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Abstract
This paper deals with an interesting facility location problem known as the bi-objective p-Median and p-Dispersion problem
(BpMD problem). TheBpMD problem seeks to locate p facilities to service a set of n demand points, and the goal is tominimize
the total distance between facilities and demand points and, simultaneously, maximize the minimum distance between all
pairs of hosted facilities. The problem is addressed with a novel path relinking approach, called reactive path relinking, which
hybridizes two of the most extended path relinking variants: interior path relinking and exterior path relinking. Additionally,
the proposal is adapted to a multi-objective perspective for finding a good approximation of the Pareto front. Computational
results prove the superiority of the proposed algorithm over the best procedures found in the literature.

Keywords Multi-objective combinatorial optimization problems · p-Median problem · p-Dispersion problem · Reactive
path relinking

1 Introduction

Facility location problems (FLP) are a very-studied fam-
ily of combinatorial optimization problems that consists in
finding the best location to site certain number of facili-
ties to efficiently serve all demand points. As is described
in López-Sánchez et al. (2020), the definition of “best” in
the facility location literature varies, as it depends on the
idiosyncrasies of each particular problem and its solution
requirements. Briefly, in the p-Median problem, first studied
in the mid-sixties (Hakimi 1964, 1965), the objective func-
tion seeks to minimize the total distance between demand
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points and their nearest facility; in the p-center problem,
first solved in Minieka (1970), the objective function seeks
to minimize the maximum distance between demand points
and their nearest facilities; in the maximal covering location
problem, first introduced in Church and Velle (1974), the
objective consists in maximizing the total number of demand
points covered, within a specific distance, by the facilities;
or in the p-Dispersion Problem (Erkut 1990), the objective
selects facilities as dispersed as possible. There exists many
other variants of FLP that optimize different objectives. Tra-
ditionally, most of the FLPs has been widely studied not
only theoretically but also practically, and many methods
of resolution have been successfully proposed, exact and
approximate algorithms.

FLPs become even more difficult when more than one
objective functionmust be optimized at a time. This situation
appears when companies, either public or private, deal with
real-world FLPs since they are inherently multi-objective
in nature. Indeed, besides the typical objective function,
expressed as a sum of various component expenses (most
simply as transportation and fixed costs), multi-objective
approaches require for optimizing resource utilization and
customer responsiveness, in addition to the standard eco-
nomic objectives. Recent concerns regarding climate change
or environmental objectives have been also considered. See
Farahani et al. (2019) for a thorough review.
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The optimization of such problems is hard since the objec-
tives that must be optimized are usually in conflict with each
other (Deb and Deb 2014). Indeed, when this happens,
it is impossible to improve one objective without deterio-
rating another one, requiring multi-objective optimization
(Sánchez-Oro et al. 2020). The majority of these problems
appear when solving real-world challenges, because more
than one perspective needs to be tackled simultaneously, such
as the profit of the company, the benefits of the workers, or
the satisfaction of the customers, among others (Franca et al.
2010; Sagrado et al. 2015; Pinto-Varela et al. 2011). The
simple fact of considering more than one perspective at the
same time justifies the emergence of a conflict between the
different objectives.

In the last few years, the number of scientific papers that
have addressed FLP from a multi-objective point of view has
increased considerably. For instance, the p-Center problem
and the p-Dispersion Problem are studied from a bi-objective
optimization perspective in Tutunchi and Fathi (2019) and
Pérez-Peló et al. (2019). However, in Karatas and Yakıcı
(2018) and López-Sánchez et al. (2020), it is addressed a
multi-objective FLP in which they considered three prob-
lems: the p-Center problem, the p-Median problem, and
the maximal coverage location problem. Different objectives
were simultaneously considered in Karatas (2017), where
the coverage of the demand points is maximized while the
total distance and balance workload of the facilities are min-
imized. Similarly, in Wang et al. (2018), it is maximized the
total coverage and simultaneously minimized the total dis-
tance. There exist many other FLP variants depending on the
objectives to optimize. For a recent survey of this family of
problems, see Boonmee et al. (2017).

This paper is focused on the Bi-objective p-Median and
p-Dispersion problem (BpMD problem), a multi-objective
facility location problem, which was first addressed in
Sayyady (2012). Both objectives have been proven to be
in conflict in Sayyady (2012) and Sayyady et al. (2015).
Additionally, for a thorough analysis on the relation between
several facility location problems from amulti-objective per-
spective see Erkut and Neuman (1989).

As stated in Sayyady et al. (2015), the location of traf-
fic sensors in highway networks motivated the consideration
of the p-Median and p-Dispersion problem simultaneously.
Nevertheless, this is not the only realistic problem that fits in
this bi-objective model. For instance, considering the loca-
tion of any profitable chain of business in different sites of
a region and being the business exactly the same, the goal
would be to locate the businesses near to the customers but,
at the same time, in order to do not compete one business
to each other, it would be necessary to locate one busi-
ness as far as possible to another one and here, relies the
importance of solving the BpMD problem. Sayyady et al.
(2015) formulated the BpMD problem as an integer pro-

gramming model and then, solved by using the ε-Constraint
(ε-C). Furthermore, they proposed an alternative Integer Pro-
gramming (IP) model and an iterative algorithm named the
Incremental Algorithm. Then, they also used a Lagrangian
heuristic procedure for solving the IP model for larger
instances. Later on, Colmenar et al. (2018) proposed the first
metaheuristic to solve the BpMD problem using a Scatter
Search algorithm with three improvement methods: a local
search based on dominance, a local search that alternates
both objectives and a local search that tries to minimize
the normalized distance to an ideal point. The algorithms
providing the best results for the BpMD problem in the liter-
ature were proposed by Sayyady et al. (2015) and Colmenar
et al. (2018); therefore, both algorithms have been consid-
ered in the competitive testing of Sect. 4. Furthermore, the
comparison includes the well-known multi-objective evolu-
tionary algorithms:MOEA/D,Multi-Objective Evolutionary
Algorithm based on Decomposition (Zhang and Li 2007);
NSGA-II, elitist Non-dominated Sorting Genetic Algorithm
(Deb et al. 2002); and SPEA2, Strength Pareto Evolutionary
Algorithm (Zitzler et al. 2001).

In this paper, we propose a novel approach based on the
path relinking (PR) methodology is proposed, named reac-
tive path relinking (RPR), which is based on the combination
of the two most extended path relinking strategies, Interior
and Exterior PR (IPR and EPR, respectively) to solve the
BpMD problem. EPR strategy was first introduced by Duarte
et al. (2015) and was compared against the IPR strategy. The
authors solved another interesting FLP known as Minimum
Differential Dispersion Problem, whose objective is to mini-
mize the difference between the sum of themaximum and the
sum of the minimum distances between the demand points
and the selected facilities. The novelty of the current proposal
lies in the combination of both path relinking strategies (IPR
and EPR) into a single one, called reactive path relinking.
The proposed procedure will decide which of the strate-
gies should be used depending on the pairs of solutions to
combine. Computational results prove the superiority of the
proposed algorithmover the state-of-the-art procedureswhen
considering the set of instances previously used in the related
literature. Specifically, the widely accepted multi-objective
metrics have been considered in order to compare the proce-
dures, emerging the RPR as the most competitive algorithm
in both quality and computing time.

The main contributions of this work are the following:

• Anovelmetaheuristic algorithm based on the path relink-
ing methodology has been proposed, the reactive path
relinking (RPR) algorithm.

• The RPR algorithm has emerged to address a multi-
objective facility location problem: the BpMD problem.

• A complete analysis of the performance of the novel
approach reactive path relinking has been included.
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• A competitive testing is performed with the RPR algo-
rithm and the state-of-the-art algorithms.

• The proposed algorithm and the obtained results are pub-
licly available to ease further comparisons.1

The rest of this paper is organized as follows. Section2
describes the BpMD problem and includes some definitions
related to the problem. Section3 details the algorithm imple-
mented to solve the problem under consideration. Section4
includes the performance metrics used to test the quality of
the algorithm and the computational experiments to check
the validity of our proposal. Finally, Sect. 5 summarizes the
paper and discusses future work.

2 Problem definition

Let N and F be two sets of locations, with |N | = n rep-
resenting the demand points and |F | = m representing the
candidate facilities. Without loss of generality, in this paper
N = F since our instances consider that demand points are
also candidates to host facilities. It is worth mentioning that
this assumption is not always considered, since in some cases
N and F are disjoint sets. Let us define di j ≥ 0 as the dis-
tance between i and j , with i, j ∈ N . This distance satisfies
di j ≥ dik + dkj ,∀i, j, k ∈ N , and dii = 0. The goal of a
facility location problem is to select a subset of nodes to host
facilities, S ⊂ N with |S| = p, in order to optimize one or
more objective functions.

