

.1. Previous studies on the dynamic problem

One of the most challenging areas in graph drawing is the one

evoted to the so-called dynamic or incremental representations.

s mentioned in Diehl and Görg (2002) , in dynamic graph draw-

ng we have to compute the layout of a graph evolving over time.

 graph is modified by adding and deleting vertices and edges and

e have to represent both, the original and the resulting graph.

he drawing of the new graph, after the modifications, as an in-

ependent problem (i.e., from scratch) would be inefficient, since

he graph has been slightly modified from the original drawing.

s pointed out by Eades et al. (1991) , the user has built up a

https://doi.org/10.1016/j.cor.2017.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.10.011&domain=pdf
mailto:Rafael.Marti@uv.es
mailto:gavara@uv.es
mailto:jesus.sanchezoro@urjc.es
mailto:Abraham.Duarte@urjc.es
https://doi.org/10.1016/j.cor.2017.10.011

2 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

Fig. 1. Dynamic graph drawing illustration.

c

d

b

o

s

a

o

D

p

s

s

o

p

s

t

1

M

a

p

t

a

n

a

p

i

u

m

a

s

w

d

w

(

u

l

t

i

g

l

i

C

(

g
mental map when reading the original drawing, so he or she ex-

pects the new graph to be represented in a similar way (layout)

than the original one. This is why researchers in the area (see for

example Branke, 2001, Martí 2001), established that it would be

advantageous to minimize the effort of the user to become familiar

with a graph, i.e., to build the mental map. Therefore, minimizing

the changes between the original and the new graph is a desired

objective in dynamic graph drawing.

As it is well-known in this field, there are many different

paradigms for graph drawing, being probably orthogonal and hi-

erarchical the most popular ones. Special attention therefore de-

serves the paper by Görg et al. (2004) , where drawing sequences of

orthogonal and hierarchical graphs are studied. In this latter case

of hierarchical graph, they proposed a way to capture the idea of

preserving the mental map. Specifically, considering that the or-

dering of vertices in each layer is responsible for the number of

edge crossings, Görg et al. (2004) considered to preserve the rela-

tive order of the original vertices in the corresponding layer. Martí

and Estruch (2001) proposed independently the same criterion to

reflect the idea of stability across drawings: keep the relative or-

dering among the common vertices. These authors also proposed

exact and heuristic methods to obtain solutions to this hard op-

timization problem. We follow these two works in our approach,

and focus in this paper on preserving the relative order of the orig-

inal vertices when drawing the new graph.

Di Battista et al. (1999) used the term incremental construction

in the context of planar graphs. Martí and Estruch (2001) intro-

duced the term incremental graph drawing to describe their prob-

lem on 2-layered graphs. Other authors, such as Branke (2001) and

Görg et al. (2004) , used the term dynamic graph drawing to re-

fer to the same type of problems. We propose to call this prob-

lem of incremental or dynamic edge crossing minimization in

2-layered graphs, simply as Dynamic Bipartite Drawing Problem

(DBDP). Several algorithms were developed to handle dynamic

graphs. For example, Diehl and Görg (2002) , Kumar and Garland

(2006), and Sallaberry et al. (2012) presented algorithmic tech-

niques in the context of clustering dynamic graphs. Martí and Es-

truch (2001) proposed an exact procedure to target this NP-hard

problem based on the branch and bound methodology, which ex-

plores the set of solutions (permutations of the vertices in each

layer) with the so-called search tree. This method provides the op-

timal solution for small size instances of up to 32 vertices. The

authors also proposed a heuristic based on Greedy Randomized

Adaptive Search Procedure (GRASP) to solve large size instances.

More recently, Burch et al. (2011) presented an eye tracking

study for evaluating the quality of node-link tree layout represent-

ing hierarchies. They concluded that radial representations are the

most space-efficient one, but they usually result in drawings that

are difficult to interpret. These authors recommended a traditional

tree-diagram with the root on the top, which is similar to bipar-

tite graphs considered in this paper. Additionally, Van den Eltzen

et al. (2013) developed an extension for Massive Sequence Views

with the aim of analyzing the temporal and structural aspects of

dynamic networks. This study allows the user to find anomalies

in the network and analyze temporal properties. More recently,

Burch et al. (2017) proposed a novel visualization technique for

graphs with considerably large number of time steps (more than

a thousand, as stated by the authors).

In this paper, we limit our attention to hierarchical graphs,

where vertices are arranged in layers (drawn in parallel lines)

and edges are drawn as straight lines. In line with Martí and Es-

truch (2001) , we consider the case of two layers (bipartite graphs),

where nodes and edges have been added to an original graph al-

ready drawn for crossing minimization. The problem is then to in-

sert the new nodes (and the corresponding edges) in the appro-

priate positions in order to minimize the total number of edge
rossings in the final graph. As mentioned above, the relative or-

er among the original nodes is kept. We compare our method,

ased on tabu search, with their GRASP algorithm on a large set

f instances, as well as with the optimal solution for small size in-

tances.

Note that our method can be applied to the general case of

 sequence of drawings, not only to the 2-step problem with an

riginal drawing and an incremented one. As a matter of fact, the

BDP can be easily extended to a sequence of n drawings by sim-

ly performing one-step optimization and then fix for the next

tep the new added nodes in the position obtained by the tabu

earch algorithm. Then, in the next step, we consider the new set

f nodes as those that can be moved, and the ones added in the

revious iterations as fixed that cannot be moved again. The next

ubsection shows an example of a sequence of drawings to illus-

rate the general application of our method.

.2. Dynamic graph drawing applications

We can find many applications of dynamic graph drawing in

anagement Science. In the case of general digraphs, Project Man-

gement is probably one of the most well-known areas where this

roblem finds a very useful application. It has been well document

hat many changes occur during the development of a large project

nd they have to be reflected in the associated graph or chart. Dy-

amic graph drawing is a demand of project managers who need

 stable sequence of drawings as the project evolves.

In the context of bipartite graphs, the well-known assignment

roblem provides interesting applications of dynamic graph draw-

ng. Fig. 1 illustrates a so-called affiliation network, where individ-

als and groups are represented with nodes, and edges represent

embership of individuals to that groups. Affiliation networks usu-

lly change during the time, since new groups and members are

ystematically added. Fig. 1 a shows the original graph in which

e can see that individuals 1 and 2 belong to group A, and in-

ividual 3 belongs to groups B and C. Fig. 1 b shows the same net-

ork at a later stage where some additions have been performed

nodes highlighted in gray). Specifically, we can see a new individ-

al, labeled as 5, belonging to group A. Additionally, a new group,

abeled as D, has also been included. Note that the edge from 5

o A creates 3 crossings in this new graph. It is worth mention-

ng that the new graph preserves the mental map of the original

raph since the original vertices have not been moved. The chal-

enge in this context is therefore to minimize the number of cross-

ngs while preserving the mental map.

Assignment problems find nowadays many applications in

omputer Science. For example, queries on online advertisement

 Antonellis et al., 2008) have to be represented as a sequence of

raphs for their analysis. In these bipartite graphs, the left layer

R. Martí et al. / Computers and Operations Research 91 (2018) 1–12 3

Fig. 2. Dynamic graph drawing sequence.

r

r

i

k

t

n

t

s

r

9

a

F

n

w

g

t

s

d

(

(

w

w

a

l

o

s

s

w

p

t

fi

(

m

d

m

o

t

s

(

f

Fig. 3. Examples of crossings.

2

t

G

|

i

e

π

t

n

i

i

o

v

t

o

M

v

t

w

epresents queries performed by users, while the right layer rep-

esents advertisements (ads). A link between a query and an ad

ndicates that a query has been used to reach a specific ad. This

ind of bipartite graphs are naturally dynamic, since users are con-

inuously doing queries, and new ads are included by the compa-

ies. However, it is recommended by data analyzers to maintain

he structure of the graph when new queries and ads are added,

o previously performed queries and old ads remain in the same

elative position.

Fig. 2 shows a sequence of query-advertisement graphs with

 original queries (numbered from 0 to 8) connected with 9

ds (numbered from 10 to 18). The first drawing in the left of

ig. 2 shows the original 18 vertices with black circles where a

ew query and two ads are added (nodes 9, 19, and 20 represented

ith white circles). This drawing has 80 edge crossings.

The left drawing in Fig. 2 is optimized according to the dynamic

raph drawing problem (i.e., by relocating the new three nodes in

he position that minimizes the number of crossings while pre-

erving the relative position of the original nodes), resulting in the

rawing next to it with 67 edge crossings. In the third drawing

starting from the left) two new vertices are added to the graph

vertex 10 representing a query and vertex 22 representing an ad),

hile the vertices added in the previous step are now represented

ith black color since they are now fixed and cannot be moved

nymore. This drawing has 111 cuts. To simplify the notation, the

abel of the vertices in the first layer is always smaller than the

nes in the second layer, so node renumbering is made on con-

ecutive drawings. Finally, in the last drawing (the one in the right

ide of Fig. 2) the algorithm is executed again obtaining a drawing

ith 101 cuts.

In this paper, we first adapt the linear integer formulation pro-

osed for the Bipartite Drawing Problem (Jünger and Mutzel, 1997)

o the dynamic variant considered here (Section 2). Then, we

rst describe the previous heuristic method for this problem

 Section 3), and describe our algorithm based on the tabu search

ethodology (Section 4). In particular, we consider a greedy ran-

omized construction with a short-term tabu search improvement

ethod. We also consider several hybridizations of these method-

logies with a path relinking post-processing (Section 5). Our ex-

ensive experimentation with more than 10 0 0 instances shows the

uperiority of this proposal with respect to the previous method

 Section 6). The paper ends with the associated conclusions and

uture works (Section 7).
x

. Mathematical formulation

Jünger and Mutzel (1997) proposed the following linear in-

eger formulation of the Bipartite Drawing Problem (BDP). Let

 = (V 1 , V 2 , E) be a bipartite or 2-layered graph, with | V 1 | = n 1 and

 V 2 | = n 2 . A drawing D (BDP solution), is determined by the order-

ng π1 of V 1 , and the ordering π2 of V 2 , and it is denoted in math-

matical terms as D = (G , π1 , π2). The ordering π1 (symmetrically

2) assigns a distinct integer from 1 to n 1 (symmetrically to n 2)

o each node v ∈ V 1 (w ∈ V 2). For the sake of simplicity, we de-

ote with π the ordering of all vertices of the graph. The authors

ntroduced the binary variable x ik that takes the value 1 if vertex

 precedes vertex k in the ordering of V 1 (π1 (i) < π1 (k)), and 0

therwise. Symmetrically, for a pair of vertices l, j ∈ V 2 , the binary

ariable y lj takes the value 1 when l precedes j (π2 (l) < π2 (j)).

As shown in Fig. 3 , a crossing between the edges (i, j) and (k, l)

akes place when π1 (i) < π1 (k) and π2 (l) < π2 (j) (see Fig. 3 a),

r π1 (i) > π1 (k) and π2 (l) > π2 (j) (see Fig. 3 b). Jünger and

utzel (1997) introduced the binary variable c ijkl that takes the

alue 1 when a crossing between these two edges occurs. Note

hat constraints (1) and (2) below force c ijkl to take the value 1

hen the variables x ik and y lj indicate a crossing.

(BDP) Min

∑

(i, j) , (k,l) ∈ E
c i jkl

 ik + y l j − c i jkl ≤ 1 (i, j) , (k, l) ∈ E, i < k, j � = l
(1)

4 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

(

i

w

(

t

3

D

o

t

r

f

m

c

3

c

c

d

A

n

R

t

l

i

s

c

T

o

i

t

t

w

t

t

t

t

3

t

t

T

i

s

P

t

t

b

t

a

p

o

b

g

n

∈

x ki + y jl − c i jkl ≤ 1 (i, j) , (k, l) ∈ E, i < k, j � = l (2)

x i j + x jk + x ki ≤ 2 1 ≤ i < j < k ≤ n 1 (3)

y i j + y jk + y ki ≤ 2 1 ≤ i < j < k ≤ n 2 (4)

x i j + x ji = 1 1 ≤ i < j ≤ n 1 (5)

y i j + y ji = 1 1 ≤ i < j ≤ n 2

x i j , y i j , c i jkl ∈ { 0 , 1 } (6)

Constraints (3) and (4) are the so-called 3-dicycle con-

straints, originally proposed for the Linear Ordering Problem by

Grötschel et al. (1984) , and adapted by Jünger and Mutzel (1997) to

the Bipartite Drawing Problem. Note that in this formulation only a

fraction of the large number of 3-dicycle inequalities are included

(those with 1 ≤ i < j < k ≤ n). These authors solved the formu-

lation above with Cplex 4.0 and proposed a branch-and-cut ap-

proach. Within a time limit of 3600 seconds on a SUN ULTRA2

(167 MHZ) workstation they were able to solve to optimality small

instances (with up to 44 vertices).

Given a bipartite graph G = (V 1 , V 2 , E) and a drawing D = (G ,

π1 , π2), we can consider the addition of some nodes and edges

as described in the introduction, obtaining an incremental graph.

Martí and Estruch (2001) introduced it formally as IG = (IV 1 , IV 2 , IE)

where V 1 ⊆IV 1 , V 2 ⊆IV 2 , and E ⊆IE (| IV 1 | = m 1 , | IV 2 | = m 2). A drawing

ID = (IG , φ1 , φ2) is an incremental drawing of D = (G , π1 , π2) if the

original vertices (those in V = V 1 ∪ V 2) preserve their relative order-

ing. In mathematical terms:

ϕ i (v) < ϕ i (w) ∀ v , w ∈ V i ⇔ πi (v) < πi (w) i = 1 , 2 . (7)

For the sake of brevity, we denote with φ the ordering of the

whole set of vertices of the incremental graph.

We can easily adapt the mathematical formulation above to

tackle the dynamic Bipartite Drawing Problem. In the DBDP, the

relative position between each pair of original vertices (those in V)

is already set; therefore, the associated x -variables or y -variables,

depending on which layer they belong, can be fixed in the model.

Similarly, the c ijkl variables with (i, j), (k, l) ∈ E can be set as well.

(DBDP) Min

∑

(i, j) , (k,l) ∈ IE
c i jkl

x ik + y l j − c i jkl ≤ 1 (i, j) , (k, l) ∈ IE, i < k, j � = l
(8)

x ki + y jl − c i jkl ≤ 1 (i, j) , (k, l) ∈ IE, i < k, j � = l (9)

x i j + x jk + x ki ≤ 2 i, j, k ∈ I V 1 , i < j, i < k, j � = k (10)

y i j + y jk + y ki ≤ 2 i, j, k ∈ I V 2 , i < j, i < k, j � = k (11)

x i j + x ji = 1 1 ≤ i < j ≤ m 1 (12)

y i j + y ji = 1 1 ≤ i < j ≤ m 2 (13)

x i j = 1 i, j ∈ V 1 : π1 (i) < π1 (j) (14)

y i j = 1 i, j ∈ V 2 : π2 (i) < π2 (j)
x i j , y i j , c i jkl ∈ { 0 , 1 } (15)

Constraints (8) –(13) are straightforward adaptations of (1) –(6)

in the BDP formulation described above. New constraints (14) and
15) preserve the ordering of the original vertices. We have empir-

cally found that when (14) and (15) are included in this model,

e also need to include all the 3-dicycle constraints (now (10) and

11)) as in the original linear ordering formulation. We will apply

his model in our computational experience in Section 6 .

. Previous method

Martí and Estruch (2001) proposed a GRASP method for the

BDP. The GRASP methodology (Festa and Resende, 2011) is based

n the statistical sampling of the solution space. The randomiza-

ion component in the construction has the objective of obtaining

elatively diverse solutions, thus having candidate solutions in dif-

erent regions of the search space. These solutions are then sub-

itted to a local search post-processing to obtain the so-called lo-

al optima. We now describe in detail their heuristic method.

.1. Constructive method

The constructive method by Martí and Estruch (2001) starts by

reating a list CL of unassigned vertices which, at the beginning,

ontains all the vertices of the graph. The first vertex v is ran-

omly selected from all those vertices in CL with maximum degree.

s it is customary in GRASP, in subsequent construction steps, the

ext vertex v is randomly selected from a restricted candidate list,

CL , which consists of those vertices in CL with a degree of no less

han α times the maximum degree in CL . Vertex degree is calcu-

ated with respect to the partial subgraph under construction (i.e.,

n which only those vertices previously located are considered).