The p-Median problem (pMP) selects a subset of S ⊂ N
facilities, with |S| = p, with the aim of minimizing the total
distance betweendemandpoints and its closest facility.Given
a solution S, the objective function of p-Median is evaluated
as:

f pM (S) ←
∑

j∈N\S
min
i∈S di j

Then, the objective of the p-Median problem is to find a
solution S�

pM with the minimum f pM value. More formally,

S�
pM ← argminS∈P f pM (S)

being P the set of all possible combinations of facilities that
can be conformed selecting p elements from the set of avail-
able locations N .

The p-Dispersion problem (pDP) seeks to maximize the
distance between the p selected facilities, with the aim of
distributing the facilities throughout the available space and
avoiding to place facilities close to each other. Given a solu-
tion S, the objective function of the p-Dispersion problem is

1 https://grafo.etsii.urjc.es/BpMpD.

Table 1 Evaluation of all the
feasible solutions for the
example depicted in Fig. 1

Facilities f pM f pD

(1,1);(1,4);(2,2) 3.83 1.41

(1,1);(1,4);(3,2) 3.24 2.24

(1,1);(1,4);(4,4) 3.65 3.00

(1,1);(2,2);(3,2) 4.47 1.00

(1,1);(2,2);(4,4) 3.24 1.41

(1,1);(3,2);(4,4) 3.83 2.24

(1,4);(2,2);(3,2) 3.65 1.00

(1,4);(2,2);(4,4) 2.41 2.24

(1,4);(3,2);(4,4) 3.24 2.24

(2,2);(3,2);(4,4) 3.65 1.00

evaluated as:

f pD(S) ← min
i, j∈S,i �= j

di j

The p-Dispersion problem then consists in finding a solu-
tion S�

pD with the maximum f pD value. Specifically,

S�
pD ← argmaxS∈P f pD(S)

Therefore, the Bi-objective p-Median p-Dispersion prob-
lem, known as BpMD problem, is focused on solving two
problems at the same time, the pMP and the pDP . It is
needed to emphasize that the objective function of the pMP
and the pDP are in conflict and, consequently, the improve-
ment of one objective function leads the deterioration the
other one. It is worth mentioning that a detailed integer pro-
gramming model for the BpMD is included in Sayyady et al.
(2015).

Next, an example with N = {1, 2, 3, 4, 5} (with |N | =
n = 5) and the aim to locate p = 3 facilities is included
in order to show the conflict between the functions. Table 1
shows all possible solutions (10 combinations), the first col-
umn (named Facilities) shows the x and y coordinates of the
chosen facilities, and columns 2 and 3 compute the values of
the two objective functions of the two considered problems,
pMP and pDP , respectively. For this example, the distance
between any two points is calculated as the euclidean dis-
tance. The best objective function value for each problem
isolated is highlighted in bold font.

Figures 1 and 2 represent the optimal location for the p-
Median problem and the p-Dispersion problem, respectively.
Facilities are represented with squares and demand points
with circles. Considering the Euclidean distance, the optimal
solution value for the p-Median problem is 2.41 units and the
facilities must be located at points (1, 4), (2, 2), and (4, 4).
On the contrary, the value of the objective function of the p-
Dispersion problem is 2.24 units, when considering the same
facilities. Analogously, the optimal solution value for the p-

123

https://grafo.etsii.urjc.es/BpMpD


I. Lozano-Osorio et al.

Fig. 1 ( f �
pM , f pD) = (2.41, 2.24)

Fig. 2 ( f pM , f �
pD) = (3.65, 3.00)

Dispersion problem is 3.00 units and the facilities should be
located at points (1, 1), (1, 4), and (4, 4), while the evaluation
of the objective function for the p-Median problem yields
3.65 units.

As this toy-example shows, both objectives are in conflict,
that is, it might not be possible to find a single solution with
the optimum value for f pM and f pD simultaneously, being
impossible to improve one objective without deteriorating
the other one.

Next, without loss of generality the BpMD problem is for-
mally defined as a minimization bi-objective combinatorial
optimization problem:

min
S∈P[ f pM (S),− f pD(S)]

where P is called the feasible set and f pM : P → R and
f pD : P → R are the two considered objective functions.
The image of the feasible set is {( f pM (S),− f pD(S)) : S ∈
P} is named the objective space.

Let us briefly introduce the basic concepts of multi-
objective definitions. Given two solutions S1 and S2 in P:

• S1 weakly dominates S2, denoted as S1 	 S2, if and only
if f pM (S1) ≤ f pM (S2) and − f pD(S1) ≤ − f pD(S2).

• S1 dominates S2, denoted as S1 ≺ S2, if and only if
S1 	 S2 and at least one objective function is strictly
better than the other, that is, f pM (S1) < f pM (S2) and
− f pD(S1) ≤ − f pD(S2) or f pM (S1) ≤ f pM (S2) and
− f pD(S1) < − f pD(S2).

• S1 strictly dominates S2, denoted as S1 		 S2, if
and only if f pM (S1) < f pM (S2) and − f pD(S1) <

− f pD(S2).

The goal of the BpMD problem is to find a high-quality
approximation of non-dominated solutions, also known as
efficient solutions or Pareto set. It should bear in mind that
the Pareto set contains only those solutions that are not dom-
inated by any other solution. Notice that the image of the
Pareto set is named the Pareto front. In order to achieve
this goal, a metaheuristic procedure able to solve the BpMD
problem is proposed.Themetaheuristic finds the best approx-
imation of the Pareto front with high-quality solutions in a
reasonable amount of time even for problems with a consid-
erable size.

3 Algorithmic proposal

The methodology used to solve the BpMD problem is based
on a simple but efficient algorithm which has been suc-
cessfully applied to solve a wide variety of combinatorial
optimization problems, the path relinking (PR) metaheuris-
tic (see Resende et al. (2010); Pérez-Peló et al. (2020);
Campos et al. (2014) for relevant research in PR). This
metaheuristic was first proposed in the framework of tabu
search to integrate intensification and diversification strate-
gies (Glover and Laguna 1998). The success of PR relies on
exploring trajectories that connect pairs of high-quality solu-
tions (hereinafter, the initiating and guiding solutions, Si and
Sg , respectively). The procedure generates new intermediate
solutions that would be hopefully better than these pairs of
connected solutions. Specifically, PR links Si to Sg combin-
ing paths of solutions which in turn, generates new solutions
on such paths that will share attributes from both solutions.
Without loss of generality, combining two solutions Si and
Sg consists in including attributes of Sg in Si iteratively until
Si = Sg .
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In this paper, two different PR strategies, Interior and
Exterior PR (IPR and EPR, respectively), are considered.
Additionally, a novel approach based on the mixture of these
twopath relinking strategies is proposed.Both strategies have
been deeply studied but in an isolated way by Duarte et al.
(2015). The novelty of our proposal lies on the combination
of both, IPR and EPR, into a single one, which is able to
autonomously decide which of the strategies should be used,
analyzing the pairs of solutions to combine.

3.1 Constructive method

As previously explained, the PR methodology requires a set
of efficient solutions to combine. Although they can be con-
structed in a randommanner, a greedy constructive procedure
is proposed in order to form promising points of the search
space. Of course, another way to obtain a good set of effi-
cient solutions would be using multi-start algorithms such as
GRASP (Greedy Randomized Adaptive Search Procedure),
see Feo and Resende (1995). The constructive method is
responsible for obtaining the initial set of efficient solutions.
It uses a greedy criterion to generate solutions from scratch
by using an iterative algorithm. At each iteration, the algo-
rithm performs the best choice with respect to the objective
function to optimize.

The BpMD problem is a bi-objective optimization prob-
lem, so it is needed to optimize two objective functions that
are in conflict. Therefore, to consider both objectives at the
same time in the constructive procedure, this bi-objective
optimization problem is turned into a single-objective opti-
mization problem. There are several ways of combining two
or more objectives in an optimization procedure. For exam-
ple,Marti et al. (2015) presents a new approach for switching
between different objectives. In this research, an aggregation
of the considered objectives is proposed, resulting in a sim-
ple yet effective mechanism. More precisely, given a partial
solution S′ with |S′| < p and a node v ∈ N\S′, the proposed
function is defined asβ· f pM (S′∪{v})−(1−β)· f pD(S′∪{v}),
where β ∈ [0, 1] is a weight or proportion to the relative
importance of the pMP objective.

In order to normalize both objective functions in the range
[0, 1], the following intervals are defined: f pM (S′ ∪ {v}) ∈
[minpM ;maxpM ] = [0;max di j : ∀i, j ∈ N ∧ i �= j] and
f pD(S′ ∪ {v}) ∈ [minpD;maxpD] = [0;max di j , ∀i, j ∈
N ∧ i �= j], where minpM and maxpM represent the min-
imum and the maximum values of f pM , respectively, and
similarly, minpD and maxpD are the minimum and the
maximum values of the f pD , respectively. For the sake of
convenience, the objective function of the pDP is trans-
formed into a minimization problem by simply switching
the sign, i.e., − f pD(S′ ∪ {v}) ∈ [−maxpD;−minpD].