A selected vertex v is placed in its layer in the position pre-

cribed by the barycenter calculation (Di Battista et al., 1999), ex-

ept for the first vertex, which is placed in an arbitrary position.

he barycenter of a vertex v ∈ IV 1 , bc (v), is the arithmetic mean

f the current positions of the vertices w ∈ IV 2 adjacent to v (sim-

larly for the barycenter of a vertex in IV 2). If vertex v belongs to

he original graph (i.e., v ∈ V 1 ∪ V 2), then it can be allocated in posi-

ions that are feasible in terms of the original ordering π . In other

ords, this construction is creating an ordering ϕ that, as men-

ioned before, must verify that ϕi (v) < ϕi (w) for all vertices w such

hat π i (v) < π i (w). Then, v is placed in the closest feasible position

o bc (v) with respect to π i . The method finishes when all the ver-

ices have been allocated.

.2. Local search method

Each step of the improvement phase is based on a probabilis-

ic selection of the vertices, in order to place them in the position

hat produces the maximum reduction in the number of crossings.

he probability P(v) that a vertex v is selected is proportional to

ts degree, ρ(v) (i.e., higher degree vertices are more likely to be

elected):

 (v) =

ρ(v) ∑

u ∈ IV ρ(u)

Then, if v ∗ is the selected vertex, it is placed in the posi-

ion that produces the minimum number of crossings considering

hese three moves: to insert the vertex one position before the

arycenter (bc (v ∗) − 1), to insert the vertex at the barycenter posi-

ion (bc (v ∗) or bc (v ∗)), and finally to insert the vertex one position

fter the barycenter (bc (v ∗) + 1). As in the constructive method, the

rocedure is limited to perform feasible moves with respect to the

riginal ordering π . Therefore, if v ∗ ∈ V , then its new position must

e feasible according to constraint (7) of the mathematical pro-

ramming formulation (i.e., the relative position of v ∗ in the origi-

al drawing). The improvement phase finishes when all vertices v

 IV are considered, and no improving move is found.

R. Martí et al. / Computers and Operations Research 91 (2018) 1–12 5

4

c

o

e

h

w

c

n

4

i

a

s

i

t

i

a

m

t

v

m

o

(

d

i

s

c

t

g

l

h

s

t

c

g

v

p

t

l

≤

τ

a

p

v

p

d

p

4

c

(

t

s

=

⎣
⎢
⎢
⎢
⎡− 0 0 0 0

0 − 0 0 0

2 2 − 1 2

1 1 0 − 1

1 1 2 1 −⎦
⎥
⎥
⎥
⎤

=

− 2 1 0

4 − 1 0

2 0 − 0

2 2 1 −

Fig. 4. Number of edge crossing between pairs of nodes.

i

h

n

a

n

b

t

m

t

s

r

n

h

w

t

t

r

m

m

s

t

s

w

S

p

t

a

e

v

p

g

w

e

a

v

L

R

F

s

c

e

c

c

s

n

m

n

. A hybrid tabu search method

It must be noted that the construction method described above

omputes the positions of all vertices, original and added ones. In

ur view, it involves a relatively large computational effort, consid-

ring that in the DBDP the ordering among the original vertices

as to be kept. We therefore propose an alternative method in

hich we consider the vertices in V 1 and V 2 already allocated (ac-

ording to π1 , π2 respectively), and explore where to allocate the

ew vertices to complete the solution.

.1. Constructive method

The construction phase starts by considering the original draw-

ng D as a partial solution. In the constructive method by Martí

nd Estruch (2001) , a selected vertex is placed in the position pre-

cribed by the barycenter. We propose here a different approach;

n which we explore all the possible insertions for a selected ver-

ex.

Let NV be the set of new vertices (i.e, those added to the orig-

nal graph). In mathematical terms, NV = IV �V , where IV = IV 1 ∪ IV 2

nd V = V 1 ∪ V 2 . The constructive method basically selects an ele-

ent in NV and inserts it in the partial solution under construc-

ion (initially D). The procedure evaluates each candidate element

 with a greedy function g (v) in order to identify the best ele-

ents, and adds them to the Restricted Candidate List (RCL), where

ne of them will be randomly selected as it is customary in GRASP

 Resende and Ribeiro, 2001, Duarte et al., 2015). Initially, the candi-

ate list consists in the set of new vertices (CL = NV). In subsequent

terations, when a vertex v is selected and inserted in the partial

olution, the candidate list is updated by removing it (CL = CL �{ v }).

We propose the following greedy function to compute the in-

rement in the objective function if a vertex v ∈ CL is added to

he partial solution. We define C (v, p) as the number of crossings

enerated by inserting vertex v in position p (in its corresponding

ayer) in the partial solution. In other words, if the partial solution

as c crossings and we insert v in position p , we obtain a partial

olution with c + C (v , p) crossings. We examine all the positions

o insert v and select the best one, p ∗, minimizing the number of

rossings:

 (v) = C (v , p ∗) = min

p
C (v , p) , (16)

In the case that several positions have the same minimum C -

alue, the position p ∗ is selected at random among them. We com-

ute g (v) for all the candidate vertices (in CL), and build RCL with

hose that, according to the greedy function, achieve a relatively

ow increment in the objective function value, RCL = { v ∈ CL : g (v)

τ }, where

= min

v ∈ CL
g (v) + α

(
max
v ∈ CL

g (v) − min

v ∈ CL
g (v)

)
(17)

nd α is a search parameter that we will empirically set in our ex-

erimentation (see Section 6). The process continues until all new

ertices are included in the partial solution, thus obtaining a com-

lete solution that we call incremental drawing ID . This is the stan-

ard GRASP design in which, in short, we can say that we first ap-

ly greediness and then randomness.

.2. Tabu search

Instead of the standard local search improvement method, we

oupled our GRASP construction with a short term tabu search

TS). This methodology (Glover and Laguna, 1997) is a metaheuris-

ic that guides a local search procedure to explore the solution

pace beyond local optimality. One of the main components of TS
s the use of adaptive memory, which creates a flexible search be-

avior. Tabu search begins in the same way as ordinary local or

eighborhood search, proceeding iteratively from one solution to

nother. Each solution, called ID in our problem, has an associated

eighborhood N (ID), containing the solutions ID ’ ∈ N (ID) that can

e reached from ID by an operation called a move. We may con-

rast TS with a simple descent local search method that only per-

its moves to neighbor solutions that improve the current objec-

ive function value, ending when no further improvement is pos-

ible. On the contrary, TS permits moves that deteriorate the cur-

ent objective function value. Moves are chosen from a modified

eighborhood N

∗(ID), which is the result of maintaining a selective

istory of the states encountered during the search. In this section,

e limit ourselves to a short-term memory design, which specifies

o record recent information (usually solution or moves attributes)

o exclude certain solutions to become part of N

∗(ID). We refer the

eader to Glover and Laguna (1997) for further details about this

ethodology and successful applications.

Given a solution ID , we propose a neighborhood N (ID) based on

oving a vertex v ∈ NV to a new position. Note that we only con-

ider moving new vertices, since original vertices cannot change

heir relative position. In particular, we define move − (ID, v) to in-

ert vertex v in a previous position to its current one. In other

ords, if vertex u precedes v in its layer, this move swaps u and v .

imilarly, we define move + (ID, v) to insert vertex v in a posterior

osition to its current one (i.e., if vertex w succeeds v in its layer,

his move swaps v and w).

Given two vertices u and v in IV 1 (usually called the left layer)

nd a drawing ID , let l uv be the number of crossings between the

dges incident to u and the edges incident to v , when u precedes

 in its layer (i.e., when ϕ1 (u) < ϕ1 (v)). Note that this value de-

ends on the ordering of their adjacent vertices in IV 2 . Similarly,

iven two vertices u and v in IV 2 (usually called the right layer),

e define r uv as the number of crossing between their incident

dges when u precedes v (and r vu when v precedes u).

To record this information, we define two matrices L (left layer)

nd R (right layer) with the number of edge crossings between two

ertices as described above:

 = (l u v) ∀ u, v ∈ I V 1 (18)

 = (r u v) ∀ u, v ∈ I V 2 (19)

Fig. 4 shows these two matrices for the example depicted in

ig. 1 , considering the ordering shown there. Specifically, we can

ee in the graph drawing showed in Fig. 1 b that the number of

rossings between the edge incident to vertex 4, (4,B), and the two

dges incident to vertex 5, (5,A) and (5,D), is 1, since edge (4, B)

rosses edge (5,A). Therefore, l 45 = 1, as shown in matrix L (row 4,

olumn 5) of Fig. 4 . It is also easy to see in Fig. 1 b that if we

wap the position of these two contiguous vertices, we obtain a

ew drawing in which edges (4,B) and (5,A) are not crossing any-

ore but, on the other hand, edges (4,B) and (5,D) are crossing

ow. This is why, in Fig. 4 , matrix L (row 5, column 4) has l = 1.
54

6 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

C

Fig. 5. New solution after a move.

=

− 1 1 0

5 − 1 1

2 0 − 0

2 1 1 −

Fig. 6. Crossing matrix after the move.

f

s

t

u

m

s

m

s

c

v

t

e

i

q

a

t

s

o

i

s

m

i

w

a

o

a

i

s

t

i

(
Given a solution ID and a new vertex v ∈ IV 1 , we evaluate the

change in the number of crossings if move − (ID, v) is performed, as

mov e _ v alu e −(ID, v) = l u v − l v u , where u is the vertex immediately

preceding v in IV 1 . If mov e _ v alu e −(ID, v) > 0 , it indicates that this

is an improving move since the number of crossings of the edges

incident with these two vertices in the current solution l uv is larger

than the number of crossings of these edges if we swap the ver-

tices (l vu). In short, the move reduces the number of crossings. A

key aspect in this computation is that when we swap two consec-

utive vertices in a layer while keeping the ordering of the vertices

in the other layer fixed, the change in the total number of cross-

ing only depends on this amount. In mathematical terms, if C (ID)

is the total number of edge crossings of drawing (or solution) ID ,

and we perform move − (ID, v), the total number of crossings of the

resulting solution is:

 (ID) − mov e _ v alu e −(ID, v) . (20)

In a similar way, we evaluate move + (ID, v) with the expression

mov e _ v alu e + (ID, v) = l v w

− l w v , where w is the vertex immediately

after v in IV 1 . As in the previous case, if the move value is positive,

it indicates that if we apply the move, we will obtain a solution

with a lower number of crossings.

The move and the move value above were introduced for a ver-

tex in the left layer (IV 1) and, in a similar way, we now define

the move and its associated value for a vertex in the right layer

(IV 2). Given a solution ID , the neighbourhood N (ID) consists of all

the solutions that can be obtained by inserting a new vertex in a

previous or posterior position in its layer. Mathematically,

∀ v ∈ NV we consider mov e + (ID, v) and mov e −(ID, v)

and we select the best of them as the move to be performed. Note

that if v is the first vertex in its layer, we can only consider one

move for it (move + (ID, v)). Symmetrically, if it is the last one, only

move − (ID, v) can be considered. We implement the so-called best

strategy, in which we explore the neighborhood of a solution and

select the best solution in it.

In the example above (Fig. 1 b), we added two new vertices,

NV = {5, D }, to the graph shown in Fig. 1 a. Since both vertices

were in the last position of each layer respectively, it is only pos-

sible to move them to a previous position (i.e., only move − (ID , v)

are feasible). It is easy to compute their associated move values

as: mov e _ v alu e −(ID, 5) = −1 − 1 = 0 and mov e _ v alu e −(ID, D) = 0 −
1 = −1 . The neighborhood N (ID) is formed with these two moves

(inserting 5 in a previous position in the left layer, and inserting

D in a previous position in the right layer), and the best one is

move − (ID , 5) with a move value of 0, which indicates that the

number of crossings does not change if we apply it. In mathemati-

cal terms, the total number of crossings of the resulting solution is

computed as C(ID) − mov e _ v alu e −(ID, 5) = 4 , as we can confirm in

Fig. 5 .

Fig. 5 shows the resulting solution after applying move − (ID , 5),

where vertex 5 is now in position 4 in the left layer. An interesting

implementation detail of our algorithm is the update of the matri-

ces L and R , which store the number of crossings, after performing

a move. As mentioned above, the number of crossings computed

for the vertices in the left layer, stored in L , only depends on the

ordering of the vertices in the right layer. Then, since the vertices

in the right layer did not change their position when applying this

move, matrix L does not change. We only need to update matrix R .

Considering that we have moved two consecutive vertices, u

and v , in the left layer IV 1 , to update the matrix R we need to

check the vertices adjacent to them. Without loss of generality, as-

sume that initially u preceded v , and after performing the move

then v precedes u . Thus, for each vertex a adjacent to u , and each

vertex b adjacent to v , we have to increase r ab by one unit, and

decrease r by one unit (i.e., r = r + 1 and r = r − 1).
ba ab ab ba ba
In our example in Fig. 5 , v = 5 is in the left layer, so when per-

orming the move matrix L does not change. We have to add or

ubtract one unit to the elements in matrix R corresponding to ver-

ices incident to u = 4 and v = 5. B is the adjacent vertex to vertex

 = 4, and A and D the adjacent vertices to vertex v = 5. The new

atrix is the result of adding 1 to the elements r BA and r BD , and

ubtracting 1 to the elements r AB and r DB . Fig. 6 shows the new

atrix R . Note that only these four elements need to be updated.

Although moving an element to its consecutive position is

omehow limited, our neighbor is formed by all the solutions that

an be reached by moving any new element to the immediate pre-

ious or posterior position, to select the best of them. Therefore,

he size of the neighborhood is large enough to permit an efficient

xploration of the search space. Additionally, as shown above, mov-

ng continuous vertices permit a fast update of the information re-

uired to evaluate moves, and to compute the objective function in

n incremental way (see Eq. (20)).

We include a memory structure in the local search algorithm

o create a short-term tabu search method. In particular, when we

elect a new vertex v and move it, we record in tabu (v) the number

f the current iteration, in order to prohibit to move it in the next

terations. In this way, in a given iteration iter , we only permit to

elect a new vertex u for movement if the following condition is

et:

t er − tabu (u) > t enure (21)

here tenure is a search parameter specifying the number of iter-

tions that a tabu element cannot be selected. After these number

f iterations, the tabu status of u is released, and it can be selected

gain to be moved. As it is customary in tabu search, we mod-

fy the neighborhood described above by excluding from it those

olutions involving to move a tabu element. An important charac-

eristic of tabu search is that the best solution in the neighborhood

s always performed, even if it deteriorates the objective function

i.e., if the number of crossing increases). However, it is well doc-

R. Martí et al. / Computers and Operations Research 91 (2018) 1–12 7

u

s

m

5

t

i

g

o

s

i

t

t

s

n

a

c

o

a

d

“

t

d

l

s

c

g

s

t

t

S

t

g

m

e

a

s

g

t

i

s

a

s

t

h

l

(

b

o

d

g

s

p

l

e

h

t

i

t

b

t

i

c

i

t

b

t

t

γ

a

t

m

i

C

s

s

I

b

p

a

s

n

g

n

s

n

b

i

t

T

w

l

b

t

i

b

r

d

s

(

t

i

a

E
mented that over a medium to large number of iterations this

trategy permits to visit high-quality solutions. The tabu search

ethod terminates after a specific number of iterations.

. A path relinking post-processing

Path relinking (Glover and Laguna, 1997) generates new solu-

ions by exploring trajectories that connect elite solutions by start-

ng from one of these solutions, called an initiating solution , and

enerating a path in the neighborhood space that leads toward the

ther solutions, called guiding solutions . This is accomplished by

electing moves that introduce attributes contained in the guid-

ng solutions. Note that in standard local search, the move selec-

ion in the neighborhood is typically guided by the objective func-

ion (i.e., the method usually explores the entire neighborhood in

earch for an improving move). In path relinking (PR) however, the

eighborhood of a solution is limited to the solutions that contain

ttributes present in the guiding solution. Therefore, although we

onsider the objective function when selecting a move, the primary

bjective is to get closer to the guiding solution. PR subordinates

ll other considerations to the goal of choosing moves that intro-

uce the attributes of the guiding solutions, in order to create a

good attribute composition” in the current solution.

The approach may be viewed as an extreme strategy that seeks

o incorporate attributes of high quality solutions, by creating in-

ucements to favor these attributes in the moves selected. In evo-

utionary terms, we can call this strategy a combination method ,

ince the final output is a set of solutions (those in the path) that

an be viewed as the result of combining the initiating and the

uiding solutions (called reference solutions).

Path relinking gives a natural foundation for developing inten-

ification and diversification strategies. Intensification strategies in

his setting typically choose reference solutions to be elite solu-

ions that lie in a common region or that share common features.

imilarly, diversification strategies, based on path relinking charac-

eristically, select reference solutions that come from different re-

ions or that exhibit contrasting features. Diversification strategies

ay also place more emphasis on paths that go beyond the refer-

nce points.