Therefore, given a partial solution S′, a candidate v ∈
N\S′, and β, the considered greedy function is defined as

follows:

g(S′ ∪ {v}, β) = β
f pM (S′ ∪ {v}) − minpM

maxpM −minpM

+(1 − β)
− f pD(S′ ∪ {v}) − (−maxpD)

−minpD −(−maxpD)

= β
f pM (S′ ∪ {v})

maxpM

−(1 − β)
f pD(S′ ∪ {v}) + maxpD

maxpD
(1)

Algorithm 1 shows the pseudocode for the greedy con-
struction used in this paper,which receives as input parameter
the set of candidate elements able to host a facility and the
step used to update β. It is worth mentioning that as a multi-
objective optimization problem is being addressed, therefore,
the output of the constructive procedure is a set of efficient
solutions.

Algorithm 1 Greedy(N , step)
1: ES ← ∅
2: β ← 0
3: while β ≤ 1 do
4: for all v ∈ N do
5: S′ ← {v}
6: C ← N \ {v}
7: while |S′| �= p do
8: v′ ← argminv∈C g(S′ ∪ {v}, β)

9: S ← S ∪ {v′}
10: C ← C \ {v′}
11: end while
12: Insert&Update(S′,ES)
13: end for
14: β ← β + step
15: end while
16: return ES

The algorithm starts with an initial set of efficient solu-
tions, ES, that is empty and the parameter β is initialized to
zero (steps 1 and 2). With the aim of increasing the diver-
sity of the set of constructed solutions, the values of β are
uniformly selected in the interval [0, 1]. Specifically, β is set
from 0.0 to 1.0, where each iteration increases its value by
adding the input parameter step (see steps 3 to 15).

Greedy algorithms are mainly deterministic procedures,
since they select in each step the best element to be included
in the partial solution under construction. In order to further
improve the diversification, it is proposed to construct sev-
eral solutions where each one is initialized by considering a
different element. In particular, if there are n elements, that
means that atmost,n different solutions could be constructed,
(steps 4 to 13).

The method selects the first facility, v, to be added to the
solution S′ (step 5), creating the list of candidate nodes, C ,
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with all nodes except the one that has been already included in
the solution (step 6). The algorithm includes one node at each
iteration until p nodes have been included in S, (steps 7–11).
In each iteration, the most promising node from the list of
candidates is selected, v′ by using the aforementioned greedy
function (see Eq.1). Then, the selected node is included in
the solution (step 9) and removed from the candidate list (step
10).

As abi-objective optimizationproblem is being addressed,
once that a feasible solution is found, it is needed to check
whether it can be admitted in the set of efficient solutions
(step 12) or not. Specifically, the function Insert&Update
(S′, ES) determines if the solution S′ is an efficient solution
and, if so, it is inserted in the set of efficient solutions, remov-
ing all solutions of the set that are dominated by S′. Finally,
before starting a new iteration, the value of β is updated in
step 14. The greedy algorithm ends by returning the set of
efficient solutions (step 16).

3.2 Local searchmethod

Once an initial set of efficient solutions is attained, a second
phase is considered. This phase consists in applying a local
search to all the efficient solutions obtained.As a facility loca-
tion problem is being solved, the neighborhood of a solution
S, denoted asN (S), for the BpMD problem is defined as the
set of solutions that can be obtained by exchanging a selected
facility with any non-selected facility. Specifically,

N (S) ← {(S \ {u}) ∪ {v} : u ∈ S, v ∈ N \ S}

The proposed local search follows a first-improvement
strategy. In particular, the method traverses N (S), perform-
ing the first move that leads to a better solution with respect
to the considered objective. If so, the search is subsequently
restarted to the neighborhood of the updated solution; other-
wise, the method stops since no better solution can be found.
It is important to bear in mind that two objective functions
are being addressed. Then, there are different variants to con-
sider (seeMladenović et al. 2007; Erkut 1990). The use of the
weighted sum function that was previously defined in Eq.1
to guide the search is considered again. Specifically, the pro-
cedure starts by considering β = 0, which means that only
f pM is improved (ignoring the other objective). Notice that
after each move, the corresponding neighboring solution is
tested whether it is admitted in the set of efficient solutions or
not. This strategy is maintained until β = 1.0 which means
that only f pD is improving, ignoring f pM .

Algorithm 2 shows the pseudocode of the proposed
improvement strategy used in this paper. It receives three
input parameters: an initial solution, S; the set of efficient
solutions, ES; and the β parameter. As customary, the local
search ends when no improvement is found (steps 2 to 11).

In each iteration, this method explores the aforementioned
neighborhood (steps 4 to 10) by following the first improving
strategy. Specifically, the exploration is halted once a better
neighboring solution is found (steps 5 to 8). Notice that the
comparison between S and S′ is done by considering Eq.1
(step 5). Notice that it is needed to test whether any solution
explored qualifies to enter in ES or not (step 9). Finally, the
local search algorithm returns a set of efficient solutions (step
12).

Algorithm 2 LocalSearch(S, ES, β)
1: improve ← true
2: while improve = true do
3: improve ← false
4: for all S′ ∈ N (S) and improve = false do
5: if f (S′, β) < f (S, β) then
6: S ← S′
7: improve ← true
8: end if
9: I nsert&Update(S′, ES)

10: end for
11: end while
12: return ES

So far, our proposal is quite similar to GRASP. However,
our way to construct solutions is always deterministic with
the only diversification of changing the initial node to be
added to the partial solution under construction. Therefore,
n different solutions are obtained in the constructive phase.
Once that a feasible solution is obtained, the local search is
applied as it is done in GRASP.

3.3 Interior path relinking

Interior PR (IPR) creates a path that connects two high-
quality feasible solutions, exploring new solutions while
traversing the path. The rationale behind this is that if the
initiating and guiding solutions are promising, then there is
a high probability of finding good solutions in the path that
connects them.

The path between Si and Sg is created including in Si
elements that are in Sg \ Si , exchanging them with those
elements in Si \ Sg . In other words, it consists in iteratively
modifying Si to become more similar to Sg in every step,
until reaching Sg .

Figure 3 shows an example where the IPR is illustrated.
The example considers a set of |N | = 10 nodes labelled
from 1 to 10 and p = 5. Let Si = {1, 2, 3, 4, 5} and
Sg = {1, 2, 6, 7, 8} be the initiating and guiding solu-
tions, respectively. At the first step of the IPR, element 3
is replaced by element 6, obtaining the intermediate solu-
tion S1 = {1, 2, 6, 4, 5}, then, at the second step, element 4
is interchanged by element 7, resulting in other intermediate
solution, S2 = {1, 2, 6, 7, 5}, and at the last step, element 5 is
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Fig. 3 Interior path relinking

substituted by element 8 obtaining, in such away, the guiding
solution, Sg . Similarly, to transform Sg into Si , the first step
of the IPR replaces element 6 by element 3, obtaining the
intermediate solution S′

1 = {1, 2, 3, 7, 8}, then, at the second
step, element 7 is interchanged by element 4, resulting in the
solution S′

2 = {1, 2, 3, 4, 8}, and the last step substitutes ele-
ment 8 by element 5 obtaining, in such a way, the initiating
solution, Si .

Notice that every solution found during the path is con-
sidered for entering in the set of efficient solutions.

3.4 Exterior path relinking

Exterior PR (EPR) (Duarte et al. 2015) follows the opposite
idea of IPR. If the solutions in the efficient set are simi-
lar among them, then the path created with IPR will be
rather short, thus leading to a small number of new solutions
explored. This behavior results in maintaining the similarity
among solutions in the efficient set. Then, it is necessary to
include some diversity in the search, to explore a different
region of the search space.

Given an initiating solution Si and a guiding solution Sg ,
EPR iteratively includes in Si elements that are not in Sg ,
with the aim of reaching new solutions which are diverse
with respect to both Si and Sg . This strategy will eventually
lead the algorithm to explore a wider portion of the search
space to increase the quality of the efficient set.