Laguna and Martí (1999) adapted PR in the context of GRASP

s a form of intensification. The relinking, in the context of multi-

tart algorithms, consists in finding a path between two solutions

enerated with the constructive method and, eventually, improve

he solution in the path with a local search. Therefore, the relink-

ng concept has a different interpretation within GRASP, since the

olutions are not originally linked by a sequence of moves. The

uthors, however, kept the original name of the methodology in

pite of the fact that the two solutions are linked for the first

ime. Resende et al. (2010) explored different implementations to

ybridize these two methodologies:

• Greedy path relinking. In this method, the moves in the path

from a solution to another one are selected in a greedy fashion,

according to the objective function value.
• Greedy randomized path relinking. In this variant, the method

creates a candidate list with the good intermediate solutions

and randomly selects among them.
• Truncated path relinking. In this application of PR, the path be-

tween two solutions is not completed. It is applied, for exam-

ple, in problems where good solutions are found close to the

end points (original solutions) in the path.

In this paper, we consider the greedy randomized path re-

inking that has given excellent results in previous methods

 Resende et al., 2010). Let I D x = (IG, ϕ

x
1
, ϕ

x
2
) and I D y = (IG, ϕ

y
1
, ϕ

y
2
)

e two solutions of our problem. They are incremental drawings
f the original drawing D = (G , π1 , π2). The path relinking proce-

ure starts with the first solution ID x , called initiating solution , and

radually transforms it into the second solution ID y , called guiding

olution , by selecting a new element in NV and inserting it in the

osition that occupies in ID y . Once a new element has been se-

ected and inserted, we do not select it again. When all the new

lements have been selected, the method finishes, since the path

as reached the guiding solution.

Let ID 0 = ID x be the initiating solution in the path. As men-

ioned, we consider for each new vertex, v ∈ CL = NV , its insertion

n its position according to the guiding solution (ϕ

y
1
(v) if v is in

he left layer, and ϕ

y
2
(v) if it is in the right layer). Let pr (ID 0 , v)

e the move value (change in number of crossings) of performing

his insertion in ID 0 . If C (ID 0) is the total number of edge cross-

ngs of the initial solution in the path, and we move v as indi-

ated above, the number of crossings of the resulting solution ID 1

s C (ID 1) = C (ID 0) − pr (ID 0 , v). Then, if pr (ID 0 , v) > 0, it indicates that

his is an improving move.

We compute pr (ID 0 , v) for all the candidate vertices (v ∈ CL), and

uild the restricted candidate list RCL with those that according to

he greedy function pr (ID 0 , v) achieve a relatively large reduction in

he number of crossings: RCL = { v ∈ CL : pr (ID 0 , v) ≥ γ } where:

= min

v ∈ CL
pr (I D 0 , v) + β

(
max
v ∈ CL

pr (I D 0 , v) − min

v ∈ CL
pr (I D 0 , v)

)
(22)

nd β is a search parameter indicating the degree of randomiza-

ion that we want to include in the process. Following the GRASP

ethodology, we randomly select a vertex v ∗ in RCL and move

t, obtaining ID 1 . Then, we update the candidate list of vertices,

L = CL �{ v ∗}, and repeat the steps above replacing ID 0 with ID 1 . In

hort, we build a new RCL from which to select a vertex whose in-

ertion will result in ID 2 . In this way, we obtain a path of solutions,

D 0 , ID 1 , ID 2 , and so on, up to we reach the guiding solution. The

est solution found in the path is returned as the output of this

ath relinking step.

Fig. 7 shows a path constructed between the initial solution ID x

nd the guiding solution ID g . The original nodes (that must pre-

erve their relative ordering) are depicted in white, while the new

odes, which can be moved, are represented in light gray, medium

ray, and black. The number under each solution represents its

umber of crossings. Starting in ID x , the procedure generates the

olutions that can be reached from it by locating one of the new

odes in its position in ID g . In particular, solution ID 1 is generated

y inserting the light gray node (the one in the first layer of ID x)

n the first position, while solution ID 2 is generated after the inser-

ion of the medium gray node in the first position of second layer.

he black node is located at the same position in ID x and ID g , so

e do not consider to move it. At the next step, the method se-

ects one of the best solutions to continue the search. In this case,

oth ID 1 and ID 2 exhibit the same number of crossings, so one of

hem is selected at random, say ID 2 . The search continues generat-

ng solutions ID 3 and ID 4 by locating the light gray node and the

lack one at their ID g position, respectively. Finally, ID g is directly

eached from ID 3 , thus ending the path. The best solution found

uring the search (ID 3) is returned as the output of this path con-

truction.

Path relinking operates on a set of solutions, called elite set

ES), constructed with the application of a previous method. In

his paper, we apply the hybrid tabu search algorithm described

n Section 4 to build ES with the best 10 solutions found. Then, we

pply the PR described in this section to all pairs of solutions in

S, returning the best solution found as the output of the method.

8 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

Fig. 7. Path generation between initial solution ID x and guiding one ID g .

i

S

v

a

c

e

a

t

b

g

c

t

s

h

n

c

a

6

k

m

r

s

o

(

r

1

C

a

t

t

m

A

i
6. Computational experiments

The computational experiments described in this section were

performed to test the effectiveness and efficiency of the procedures

discussed above. The previous GRASP method, called prev_GRASP,

by Martí and Estruch (2001) , and our new procedures were im-

plemented in Java SE 8, and the experiments were conducted on a

computer with a 2.8 GHz Intel Core i7 processor with 16GB of RAM.

In particular, we report the results obtained with our construc-

tive method, tabu search, and path relinking post-processing. Addi-

tionally, the mathematical programming formulation described in

Section 2 was solved with Gurobi. 1

We employed two sets of instances in our experimentation. The

first one contains 120 instances generated according to Martí and

Estruch (2001) , while the second one has 1000 instances and was

proposed by Stallmann et al. (2001) . In line with previous papers,

we generated the first set of instances based on the original num-

ber of vertices in each layer, (n 1 , n 2), and the graph density d in the

interval [0.065, 0.175]. Additionally, as in Martí and Estruch (2001) ,

the instances are incremented adding vertices and edges up to pre-

established numbers. These numbers are calculated as a percent-

age δ of the quantities in the original graph (| IV i | = δ| V i | for each

i = 1, 2, and | IE | = δ| E |). We consider the following values in our

experiments:

• (n 1 , n 2) = (25, 25), (25, 50), (50, 25), and (50, 50).
• d = 0.065, 0.175, and 0.300.
• δ = 1.2 and 1.6.

The generator to create our first set of instances is described

in Martí and Estruch (2001) . For each vertex u in the left layer,

an edge to a randomly chosen vertex v in the right layer is in-

cluded. Additional edges are added by randomly choosing two ver-

tices of left and right layer. The process is repeated until all addi-

tional edges have been included to meet the desired density. Once

the original graph has been created, we applied the well-known

barycenter algorithm (Di Battista et al., 1999) to obtain the origi-

nal drawing. Then, it is incremented by adding vertices and edges

randomly up to the pre-established numbers. For each new vertex
1 http://www.gurobi.com/ .

t

n NV 1 an edge to a randomly chosen vertex in IV 2 is included.

imilarly, for each new vertex NV 2 an edge to a randomly chosen

ertex in IV 1 is included. This guarantees that each new vertex has

 degree of at least one. Additional edges are added by randomly

hoosing two vertices up to the desired number.

The second set contains 10 0 0 instances obtained with the gen-

rator described in Stallmann et al. (2001) , which is publicly avail-

ble. 2 The size of the first layer is in the range [10, 377], while

he size of second layer ranges from 10 to 190 nodes. The num-

er of edges is in the range [20, 950]. These instances are bipartite

raphs, and we convert them in incremental bipartite graphs by

onsidering a percentage of their nodes as the new nodes added

o the original graph. In this way, we kept the structure and den-

ity of the instance. In particular, for each original instance we

ave generated three new instances obtained by selecting as new

odes the 10%, 20%, and 30% percent of the original nodes. To fa-

ilitate future comparisons, these instances are publicly available

t www.optsicom.es/dbdp .

.1. Preliminary experimentation

First experiments are devoted to select the best values of the

ey search parameters of the algorithms to configure our final

ethod. We perform these experiments on a subset of 22 rep-

esentative instances in the first set, and we do not include in-

tances of the second set. In this way, we avoid over-training of

ur method in the final comparison with the previous method

prev_GRASP). For each experiment, we report the following met-

ics to measure the merit of each procedure when generating

0 constructions for each instance: Average number of crossings,

ross. , computing time in seconds, Time (s), average percent devi-

tion from the best solution found in the experiment, Dev (%), and

he number of best solutions found in the experiment, #Best .

The first experiment is intended to select the best value of

he parameter α to determine the greediness of the constructive

ethod. We have tested the following α values: 0.25, 0.50, 0.75.

dditionally, we tested a variant (labelled RND) in which at each

teration α is randomly selected between 0 and 1. Table 1 reports

he solutions of this experiment.
2 https://people.engr.ncsu.edu/mfms/Software/SBG _ Software/index.html .

http://www.gurobi.com/
http://www.optsicom.es/dbdp
https://people.engr.ncsu.edu/mfms/Software/SBG_Software/index.html

R. Martí et al. / Computers and Operations Research 91 (2018) 1–12 9

Table 1

Constructive method on training instances with different

α values.

α value Cross. Time (s) Dev (%) #Best

RND 89515.23 40.84 0.20% 10

0.25 89741.32 38.23 0.93% 3

0.50 89518.27 39.57 0.36% 7

0.75 89409.95 40.16 0.38% 6

Table 2

Tabu search with different stopping values.

MaxIter Cross. Time (s) Dev (%) #Best

10 89333.82 41.68 0.08% 17

25 89330.05 40.53 0.03% 19

50 89326.73 41.91 0.00% 21

100 89335.14 42.96 0.09% 19

w

t

g

o

w

p

m

t

i

w

w

r

p

w

w

v

d

c

i

I

t

t

w

t

t

t

a

t

t

l

t

I

b

n

t

t

p

s

i

s

d

s

Table 3

Tabu search with different stopping values.

β Cross. Time (s) Dev (%) #Best

RND 89302.77 52.26 0.03% 15

0.25 89307.45 52.32 0.03% 18

0.50 89305.14 52.33 0.01% 14

0.75 89312.32 52.47 0.02% 14

T

p

t

T

a

t

t

e

6

o

t

s

S

s

o

f

a

o

f

t

t

e

T

d

c

T

t

t

(

o

e

r

1

o

s

T

o

c

p

m

s

w

w

(

i

r

t

T

0

o

m

The values in Table 1 show that the best results are obtained

hen considering α at random in each iteration (first row in the

able), which favors the randomness part of the algorithm, thus

enerating more diverse solutions.

In the second preliminary experiment, we test the effectiveness

f the tabu search method. In particular, we generate 10 solutions

ith the best constructive method identified above, and then ap-

ly the tabu search algorithm to them. We stop the tabu search

ethod after 50 iterations without improvement (we will study in

he next experiment the influence of this parameter). In this exper-

ment, we consider several values of the tenure parameter. In line

ith previous tabu search experiments (Glover and Laguna, 1997),

e consider tenure = 5, 10, 15, and 20. We do not reproduce the

esults of this experiment to limit the extension of the paper. Ex-

erimentally, tenure = 5 provides the most effective variant since

ith this value the algorithm is able to match 55% of best solutions

ith an average percent deviation of 0.16%, while the other tenure

alues match less than 41% of best solutions and exhibit percent

eviations larger than 0.22%.

In the experiment above, we stopped the tabu search after a

ertain number of iterations without improvement, MaxIter , which

s a standard way to finish a method. Specifically, we consider Max-

ter = 50 consecutive iterations without improvement. We extended

his experiment and tested different values of MaxIter to stop the

abu search. Table 2 shows the results of this extended study in

hich we can see that with 50 iterations without improvement

he method is able to achieve the best results.

An important question when applying tabu search is the con-

ribution of the memory structure to the quality of the final solu-

ion. In other words, we create our tabu search method by adding

 memory structure (a tabu list) to a standard local search. We can

hen consider what would be the result if, instead of applying the

abu search to the 10 constructed solution, we apply to them the

ocal search that only performs improving moves. The results of

his experiment confirm the contribution of the memory structure.

n particular, the version with local search exhibits a lower num-

er of best solutions (11) than the tabu search version (21) . From

ow on, we label as TS our method that first constructs 10 solu-

ions (with the random variant), and then improves them with the

abu search method with MaxIter = 50 and tenure = 5.

In our last preliminary experiment, we test the path relinking

ost-processing. Specifically, we apply TS and collect the 10 best

olutions found (forming the elite set). Then, we apply path relink-

ng to all pairs in the elite set. Table 3 reports the solutions con-

idering the different values of the β parameter (between 0 and 1)

efining the restricted candidate list in this method.

Table 3 includes a variant in which the parameter is randomly

elected in each iteration (RND). If we compare the results in
able 3 with those in Table 2 , where path relinking was not ap-

lied, we can see that the average number of crossing (Cross.)

akes now lower values, showing the contribution of this method.

he results in this table indicate that there are small differences

mong the variants tested, being β = 0.25 the one which is able

o obtain the largest number of best solutions. We therefore select

his variant, simply labelled as TS + PR, to perform the competitive

xperiments below.

.2. Competitive testing

In the first experiment of this subsection, we test the ability

f the previous heuristic (prev_GRASP) and our TS + PR method

o match the optimal solutions of the problem. To this end, we

olve the mathematical programming formulation described in

ection 2 with Gurobi, for a maximum time of 1800 s in each in-

tance. Table 4 reports the individual results on the 22 instances in

ur training set, where the bold font indicates the best value found

or each instance. Note that when Gurobi finds the best value in

 running time lower than 1800 s we can certify the optimality

f the solution found. However, when a heuristic method outper-

orms Gurobi on an instance, we cannot assure that the best solu-

ion found is the optimal one.

Table 4 shows that Gurobi is able to obtain the optimal solu-

ion in 10 instances out of the 22 considered, although this method

xhibits a relatively long average computational time (1102.4 s).

he previous heuristic considered, prev_GRASP, is only able to pro-

uce one best solution in this experiment, although it is very fast

ompared with Gurobi (308 s, on average). Our heuristic method,

S + PR, obtains 12 best known solutions in an average running

ime of 41.9 s. Considering the average percentage deviations from

he best-known solution, the ranking of the methods is TS + PR

0.7%), prev_GRASP (3.3%), and Gurobi (3.3%).

We now compare these three methods on the entire first set

f 120 instances. As in the previous experiment, we limit the ex-

cution of the methods to a maximum of 1800 s. Additionally, we

eport two versions of our TS + PR method. The first one, in which

0 constructed solutions are improved with TS + PR, and the sec-

nd one, labeled TS(500) + PR, in which 500 solutions are con-

tructed and improved with TS + PR if the time limit allows it.

able 5 shows the results on the instances incremented on a 20%

f the original size (δ = 1.2), and Table 6 the results with those in-

remented on a 60% (δ = 1.6).

Results in Tables 5 and 6 confirm the superiority of our pro-

osal with respect to previous methods. As expected, the perfor-

ance of Gurobi quickly deteriorates when the size of the in-

tances increases. If we focus on the largest instances in Table 5 ,

ith δ = 1.2, TS + PR has an average percent deviation of 0.12%,

hich compares favorably with Gurobi (1.10%) and prev_GRASP

1.94%). Note additionally that TS + PR is the fastest method since

t only requires 292.30 s on average, while Gurobi and prev_GRASP

un for 1207.01 and 423.60 s respectively. Table 5 also shows

he result of our method run for more iterations. In particular,

S(500) + PR exhibits a remarkable average percentage value of

.08%, but it also requires the longest execution time (1516.66 sec-

nds on average). Results in Table 6 are in line with those com-

ented on Table 5 .