Figure 4 depicts an example where the EPR has been
illustrated. Again, a set of |N | = 10 nodes is considered,
labelled from 1 to 10 and p = 5. Let Si = {1, 2, 3, 4, 5}
and Sg = {1, 2, 3, 6, 7} be two pairs of solutions. The
task is to remove the values Si ∩ Sg = {1, 2, 3} with ele-
ments in the set N \ Si ∪ Sg = {8, 9, 10}. At the first step
of the EPR, element 1 is replaced by element 8, getting
the intermediate solution S1 = {8, 2, 3, 4, 5}, at the sec-
ond step, element 2 is interchanged by element 9, obtaining
S2 = {8, 9, 3, 4, 5}, at the third step, element 3 is substi-
tuted by element 10, resulting in the intermediate solution
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Fig. 4 Exterior path relinking

S3 = {8, 9, 10, 4, 5}. Similarly, if you start with the solution
Sg thought Si , Sg = {1, 2, 3, 6, 7}, then the first step of the
EPR interchanges element 1 with element 8, resulting in the
intermediate solution S′

1 = {8, 2, 3, 6, 7}. The second step
of the EPR replaces element 2 by element 9, getting the solu-
tion S′

2 = {8, 9, 3, 6, 7}. And finally, at the last step of the
EPR, the element 3 is substituted by element 10, obtaining
the intermediate solution S′

3 = {8, 9, 10, 6, 7}.

3.5 Reactive path relinking

One of the main contributions of this work is the proposal
of a novel path relinking approach that selects IPR or EPR
analyzing the initiating and guiding solutions. This algo-
rithm, named reactive path relinking (RPR), combines the
two strategies of the PR previously described, IPR and EPR.

RPR analyzes the similarity between the initiating Si and
guiding Sg solutions. If the similarity between them does not
exceed a certain threshold k, then it is assumed that Si and
Sg are different enough to apply IPR with the aim of inten-
sifying. Otherwise, EPR is applied to diversify the search.
The combination of both strategies balances intensification
and diversification with the aim of finding a high-quality set
of efficient solutions. The value of k is an input parameter of
the algorithm (see Sect. 4 for a detailed experimentation to
select the best value) which represents the minimum number
of facilities that Si and Sg must have in common to be con-
sidered similar solutions. Algorithm 3 shows the pseudocode
for the considered RPR algorithm.

The algorithm receives 3 input parameters: the set of effi-
cient solutions, ES; k, the threshold to consider that two
solutions are similar or not; and the weight β. RPR starts
by initializing the backup-copy of the efficient set (step 1)
and the best found solution found during the complete exe-
cution of RPR (step 2). Additionally, the set T is initialized
(step 3) and used to store the already combined solutions.
Then, the main body of the algorithm is repeated while the
generation of paths finds non-dominated intermediate solu-
tions (steps 4 to 32). In each iteration, all elements are first
shuffled in the efficient set to avoid prioritize in any search
direction (step 5). Then, in order to increase the efficiency of
the method, those solutions for which a path was generated
in the previous iterations are discarded (step 8). After that,
for non-explored pairs of solutions, their similarity is evalu-
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Algorithm 3 RPR(ES, k, β)
1: ES′ ← ∅
2: S� ← ∅
3: T ← ∅
4: while ES �= ES′ do
5: ES′ ← shuffle(ES)

6: for all Si ∈ ES′ and (ES \ ES′) = ∅ do
7: for all Sg ∈ ES′ and Si �= Sg and (ES \ ES′) = ∅ do
8: if < Si , Sg >/∈ T then
9: if |Si ∩ Sg | < k then � If solutions are different (less

than k facilities in common), IPR
10: R ← Si \ Sg
11: A ← Sg \ Si
12: else � If solutions are similar ( k of more facilities in

common), EPR
13: R ← Si ∩ Sg
14: A ← N \ (Si ∩ Sg)
15: end if
16: S ← Si
17: while R �= ∅ do
18: u ← RND(R)

19: v ← RND(A)

20: S ← S \ {u} ∪ {v}
21: R ← R \ {u}
22: A ← A \ {v}
23: I nsert&Update(S,ES)
24: if S� = ∅ or fr (S�) < fr (S) then � for

r = pM, pD
25: S� = S
26: end if
27: end while
28: T ← T∪ < Si , Sg >

29: end if
30: end for
31: end for
32: end while
33: LocalSearch(S�, ES, β)

34: return ES

ated. If they are different enough (step 9), the IPR strategy
is considered, being the set of nodes to remove, denoted by
R, those which are in Si but not in Sg (step 10), and the set
of candidates nodes to be added those which are in Sg but
not in Si , denoted by A (step 11). Otherwise, EPR strategy
is considered (step 12), conforming R with the nodes that Si
and Sg have in common (step 13) and A with those that are
neither in Si nor in Sg (step 14). Then, the solution used to
traverse the path, S, is initialized with the initiating solution
Si (step 16).

The method iterates while there are nodes to be removed
(steps 17–27). In each iteration, the nodes that will be
removed and added to the solution are selected at random
from R and A, respectively (steps 18–19). Then, the solu-
tion is updated (step 20), as well as the nodes to be removed
(step 21) and the candidates to be added (step 22).

Considering that a multi-objective optimization problem
is being solved, itmust be checked if any constructed solution
can be admitted in the efficient set (step 23). Moreover, it is
tested if any of the solutions found during the generation of
a path is the best based on fr , or not (steps 24 to 26).

Once a specific path between Si and Sg has been finished,
the corresponding pair is stored in T to avoid exploring the
same path in future iterations (step 28). At the end of RPR,
the improvement method is applied with the aim of fur-
ther improving the generated solution, updating, if required,
the efficient set (step 33). Finally, the algorithm returns the
update ES.

3.6 Computational complexity

This section is devoted to analyze the computational com-
plexity of the proposed algorithm. In particular, each com-
ponent of the complete algorithm is evaluated and, finally,
the complexity of the algorithm is presented.

The first component of the proposed algorithm is the
greedy constructive procedure. This method constructs a
solution starting from each node i ∈ N and, in each con-
struction, the best node is selected to be included in each
iteration, resulting in a complexity of O(n · p).

Then, for each constructed solution, the local search
method is applied which, following a first improvement
approach, requires to traverse the complete neighborhood
in the worst case, resulting in swapping each selected ele-
ment s ∈ S with every available node in V \ S, resulting in
a complexity of O(n · p).

These two phases, constructive and local search, are
repeated during β/step iterations, thus having a computa-
tional complexity of O(n · p · β/step).

Once the initial set of non-dominated solutions, ES, is
constructed, the RPR is applied. The RPR is executed for
each pair of solutions in ES avoiding repeating pairs (i.e.,
the combination of S2 and S1 is not performed if the combi-
nation of S1 and S2 has been already executed). Therefore,
the complexity of thismethod is O(|ES|·log |ES|·p). Notice
that the inclusion of p in this equation is due to that, in the
worst case, each combination performs p iterations (when
the combined solutions are completely different in IPR or
the same solution in EPR). At the end of each combination,
the local search is applied, and then, RPR presents a total
complexity of O(|ES| · log |ES| · p2 · n).

Finally, the computational complexity of the complete
algorithm is the maximum between the complexity of gener-
ating the set of non-dominated solutions and the complexity
of executing the RPR over the set of non-dominated solu-
tions, that is the maximum between O(n · p · β/step) and
O(|ES| · log |ES| · p2 · n), respectively.
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4 Computational results

This section presents the computational results conducted on
the proposed metaheuristic and a comparison against several
of the best-known multi-objective algorithms. All experi-
ments have been performed in an Intel Core i7-7700HQ (4
x 2.8 GHz) with 8GB RAM, and the algorithms were imple-
mented using Java 9. The source code has been also made
publicly available.2

The results of this section are divided into two parts: pre-
liminary and final experiments. In the former, the influence of
each part of the proposed algorithm is analyzed as well as the
corresponding parameters setting, while the latter shows the
performance of the best configuration for the proposed algo-
rithm over the complete set of instances, configured with the
best selected parameters. The quality of the obtained results
is measured by comparing them with the best approximation
of the Pareto front found (hereafter B)3 since the optimal
Pareto front of the BpMD problem is unknown.

To evaluate the performance of the proposal, three set of
instances have been considered, denoted as pmed set, D set,
and kmedian set. The first one consists of 40 instances of
the well-known OR-library4 (Beasley 1990). The number of
nodes ranges from 100 to 900, while the number of facili-
ties to select is in the range [5, 200], having a large variety
of combinations. The second set of instances consists of 9
medium-sized instances with n = 250 and p = 25, named
as D250 and 10 instances with n = 350 and p = 35, named
D350 previously solved by Colmenar et al. (2018) and by
Sayyady et al. (2015). Last set of instances consists of 15
large-sized instances, the smallest one contains n = 1000
nodes, then, the next instances increment by 1000 nodes
until reach n = 5000, each instance has 3 different p values
[n ·0.05, n ·0.15, n ·0.25]. They have been downloaded from
UFLLib.5

Table 2 summarizes the main characteristics of each
instance. To prevent the well-known over-fitting, a repre-
sentative subset of instances (25% aprox.) with different
characteristics is randomly selected.