10 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

Table 4

Comparison among Prev_GRASP, tabu search with path relinking and gurobi.

prev_GRASP TS + PR Gurobi

n 1 n 2 d δ Cross. Time Dev Cross. Time Dev Cross. Time Dev

25 25 0.065 0.2 316 6.1 3.6% 305 0.4 0.0% 305 0.4 0.0%

25 25 0.065 0.6 1131 34.5 15.5% 1106 1.8 13.0% 979 237.7 0.0%

25 25 0.175 0.2 4037 36.9 2.9% 3927 0.4 0.1% 3922 1.4 0.0%

25 25 0.175 0.6 12,374 120.0 3.3% 11,982 3.8 0.0% 12,4 4 4 1800.6 3.9%

25 25 0.300 0.2 15,185 60.9 1.0% 15,067 0.6 0.2% 15,036 9.6 0.0%

25 25 0.300 0.6 40,538 252.2 2.2% 39,657 7.7 0.0% 41,705 1801.6 5.2%

25 50 0.065 0.2 2218 27.8 2.1% 2185 0.7 0.6% 2173 1.5 0.0%

25 50 0.175 0.2 20,112 201.7 1.6% 19,861 2.1 0.3% 19,794 193.3 0.0%

25 50 0.300 0.2 64,113 495.3 1.8% 63,312 4.8 0.5% 62,986 1802.3 0.0%

25 50 0.300 0.6 175,764 519.0 0.0% 176,909 52.8 0.0% 184,788 1831.6 4.5%

50 25 0.065 0.2 2230 42.2 2.8% 2191 0.8 1.0% 2169 1.6 0.0%

50 25 0.065 0.6 6459 267.3 10.8% 5828 12.4 0.0% 6155 1801.0 5.6%

50 25 0.175 0.2 20,265 228.9 2.2% 19,890 2.0 0.3% 19,831 336.2 0.0%

50 25 0.175 0.6 57,004 517.7 5.6% 54,004 31.3 0.0% 63,287 1802.4 17.2%

50 25 0.300 0.2 66,253 502.8 1.0% 65,593 4.4 0.0% 66,319 1802.0 1.1%

50 25 0.300 0.6 186,429 538.6 4.0% 179,282 58.6 0.0% 189,119 1805.3 5.5%

50 50 0.065 0.2 7859 297.3 2.9% 7664 3.9 0.4% 7637 3.5 0.0%

50 50 0.065 0.6 25,545 506.5 2.5% 24,933 67.0 0.0% 27,110 1802.8 8.7%

50 50 0.175 0.2 78,717 505.5 1.9% 77,253 14.3 0.0% 77,480 1802.7 0.3%

50 50 0.175 0.6 238,979 504.1 2.4% 233,326 209.3 0.0% 256,917 1808.6 10.1%

50 50 0.300 0.2 251,277 536.8 1.1% 248,454 26.1 0.0% 258,330 1806.3 4.0%

50 50 0.300 0.6 728,794 575.7 2.3% 712,459 416.7 0.0% 757,750 1800.3 6.4%

Avg. 91163.6 308.1 3.3% 89326.7 41.9 0.7% 94374.4 1102.4 3.3%

Table 5

Final comparison of best methods in the first set (δ = 1.2).

Algorithm Cross. Time (s) Dev (%) #Best #Opt

small size (n 1 + n 2 = 50)

Gurobi 6230.00 27.18 0.00% 15 15

prev_GRASP 6317.47 33.23 2.17% 0 0

TS(500) + PR 6232.20 48.76 0.10% 5 5

TS + PR 6234.33 8.15 0.16% 4 4

medium size (n 1 + n 2 = 75)

Gurobi 28522.20 781.71 0.24% 22 21

prev_GRASP 28776.57 228.98 2.52% 0 0

TS(500) + PR 28379.10 621.53 0.16% 9 1

TS + PR 28390.17 61.11 0.21% 2 0

large size (n 1 + n 2 = 100)

Gurobi 112572.27 1207.01 1.10% 6 5

prev_GRASP 111381.07 423.60 1.94% 0 0

TS(500) + PR 110214.33 1516.66 0.08% 7 0

TS + PR 110233.07 292.30 0.12% 3 0

Table 6

Final comparison of best methods in the first set (δ = 1.6).

Algorithm Cross. Time (s) Dev (%) #Best #Opt

small size (n 1 + n 2 = 50)

Gurobi 18553.53 1224.33 4.24% 5 5

prev_GRASP 18056.27 141.83 7.44% 0 0

TS(500) + PR 17459.13 1039.53 1.01% 10 0

TS + PR 17489.07 90.12 1.71% 2 0

medium size (n 1 + n 2 = 75)

Gurobi 84088.57 1808.00 7.50% 2 0

prev_GRASP 80917.97 409.31 5.15% 2 0

TS(500) + PR 78959.23 1718.27 0.27% 19 0

TS + PR 79161.07 386.90 0.61% 10 0

large size (n 1 + n 2 = 100)

Gurobi 343478.67 1891.89 8.70% 0 0

prev_GRASP 328878.53 532.43 3.86% 0 0

TS(500) + PR 322528.33 16 87.6 8 0.00% 15 0

TS + PR 322831.60 514.51 0.23% 0 0

Table 7

Final comparison of best heuristic methods in the second set of

instances.

Algorithm Cross. Time (s) Dev (%) #Best

small size

prev_GRASP 510.82 0.40 4.09% 119

TS + PR 497.77 0.09 2.03% 293

medium size

prev_GRASP 22742.99 18.83 4.69% 25.00

TS + PR 22394.12 7.80 0.06% 278.00

large size

prev_GRASP 87844.49 319.53 4.97% 6.00

TS + PR 85816.74 232.27 0.01% 344.00

s

i

f

w

s

t

T

t

w

t

m

i

b

s

m

b

S

p

p

i

s

t

i
The last two columns in these tables show the number of in-

stances in which the method is able to obtain the best solution

(#Best), and the number of instances in which we know that the

method matches the optimal solution (#Opt). In Table 5 , where we

only add a small fraction of new vertices, Gurobi is able to obtain
ome optimal solutions. Note that for the other instances reported

n this table, we do not know how far the heuristic solutions are

rom the optimal ones. In medium and large instances of Table 6 ,

here a larger fraction of new vertices is added to the original in-

tances, no method is able to certify the optimality of the solu-

ions.

We then applied the Wilcoxon test to compare prev_GRASP and

S + PR on the results reported in Tables 5 and 6 . This statistical

est answers the question: Do the two samples (solutions obtained

ith the methods) represent two different populations? The ob-

ained p -value < 0.001 confirms that there are significant perfor-

ance differences between these two heuristic methods.

We now perform our main experiment in the competitive test-

ng. In particular, we compare our best algorithm, TS + PR, with the

est previous heuristic, prev_GRASP, in the second set of 10 0 0 in-

tances. Note that this set of instances was not used to tune any

ethod, so this experiment tests the adaptability and scalability of

oth heuristics.

Table 7 shows the results of each algorithm over the

tallmann et al. (2001) set of instances. We can see that the com-

uting time of both algorithms are equivalent, although our pro-

osal is slightly faster. Notice that both algorithms were executed

n the same computer platform, and implemented by using the

ame programming language. If we analyze the quality of the solu-

ions generated by each algorithm, we can clearly see that TS + PR

s able to obtain the best solution in 915 out of 10 0 0 instances,

R. Martí et al. / Computers and Operations Research 91 (2018) 1–12 11

Fig. 8. Assignments of queries to advertisements.

Fig. 9. Assignment graph optimized with TS + PR.

w

T

b

1

i

s

f

o

i

i

T

o

f

p

a

t

(

m

(

a

i

e

c

i

7

d

l

t

t

h

t

l

i

o

c

w

p

O

a

t

t

a

c

a

s

i

m

t

n

t

a

i

o

t

t

s

i

r

2

r

A

“

M

s

d

c

R

A

B

B

B

B

C
hile prev_GRASP only reaches the best solution in 150 instances.

his difference is smaller in the case of small instances (with num-

er of vertices ranging from 21 to 57), where prev_GRASP finds

19 best solutions and TS + PR 293. However, in medium and large

nstances (with number of vertices ranging from 111 to 471), the

uperiority of TS + PR is evident, with a number of best solutions

ound with an order of magnitude larger than those in the previ-

us method. Furthermore, the overall average deviation of TS + PR

s close to 0, which means that in the 85 out of 10 0 0 instances

n which it is not able to obtain the best value, it is close to it.

his compares favorably with the overall deviation of prev_GRASP

f 4.58%. The p -value < 0.0 0 01 obtained in the Wilcoxon test per-

ormed between both algorithms confirms the superiority of our

roposal.

To complete the experimentation, we finally consider a real

pplication in an assignment graph. In particular, we target

he 2-layered graph of search queries on online advertisement

 Antonellis et al., 2008). The graph in Fig. 8 represents the assign-

ent of 24 original queries (in the left layer) to 25 advertisements

in the right layer), where three additional queries (25, 26, and 27)

nd three ads (Z, a, and b) have been added. It has 311 edge cross-

ngs.