Before startingwith the computational results, it is needed
to briefly describe how the quality of the algorithms is
measured when dealing with multi-objective optimization
problems. As it is well-known, the performance among
multi-objective optimization algorithms cannot be done by
comparing the objective function values, but comparing

2 https://grafo.etsii.urjc.es/BpMpD.
3 The best approximation of the Pareto front, denoted B, is estimated
with all the non-dominated solutions of the set, resulting from merging
the solutions found by all the algorithms under comparison.
4 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
5 http://resources.mpi-inf.mpg.de/departments/d1/projects/benchm
arks/UflLib/packages.html.

Pareto fronts since multi-objective optimization obtains a
set of efficient solutions instead of an unique solution as in
single-objective optimization. Therefore, to compare differ-
ent algorithms it is necessary to use metrics that evaluate the
quality of each obtained Pareto front. It is needed to measure
basically the cardinality of the Pareto front, the proximity of
the obtained solutions to the best/optimal Pareto front, and
the diversity of the solutions. In this work, several of the
most extended multi-objective metrics have been considered
(see Durillo and Nebro 2011 or Li and Yao 2019): the num-
ber of efficient solutions, coverage, spread, hypervolume, the
ε-indicator, generational distance, and inverted generational
distance.

The number of efficient solutions in the Pareto front (|A|)
counts the number of efficient solutions found with the
considered algorithm. The decision-maker usually prefers a
larger number of efficient solutions. However, this metric
does not have into account the quality of the solutions.

The coverage metric, C(A, B), evaluates the proportion
of solutions of the best/optimal Pareto front B that weakly
dominates the solutions from the Pareto front obtained by
the algorithm A. Let r be the number of objective functions,
then the coverage is computed as:

C(A, B) = |∀b ∈ B|∃a ∈ A : fr (a) ≤ fr (b)∀r |
|B| .

Therefore, the smaller the value of C(A, B), the better the
algorithm A is. Note that 0 ≤ C(A, B) ≤ 1, if C(A, B) = 0
means that no solution in the best/optimal Pareto front is
weakly dominated by the solutions obtained by algorithm
A and C(A, B) = 1 means that all the solutions in the
best/optimal Pareto front are weakly dominated by the solu-
tions obtained by algorithm A.

The spread (�) measures the extent of spread by the set of
computed solutions obtained by the Pareto front of algorithm
A.

� = d f + dl + ∑|A|−1
i=1 |di − d̄|

d f + dl + (|A| − 1)d̄

where di is the Euclidean distance between consecutive solu-
tions in the Pareto front obtained with algorithm A, d̂ is
the mean of these distances, and d f and dl are, respec-
tively, the Euclidean distances to the extreme solutions of
the best/optimal Pareto front in the objective space. The best
possible value is � = 0 which indicates a perfect spread of
the solutions in the Pareto front obtained with the considered
algorithm.

The hypervolume (HV ) evaluates the volume in the objec-
tive space which is covered by the Pareto front obtained
with the algorithm A. To calculate the HV , for each solution
a ∈ A, a hypercube va is constructed with a reference point
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Table 2 Main characteristics of
each considered instance

pmed instances D_250 & D_350 instances kmedian instances

Instance Nodes Facilities Instance Nodes Facilities Instance Nodes Facilities

pmed1 100 5 D_250_1 250 25 kmedian1 1000 50

pmed2 100 10 D_250_2 250 25 kmedian2 1000 150

pmed3 100 10 D_250_3 250 25 kmedian3 1000 250

pmed4 100 20 D_250_5 250 25 kmedian4 2000 100

pmed5 100 33 D_250_6 250 25 kmedian5 2000 300

pmed6 200 5 D_250_7 250 25 kmedian6 2000 500

pmed7 200 10 D_250_8 250 25 kmedian7 3000 150

pmed8 200 20 D_250_9 250 25 kmedian8 3000 450

pmed9 200 40 D_250_10 250 25 kmedian9 3000 750

pmed10 200 67 D_350_1 350 35 kmedian10 4000 200

pmed11 300 5 D_350_2 350 35 kmedian11 4000 600

pmed12 300 10 D_350_3 350 35 kmedian12 4000 1000

pmed13 300 30 D_350_4 350 35 kmedian13 5000 250

pmed14 300 60 D_350_5 350 35 kmedian14 5000 750

pmed15 300 100 D_350_6 350 35 kmedian15 5000 1250

pmed16 400 5 D_350_7 350 35

pmed17 400 10 D_350_8 350 35

pmed18 400 40 D_350_9 350 35

pmed19 400 80 D_350_10 350 35

pmed20 400 133

pmed21 500 5

pmed22 500 10

pmed23 500 50

pmed24 500 100

pmed25 500 167

pmed26 600 5

pmed27 600 10

pmed28 600 60

pmed29 600 120

pmed30 600 200

pmed31 700 5

pmed32 700 10

pmed33 700 70

pmed34 700 140

pmed35 800 5

pmed36 800 10

pmed37 800 80

pmed38 900 5

pmed39 900 10

pmed40 900 90

W (a vector of worst objective function values) and the solu-
tion a as the diagonal corners of the hypercube. Then, the
hypervolume is the union of all hypercubes is found.

HV = volume

⎛

⎝
|A|⋃

a=1

va

⎞

⎠

Then, the larger the HV value, the better the set of efficient
solutions obtained by the algorithm.

The ε-indicator (ε) measures the smallest distance (the
smallest ε value) needed to transform every point of the
Pareto front obtained with the algorithm A in the closest
point of the best/optimal Pareto front.
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ε = inf{ε ∈ R : ∀b ∈ B∃a ∈ A such that fk(a) ≤ ε · fk(b)∀k}.

Therefore, the smaller the ε-indicator, the better.
The generational distance (GD) measures how far the

solutions of the Pareto front obtained by the algorithm A
are from those solutions in the best/optimal Pareto front (B).

GD =
√∑|A|

i=1 d
2
i

|A|
where di is the Euclidean distance between each of these
solutions and the nearest solution of the best/optimal Pareto
front. If GD = 0 indicates that all the solutions are in the
best Pareto front.

The inverted generational distance (IGD) is an inversion
of the generational distancemetric with the aim ofmeasuring
the distance from the best/optimal Pareto front to the set of
efficient solutions obtained by the algorithm A.

IGD =
√∑n

i=1 d
2
i

|B| .

The smallest the value of IGD, the better. Note that the
only different between GD and IGD is that while comparing,
the IGD does not miss any part of best/optimal Pareto front.

Finally, the computing time (CPU) required by each algo-
rithm is included.

As the considered problem is a multi-objective opti-
mization problem, a set of non-dominated solutions (which
trivially contains more than one solution) is generated by
each algorithm. The results presented in Tables 3 to 7 report
the average values across the set of instances used in each
experiment, by performing a single execution of the com-
pared procedures.

4.1 Algorithm parameter tuning

This section is oriented toward both demonstrating the effec-
tiveness of the proposed strategies and tuning the parameters.
The aim of the first preliminary experiment is to determine
the number of constructions to calculate the initial set of
efficient solutions.As Sect. 3.1 describes, the number of solu-
tions built depends on the step value. Specifically, it has
been considered step ∈ {1/50, 1/100, 1/150, 1/200}, which
results in 51, 101, 151, and 201 solutions built. Table 3 shows
the results obtained in this experiment, where the metrics
described above are reported.

Analyzing the results of Table 3, as expected the larger
the number of solutions built, the better performance in all
metrics. Therefore, the more solutions, the better results.
However, the average computing time increases consider-
ably. Note that between the two intermediate values of the

column named step, values 1/100 and 1/150, there are no
significant differences in the performance in all the metrics
and the computing time can be substantially reduced. For
this reason, a compromise between the quality of the perfor-
mance metrics and the computational time could be selected.
Thus, step is set to 1/100.

As described in Sect. 3.1, it is desirable to construct a rich
and diverse set of efficient solutions. To this end, β is set to
0.00, 0.01, 0.02, . . . , 0.98, 0.99, 1.00 since it was opted by
the step=1/100.Note that,β = 0.0 optimizes f pD meanwhile
β = 1.0 optimizes f pM . Of course, β = 0.50 considers
that both objectives are equally important, f pM and f pD , see
Eq.1.

Once the number of constructions is set, Table 4 is ana-
lyzed. In the next experiment, the results obtained with the
reactive path relinking when considering different values for
k are shown. Specifically, the k value are set as 0.25 × p,
0.50× p, and 0.75× p, being p the number of facilities. Fur-
thermore, in this Table 4, the IPR and the EPR are included
in order to evaluate the actual contribution of the reactive
mechanism. The associated results are summarized in Table
4,where the samemetrics than in the above table are reported.

According to the results shown in Table 4, it is difficult
to conclude the more appropriate value of k to select the
best RPR variant. Nevertheless, the RPR with k = 0.75× p
achieves the best values for the coverage (0.38), the hyper-
volume (0.64), and IGD (6680.34). Additionally, it can
be observed that the differences between the best values
obtained with other strategies and the strategy of RPR with
k = 0.75× p are quite similar, obtaining no significant differ-
ences: the number of efficient solutions is practically equal
(36.68 vs 36.06), the spread (0.95 vs 0.95), the ε-indicator
(0.03 vs 0.03), and GD (1648.78 vs 1674.72). Furthermore,
the computing time of RPR with k = 0.75 × p is the
slightly faster (1014.91 vs 1067.66). Therefore, this variant
is selected as the most competitive one.

Finally, with the aim of analyzing the impact of each part
of the proposed algorithm, an additional experiment which
consists of comparing the results obtained by the construc-
tive procedure (C) is conducted, then coupled with the local
searchmethod (C+LS), andfinally, the reactive path relinking
(RPR). Table 5 shows the results obtained in this experiment.

Analyzing the coverage, themost relevant part of the algo-
rithm is the RPR, which is able to reduce the coverage to
almost 0. In this case, the local search procedure clearly
outperforms the results obtained by the constructive proce-
dure (0.77 versus 0.87). On the other hand, considering the
hypervolume, C+LS considerably improves the results of the
constructive procedure, while RPR is able to provide the final
improvement that results in a highly competitive algorithm
for the BpMD. Notice that in the ε-indicator metric the local
search procedure is the one obtaining the most remarkable
improvement. Additionally, the number of non-dominated
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Table 3 Effect of varying the
number of steps in the
constructive procedure

step |A| C(A, B) � HV ε GD IGD CPU

1/50 5.62 0.10 0.96 0.40 0.13 3696.27 6784.83 124.99

1/100 7.18 0.03 0.97 0.43 0.07 3164.47 6713.45 240.86

1/150 7.31 0.03 0.97 0.43 0.06 3146.91 6713.45 350.65

1/200 8.18 0.00 0.97 0.46 0.00 2931.86 6704.58 462.50

Table 4 Comparison of the
different proposed variants of
path relinking

|A| C(A, B) � HV ε GD IGD CPU

IPR 36.68 0.40 0.95 0.64 0.03 1648.78 6681.52 1117.21

RPR (k = 0.25 × p) 32.00 0.82 0.95 0.62 0.06 1798.44 6689.65 1014.91

RPR (k = 0.50 × p) 31.93 0.74 0.95 0.63 0.04 1784.81 6687.09 1551.63

RPR (k = 0.75 × p) 36.06 0.38 0.95 0.64 0.03 1674.72 6680.34 1067.66

EPR 32.18 0.80 0.96 0.62 0.05 1788.03 6688.96 1404.24

Table 5 Analysis of the effect
of the construction phase, local
search and path relinking in the
proposed algorithm

step |A| C(A, B) � HV ε GD IGD CPU

C 7.18 0.87 0.97 0.50 0.28 3164.47 6713.46 240.86

C + LS 31.50 0.77 0.98 0.61 0.08 1810.21 6699.64 757.47

RPR 36.06 0.05 0.95 0.64 0.01 1674.72 6680.33 1067.66

solutions increases considerably when including the local
search strategy. Therefore, it can be concluded that each part
of the proposed algorithm is essential in the final RPR algo-
rithm, each one of them providing different advantages that
lead to increase the effectiveness of the algorithm.

4.2 Comparison to other algorithms

Themost appropriate parameters to implement theRPRalgo-
rithmhavebeen chosen considering the results obtained in the
previous section. Specifically, step= 1/100 and k = 0.75× p.
The performance of the proposed algorithm is compared
with three of the most competitive evolutionary algorithms,
MOEA/D (Multi-Objective Evolutionary Algorithm based
onDecomposition),NSGA-II (elitistNon-dominatedSorting
Genetic Algorithm), and SPEA2 (Strength Pareto Evolution-
ary Algorithm), the Scatter Search algorithm proposed by
Colmenar et al. (2018) and the ε-C method, see Sayyady
et al. (2015). In all the remaining tables, the number between
parenthesis close to the name of the instance set indicates the
number of instances in that set. Before presenting the results,
all algorithms will be briefly described.

MOEA/D, first proposed in Zhang and Li (2007), decom-
poses the multi-objective optimization problem into single-
objective optimization subproblems using a set of even
spread weight vectors. All these subproblems are simulta-
neously solved in a single run to approximate the set of
efficient solutions. In MOEA/D, the neighborhood relations
among these subproblems are defined based on the distances
between their weight vectors. The optimal solutions of two

neighboring subproblems should be very similar. Each sub-
problem is optimized by using information only from its
neighboring subproblems.

NSGA-II, proposed by Deb et al. (2002), starts by gen-
erating an initial population of solutions that will be sorted
based on non-domination. To sort each solution, a rank (fit-
ness) value is assigned based on the front in which they
belong to. Then, a crowding distance is assigned to each
solution in the front. The crowding distance is a measure
related to the density of solutions around each solution, i.e.,
how close a solution is to its neighbors. Next, individual solu-
tions are selected by using a binary tournament selectionwith
crowed-comparison-operator. The selected population gen-
erates offspring from the crossover and mutation operators,
and this new population with the current population and cur-
rent offsprings is sorted again based on non-domination and
only the best N individuals are selected, being N the popu-
lation size. The selection is based on rank and on crowding
distance on the last front.

SPEA2 proposed by Zitzler et al. (2001) is an improve-
ment version of the SPEA that resolves its weakness:
fitness assignment, density estimation and archive truncation.
SPEA2 uses a regular population and an external archive to
keep the elite solutions. The algorithm starts by generating an
initial population of solutions and an empty archive. Next, all
non-dominated population solutions are copied to the archive
and any dominated solutions or duplicates are removed from
the archive. If the size of the archive exceeds a predefined
limit, further archive members are deleted by a clustering
technique which preserves the characteristics of the non-
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dominated front. Afterward, fitness values are assigned to
both archive and population members and again individual
solutions are selected by using a binary tournament selec-
tion. The selected population generates offspring from the
crossover and mutation operators.

Note that the solution representation for these three evolu-
tionary algorithms consists of an integer array of p elements,
where each element indicates the selected facility (notice that
the order of the selected facilities is not relevant). These algo-
rithms require one main input parameter, the population size.
This input parameters have been tunedwith the aim of having
a fair comparison in terms of computing time, resulting in a
population size of 100 solutions. The stopping criterion for
these three evolutionary algorithms is set to 3600s. Finally,
the remaining parameters have been set to the default and
recommended values by the MOEA Framework library used
to implement these algorithms (Hadka 2015).

The Scatter Search (SS) procedure reported in Colmenar
et al. (2018) is another evolutionary algorithm that starts by
randomly constructing a set of solutions to generate the initial
population. Then, they are improvedwith three different local
search methods, which are based on the first improvement
strategy. The reference set update method maintains a set of
not only the best solutions (in terms of the objective func-
tion values) but also according to their diversity. The subset
generation method and the combination method considered
in this Scatter Search follow a typical implementation.

Finally, it has been included an exact procedure based on
the ε-C strategy, with the aim of providing a near-optimal
approximation of the Pareto front. Since this algorithm is
very computationally demanding, the computational effort
required to generate the optimal Pareto front makes it not
suitable for this kind of problems, but it can be used to analyze
how far from the best Pareto front are the proposed algorithms
in a short computing time. The ε-C method used in this work
has been adapted from Sayyady et al. (2015) but including
a time limit of 7200s and, therefore, not all instances are
solved to optimality.

Now, the results obtained by the algorithms are shown in
Table 6 that summarizes the average results provided when
solving the whole set of instances of the OR-library. In par-
ticular, the instances are grouped by the number of nodes
in steps of 100. The summary results presented in the last
row prove the superiority of our proposal (RPR) over the five
analyzed algorithms (MOEA/D, NSGA-II, SPEA 2, SS and
ε-C). It can be observed that the RPR is the algorithm that
reaches the largest number of efficient solutions on average.
Specifically, almost 32 efficient solutions, followed by ε-C
which is able to find more than 17 efficient solutions on aver-
age. The coverage indicates that the percentage of solutions
of the best Pareto front, B, that dominates the solutions from
the Pareto front obtained by the RPR is only 13%,meanwhile
that percentage ismore than 95% for theMOEA/D,NSGA-II

and SPEA2, more than 97% for the Scatter Search, and more
than 75% for the ε-C method, which demonstrates that most
of the solutions of algorithm RPR are part of the best Pareto
front B. To measure the extent of the spread achieved by
the Pareto front approximation obtained by each algorithm,
the Scatter Search finds the best value 0.99 and RPR obtains
0.96, but both values are very similar. On the other hand,
the average size of the space covered by the RPR is 70.08%.
Regarding the average ε-C, the smallest distance needed to
transform every solution of the Pareto front obtained by the
RPR in the closest solution of the best Pareto front is 0.03 and
the average values of the ε-C for the remaining algorithms
are much more larger. Finally, RPR obtains the best values
for the GD and IGD, which indicate how far the solutions are
from the best Pareto front.