We apply our TS + PR procedure to the graph in Fig. 8 with 311

dge crossings, and obtain the drawing shown in Fig. 9 with 210

rossings. Note that the relative ordering among the original nodes

s kept, thus helping the user to easily read the new graph.
. Conclusions

In this paper, we have considered the dynamic bipartite graph

rawing problem, also called incremental Bipartite Drawing Prob-

em in the literature. We propose new heuristic methods based on

he tabu search methodology. Our extensive computation shows

hat the proposed method is able to outperform the previous

euristic for this problem. It is worth mentioning an implementa-

ion detail of our method that makes it especially fast. In particu-

ar, the update of the objective function when a move is performed

s computed by means of two matrices, which store the number

f crossings for each pair of vertices. The tabu search method effi-

iently updates these matrices after each move. On the other hand,

e adapted the mathematical programming formulation originally

roposed for the Bipartite Drawing Problem to the dynamic case.

ur experiments with Gurobi show that it is able to solve small

nd medium size instances to optimality.

An interesting point when designing a tabu search method is

he memory contribution. We can say in plain words that a short

erm tabu search is simply a local search method in which we

dded a memory structure (the so-called tabu list). Therefore, one

ould ask what is the incremental contribution obtained with this

ddition. Our preliminary experimentation confirms that the tabu

earch clearly performs better than the simple local search which

t is based on. Thus, the hybridization of a constructive GRASP

ethod with a tabu search turns out to be a very effective method

o target this problem. Additionally, we learnt that using a combi-

ation method such as path relinking for creating paths between

wo high quality drawings is a good technique to generate new

nd better solutions. We believe that this approach can be tested

n other graph drawing problems.

In this paper we have formulated the stability across a sequence

f graph drawings in terms of the relative ordering of their ver-

ices, in line with some previous papers. However, alternative ways

o approach stability would be also of interest. We are indeed

tarting to work on a formulation based on the absolute order-

ng of the original nodes. Another extensions and future lines of

esearch include dynamic drawings in hierarchies with more than

 layers, as well as a comparison of the different variants of path

elinking for the DBDP.

cknowledgments

This work has been partially supported by the Spanish

Ministerio de Economía y Competitividad ” and by “Comunidad de

adrid ,” grants refs. TIN2015-65460-C02 and S2013/ICE-2894 , re-

pectively. We would like to thank the Walnut Brew-Lab in Boul-

er (CO), and the Spanish researchers there, for the discussions to

onceive this paper.

eferences

ntonellis, I., H.G. Molina, and C. Chao (2008). Simrank ++ : query rewriting through

link analysis of the click graph. 1(1):408–421.
eck, F. , Burch, M. , Diehl, S. , Weiskopf, D , 2016. A taxonomy and survey of dynamic

graph visualization. Comput. Graphics Forum 36 (1), 133–159 .
ranke, J. , 2001. Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (Eds.), In:

Drawing Graphs. Methods and Models. In: LNCS, 2025. Springer, pp. 228–246 .
urch, M. , Heinrich, J. , Konevtsova, N. , Höferlin, M. , Weiskopf, D. , 2011. Evaluation of

traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE

Trans. Visualiz. Comput. Graphics 17 (12), 2440–2448 .
urch, M. , Hlawatsch, M. , Weiskopf, D. , 2017. Visualizing a sequence of a thousand

graphs (or Even More). Comput. Graphics Forum 36 (3), 261–271 .
arpano, M.J. , 1980. Automatic display of hierarchized graphs for computer-aided

decision analysis. IEEE Trans. Syst. Man Cybern. 10 (11), 705–715 .

http://dx.doi.org/10.13039/501100003329
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0001
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0002
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0005
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0005

12 R. Martí et al. / Computers and Operations Research 91 (2018) 1–12

L

M

M

R

S

S

V

Di Battista, G. , Eades, P. , Tamassia, R. , Tollis, I.G. , 1999. Graph drawing: algorithms
for the visualization of graphs, 1st ed. Prentice Hall PTR, Upper Saddle River .

Diehl, S. , Görg, C. , 2002. Graphs, they are changing. In: Kobourov, S.G.,
Goodrich, M.T. (Eds.), 10th International Symposium on Graph Drawing GD

2002, 2528. Springer LNCS, pp. 23–30 .
Duarte, A. , Sánchez-Oro, J. , Resende, M. , Glover, F. , Martí, R. , 2015. GRASP with exte-

rior path relinking for differential dispersion minimization. Inf. Sci. 296, 46–60 .
Eades, P. , Lai, W. , Misue, K. , Sugiyama, K. , 1991. Preserving the mental map of a

diagram. Proc. Compugraphics. 91, 24–33 .

Festa, P. , Resende, M.G.C. , 2011. GRASP: basic components and enhancements.
Telecommun. Syst. 46 (3), 253–271 .

Garey, M.R. , Johnson, D.S. , 1983. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods 4 (3), 312–316 .

Gibson, H. , Faith, J. , Vickers, P. , 2012. A survey of two-dimensional graph lay-
out techniques for information visualization. Inf. Visualiz. 12 (3-4), 324–

357 .

Glover, F. , Laguna, M. , 1997. Tabu Search. Kluwer, Norwell, MA .
Görg, C. , Birke, P. , Pohl, M. , Diehl, S. , 2004. Dynamic graph drawing of sequences of

orthogonal and hierarchical graphs. In: Pach, J. (Ed.), 12th International Sympo-
sium on Graph Drawing, GD 2004, 3383. Springer LNCS, pp. 228–238 .

Grötschel, M. , Jünger, M. , Reinelt, G. , 1984. A cutting plane algorithm for the linear
ordering problem. Oper. Res. 32 (6), 1195–1220 .

Jünger, M. , Mutzel, P. , 1997. 2-Layer straightline crossing minimization: performance

of exact and heuristic algorithms. J. Graph Algorithms Appl. 1 (1), 1–25 .
Kumar, G., Garland, M., 2006. Visual exploration of complex time-varying graphs.
IEEE Trans. Visualiz. Comput. Graphics 12 (5), 805–812. doi: 10.1109/TVCG.2006.
193 .

aguna, M. , Martí, R. , 1999. GRASP and path relinking for 2-layer straight line cross-
ing minimization. INFORMS J. Comput. 11, 44–52 .

artí, R. , Estruch, V. , 2001. Incremental Bipartite Drawing Problem. Comput. Oper.
Res. 28, 1287–1298 .

artí, R. , 2001. Arc crossing minimization in graphs with GRASP. IIE Trans. 33 (10),
913–919 .

Purchase, H.C. , 2002. Metrics for graph drawing aesthetics. J. Visual Lang. Comput.

13, 501–516 .
Resende, M.G.C. , Ribeiro, C.C. , 2001. In: Metaheuristics. Glover, F., Kochen-Berger, G.

(Eds.), Greedy Randomized Adaptive Search Procedures. Kluwer Academic Pub-
lishers, pp. 219–270 .

esende, M.G.C. , Gallego, M. , Duarte, A. , Martí, R. , 2010. GRASP and path relinking
for the max-min diversity problem. Comput. Oper. Res. 37, 498–508 .

allaberry, A. , Muelder, C. , Ma., K. , 2012. Clustering, visualizing, and navigating for

large dynamic graphs. 20th International Symposium on Graph Drawing Didimo
W., and Patrignani .

tallmann, M. , Brglez, F. , Ghosh, D. , 2001. Heuristics, experimental subjects, and
treatment evaluation in bigraph crossing minimization. J. Exp. Algorithmics 6–8 .

an der Elzen, S. , Holten, D. , Blaas, J. , van Wijk, J.J. , 2013. Dynamic network visu-
alization with extended massive sequence views. IEEE Trans. Visualiz. Comp.

Graphics. 20 (8), 1087–1099 .

http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0008
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0012
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0013
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0016
https://doi.org/10.1109/TVCG.2006.193
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0023
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0024
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0026
http://refhub.elsevier.com/S0305-0548(17)30274-5/sbref0026

	Tabu search for the dynamic Bipartite Drawing Problem
	1 Introduction
	1.1 Previous studies on the dynamic problem
	1.2 Dynamic graph drawing applications

	2 Mathematical formulation
	3 Previous method
	3.1 Constructive method
	3.2 Local search method

	4 A hybrid tabu search method
	4.1 Constructive method
	4.2 Tabu search

	5 A path relinking post-processing
	6 Computational experiments
	6.1 Preliminary experimentation
	6.2 Competitive testing

	7 Conclusions
	 Acknowledgments
	 References