If we now analyze the results depending on the instance
size, we can clearly see that the time required by RPR scales
better with the size, while the other algorithms quickly reach
the time limit. Regarding the other metrics, the behavior is
similar independently of the instance size, emerging RPR as
the most competitive algorithm.

Furthermore, in order to facilitate future comparisons, all
Pareto fronts of D250 and D350 instances are available in
Fig. 5 and Fig. 6, and all individual results per instance are
detailed in Tables 10–17 of “Appendix A”.

The second set of instances considered in this paper are
those reported in Colmenar et al. (2018), that is, set D250
and D350 with 9 and 10 instances, respectively. The asso-
ciated average results are shown in Table 7. Analyzing the
results, these instances seem to be easier to solve for the exact
procedure ε-C, so they can be used to illustrate how far from
the best approximation of the Pareto Front are the heuristic
algorithms included in this comparison. Although in terms
of coverage and hypervolume value, ε-C algorithm is able to
obtain consistently better values, it is worth mentioning that
the number of solutions in the non-dominated set obtained by
RPR is considerably larger than the ones obtainedby theother
algorithms, including ε-C. Furthermore, half of the solutions
provided by the RPR are included in the best approximation
of the Pareto front regarding the coverage metric. Addition-
ally, the hypervolume obtained by the RPR is very similar
to the one obtained by ε-C, which is also an indicator of the
quality of the front obtained by RPR. Regarding the metrics
that measure the distance to the closest solution in the best
approximation front, ε-indicator, GD, and IGD, it can be seen
that RPR presents the best values, indicating that, in those
cases in which its solutions are covered by the best approx-
imation front, they are still really close to the best solution.
Indeed, RPR presents better results than ε-C in this metrics,
since when ε-C is not able to find the best solution, it remains
far from it due to the constraint on the computational time.
Finally, the computing time produced by RPR is an order
of magnitude lower than the one required by ε-C, highlight-
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Table 6 Comparison among all
the algorithms with the pmed
testbed

Instance Algorithm |A| C(A, B) � HV ε GD IGD CPU

100 (5) MOEA/D 19.00 0.98 1.05 0.39 0.39 1097.84 4118.11 3600.00

NSGA-II 31.00 0.94 0.98 0.42 0.38 892.52 4105.91 3600.00

SPEA2 32.20 0.95 0.98 0.43 0.36 868.58 4109.11 3600.00

SS 9.20 1.00 0.99 0.28 0.62 1529.14 4210.91 750.00

ε-C 16.80 0.86 0.96 0.47 0.26 1299.29 4056.51 1531.54

RPR 34.00 0.07 0.97 0.72 0.04 845.96 3725.91 7.83

200 (5) MOEA/D 12.00 1.00 1.05 0.29 0.65 1548.26 4797.16 3600.00

NSGA-II 29.20 0.96 1.00 0.38 0.49 1126.30 4817.76 3600.00

SPEA2 27.20 0.99 0.99 0.38 0.53 1137.47 4803.16 3600.00

SS 9.40 0.98 0.99 0.22 0.79 1704.11 4828.96 750.00

ε-C 19.60 0.71 0.91 0.58 0.15 1435.12 4712.76 1531.54

RPR 40.60 0.12 0.97 0.75 0.04 878.15 4394.36 69.42

300 (5) MOEA/D 10.40 0.98 1.05 0.27 0.66 1814.80 5154.93 3600.00

NSGA-II 20.60 0.97 0.98 0.31 0.60 1717.87 5186.13 3600.00

SPEA2 21.00 0.98 0.99 0.29 0.63 1595.33 5180.53 3600.00

SS 8.80 1.00 1.00 0.16 0.74 2159.51 5533.33 750.00

ε-C 19.60 0.72 0.93 0.53 0.26 1494.28 5090.53 2447.38

RPR 39.60 0.10 0.97 0.73 0.03 1030.23 4694.13 305.09

400 (5) MOEA/D 6.20 0.96 1.05 0.19 0.76 2743.31 5411.69 3600.00

NSGA-II 17.20 0.96 0.99 0.25 0.69 2249.31 5425.09 3600.00

SPEA2 18.00 0.96 0.98 0.25 0.70 2022.47 5421.69 3600.00

SS 6.40 0.97 0.99 0.13 0.89 2521.49 5467.89 750.00

ε-C 17.20 0.75 0.93 0.49 0.19 1800.94 5322.89 4001.62

RPR 31.20 0.18 0.95 0.69 0.03 1239.91 4948.49 804.20

500 (5) MOEA/D 4.60 0.93 1.04 0.19 0.83 3392.10 5971.73 3600.00

NSGA-II 16.60 0.98 0.97 0.27 0.70 2142.81 5950.73 3600.00

SPEA2 14.80 0.94 0.98 0.26 0.74 2401.71 5967.13 3600.00

SS 6.40 0.97 0.99 0.16 0.92 2920.58 6281.13 750.00

ε-C 18.00 0.75 0.96 0.49 0.26 1811.09 5866.33 4610.01

RPR 27.00 0.12 0.98 0.71 0.03 1402.81 5455.53 1954.18

600 (5) MOEA/D 4.80 0.93 1.04 0.18 0.84 3349.03 6071.69 3600.00

NSGA-II 15.80 0.95 0.98 0.25 0.73 2511.50 6076.89 3600.00

SPEA2 14.80 0.96 0.98 0.23 0.77 2465.68 6074.69 3600.00

SS 5.40 1.00 1.00 0.12 0.94 2982.91 6108.49 750.00

ε-C 16.40 0.79 0.96 0.48 0.25 2043.23 5998.49 4383.84

RPR 26.20 0.09 0.95 0.69 0.03 1530.84 5598.89 4006.49

700 (4) MOEA/D 4.75 1.00 1.04 0.20 0.74 4197.21 7074.90 3600.00

NSGA-II 16.50 0.95 0.98 0.32 0.59 2630.93 7094.65 3600.00

SPEA2 17.75 0.93 0.98 0.31 0.60 3104.33 7108.90 3600.00

SS 6.50 0.95 0.99 0.19 0.85 3824.58 7204.15 750.00

ε-C 15.75 0.74 0.94 0.51 0.21 2425.16 6985.40 5672.23

RPR 26.25 0.20 0.93 0.65 0.02 1879.80 6817.40 3557.06

800 (3) MOEA/D 6.00 0.90 1.05 0.24 0.66 4003.54 8653.99 3600.00

NSGA-II 20.33 0.89 0.94 0.39 0.49 2884.31 8700.66 3600.00

SPEA2 17.33 0.94 0.96 0.32 0.59 3672.50 8682.32 3600.00

SS 7.67 0.93 0.98 0.19 0.79 4147.74 8690.99 750.00
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Table 6 continued Instance Algorithm |A| C(A, B) � HV ε GD IGD CPU

ε-C 22.00 0.75 0.95 0.57 0.10 2756.42 8561.66 6687.81

RPR 32.00 0.15 0.97 0.63 0.03 2360.79 8480.99 2049.54

900 (3) MOEA/D 5.33 1.00 1.04 0.28 0.63 4328.03 8735.03 3600.00

NSGA-II 19.00 0.92 0.95 0.41 0.48 2914.03 8769.37 3600.00

SPEA2 15.00 0.87 0.97 0.35 0.58 3031.94 8756.70 3600.00

SS 6.67 0.94 0.99 0.22 0.79 3904.50 8804.37 750.00

ε-C 10.33 0.62 0.94 0.58 0.20 3551.73 8631.37 5044.19

RPR 27.33 0.22 0.92 0.69 0.03 2383.08 8588.70 3217.34

Summary (40) MOEA/D 8.45 0.96 1.05 0.25 0.69 2787.76 5952.33 3600.00

NSGA-II 20.90 0.95 0.98 0.33 0.58 2028.01 5965.03 3600.00

SPEA2 20.20 0.95 0.98 0.31 0.61 2124.67 5963.36 3600.00

SS 7.43 0.97 0.99 0.18 0.82 2713.59 6086.41 750.00

ε-C 17.45 0.75 0.94 0.52 0.22 1951.12 5868.96 3579.70

RPR 31.90 0.13 0.96 0.70 0.03 1409.76 5564.13 1644.12

Table 7 Comparison among all
the algorithms with the testbeds
D_250 and D_350

Instance Algorithm |A| C(A, B) � HV ε GD IGD CPU

250 (9) MOEA/D 12.11 0.95 1.01 0.47 0.46 354.95 1190.80 3600.00

NSGA-II 17.89 0.93 0.99 0.50 0.43 302.61 1198.46 3600.00

SPEA2 21.22 0.96 0.99 0.56 0.34 275.97 1201.35 3600.00

SS 8.78 0.94 0.98 0.48 0.32 464.41 1295.36 750.00

ε-C 8.11 0.00 0.99 0.75 0.07 439.13 1178.58 950.43

RPR 39.22 0.65 0.98 0.73 0.08 210.10 1188.46 150.60

350 (10) MOEA/D 9.27 0.96 1.00 0.38 0.58 525.77 1543.79 3600.00

NSGA-II 20.36 0.98 0.99 0.42 0.52 364.07 1551.16 3600.00

SPEA2 22.55 0.99 0.99 0.47 0.46 339.75 1554.25 3600.00

SS 8.91 0.90 0.98 0.43 0.35 602.57 1695.21 1650.00

ε-C 7.82 0.00 0.98 0.74 0.05 583.48 1526.89 2022.16

RPR 48.64 0.69 0.98 0.71 0.08 245.15 1537.16 608.44

Summary (19) MOEA/D 10.55 0.95 1.01 0.42 0.52 448.90 1384.95 3600.00

NSGA-II 19.25 0.95 0.99 0.46 0.48 336.41 1392.45 3600.00

SPEA2 21.95 0.97 0.99 0.51 0.41 311.05 1395.45 3600.00

SS 8.85 0.91 0.98 0.45 0.33 540.40 1515.27 1220.36

ε-C 7.95 0.00 0.98 0.75 0.06 518.52 1370.15 1516.61

RPR 44.40 0.67 0.98 0.72 0.08 229.38 1380.25 391.57

Table 8 Comparison among all
the algorithms with the testbeds
kmedian where the ε-C is able
to obtain solutions

|A| C(A, B) � HV ε GD IGD CPU

MOEA/D 3.00 0.38 1.00 0.29 0.70 224146.38 359819.45 3600.00

NSGA-II 4.17 0.58 1.00 0.32 0.66 191338.38 362277.95 3600.00

SPEA2 4.67 0.69 1.00 0.39 0.57 197144.20 363908.95 3600.00

SS 1.67 0.83 1.00 0.14 0.82 317525.50 410873.28 3600.00

ε-C 5.33 0.63 1.09 0.32 1.22 294216.00 417664.28 3600.00

RPR 7.83 0.26 1.00 0.31 0.66 147239.65 401851.45 3600.00
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Table 9 Comparison among all the algorithms with the testbeds kmedian

Instance Algorithm |A| C(A, B) � HV ε GD IGD CPU

1000 (3) MOEA/D 3.67 0.08 1.00 0.27 0.72 173941.79 296555.84 3600.00

NSGA-II 5.33 1.00 1.00 0.16 0.82 142943.16 300331.51 3600.00

SPEA2 6.67 0.33 1.00 0.34 0.62 133090.68 300326.84 3600.00

SS 1.67 1.00 1.00 0.05 0.88 268572.93 340187.84 3600.00

RPR 9.33 0.14 1.00 0.22 0.72 108241.74 331050.51 3600.00

2000 (3) MOEA/D 2.33 0.42 0.99 0.11 0.89 274350.97 423082.80 3600.00

NSGA-II 3.00 0.17 1.00 0.28 0.71 239733.61 424224.13 3600.00

SPEA2 2.67 0.72 1.00 0.29 0.68 261197.72 427490.80 3600.00

SS 1.67 0.67 1.00 0.05 0.92 366478.06 481558.46 3600.00

RPR 6.33 0.18 1.00 0.15 0.83 186237.55 472652.13 3600.00

3000 (3) MOEA/D 2.33 0.33 1.00 0.07 0.94 351719.25 522714.48 3600.00

NSGA-II 1.33 0.67 1.00 0.19 0.79 440792.89 524267.81 3600.00

SPEA2 1.33 0.33 1.00 0.19 0.80 440973.44 525090.81 3600.00

SS 1.33 0.67 1.00 0.01 0.96 493445.71 586263.48 3600.00

RPR 4.33 0.23 1.00 0.09 0.89 283194.81 581405.81 3600.00

4000 (3) MOEA/D 2.33 0.42 0.99 0.16 0.86 427414.82 627533.45 3600.00

NSGA-II 3.00 0.56 1.00 0.25 0.77 396050.94 640942.12 3600.00

SPEA2 5.00 0.60 1.00 0.24 0.77 307279.63 645066.12 3600.00

SS 1.67 0.67 0.67 0.01 0.70 508217.08 554933.04 3600.00

RPR 4.67 0.11 1.00 0.04 0.96 317071.74 673989.45 3600.00

5000 (3) MOEA/D 2.67 0.67 1.00 0.04 7.21 442607.60 731,899.31 3600.00

NSGA-II 1.67 0.67 1.00 0.01 8.61 591911.87 746946.64 3600.00

SPEA2 2.67 1.00 1.00 0.00 8.44 527963.92 746332.64 3600.00

SS 1.33 0.33 1.00 0.02 0.97 632507.01 751754.64 3600.00

RPR 5.00 0.11 1.00 0.03 0.96 333125.13 752550.64 3600.00

Summary (15) MOEA/D 2.67 0.38 1.00 0.13 2.12 334006.89 520357.18 3600.00

NSGA-II 2.87 0.61 1.00 0.18 2.34 362286.49 527342.44 3600.00

SPEA2 3.67 0.60 1.00 0.21 2.26 334101.08 528861.44 3600.00

SS 1.53 0.67 0.93 0.03 0.89 453844.16 542939.49 3600.00

RPR 5.93 0.16 1.00 0.11 0.87 245574.20 562329.71 3600.00

ing the suitability of RPR for providing fast and high-quality
solutions for the tackled problem. A similar behavior to those
obtained in the previous table can be emphasized, the scal-
ability of RPR when analyzing the computing time. In the
case of the exact procedure, the increase in computing time
makes it unaffordable for solving larger instances.

With the aim of testing the algorithm when dealing with
a more challenging set of instances, we have included the
kmedian testbed, where the number of nodes ranges from
1000 to 5000. This experiment is divided into two different
tables. On the one hand, Table 8 includes all the instances
for which the ε-C algorithm is able to finish, even without
guaranteeing optimality, since the time limit has been set to
3600s. On the other hand, Table 9 shows the results obtained
in those instances in which the exact procedure ε-C is not
even able to start since the memory requirements are too
high.

Analyzing the results inTable 8, the ε-C is only able to pro-
vide solutions for 6 out of 15 of the kmedian instances. These
instances seem to be harder to solve, since the number of solu-
tions |A| is close to 5, being RPR able to generate a more
populated set of non-dominated solutions. Additionally, RPR
is able to reach the smallest value of coverage, indicating that
it is able to reach the largest number of solutions belonging
to the reference set of non-dominated solutions. In terms of
hypervolume, RPR also provides competitive results, as well
as in the remaining metrics in the considered time horizon of
3600s.

Table 9 shows the results where ε-C is not considered,
since it is not able even to generate a single feasible solu-
tion. As it can be seen, results are rather similar than the
previous ones. However, it is important to remark that, in
this case, RPR is able to obtain the best results in more
metrics, highlighting the scalability of the proposal. In par-
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ticular, RPR is able to generate, on average, approximately
6 solutions in each non-dominated set, while the remain-
ing methods are not able to reach 4 solutions. The value of
0.16 in the coverage metric indicates that most of the solu-
tions provided by RPR belongs to the reference set, and the
value of ε-indicator or GD, for instance, suggests that the
non-dominated set of solutions of RPR are better distributed
along the search space. Analyzing the results per instance
size, RPR maintains similar performance in all the metrics,
even improving the ε-indicator metric while increasing the
size of the instance.

5 Conclusions

Nowadays, most of real-world optimization problems are
modeled considering more than one objective at a time
and usually those objectives are in conflict among them,
being impossible to improve one objective without dete-
riorating at least one of the other. Facility locations are
interesting combinatorial optimization problems that are
being recently addressed from a multi-objective perspective.
This manuscript is focused on the Bi-objective p-Median p-
Dispersion problem (BpMD problem) that seeks to minimize
the total distance between facilities and demand points and,
at the same time to maximize the minimum distance between
all pairs of facilities.

To address the BpMD problem, a new path relinking strat-
egyhas beenproposed.The algorithmcombines twodifferent
approaches: interior and exterior. The reactive path relink-
ing has been designed in an efficient way and is able to
decide which should use depending on the pairs of solutions
to combine. This algorithm is able to find high-quality Pareto
front approximations in short computing times, becoming a
competitive algorithm when comparing the state of the art.
Furthermore, computational experiments show the effective-
ness of our proposed algorithm for solving relatively large
instances of this bi-objective optimization problem in com-
parison with the other considered algorithms: MOEA/D,
NSGA-II, SPEA2, Scatter Search and ε-C method, being
able to obtain better Pareto fronts.

Therefore, our results establish the first benchmarks not
only for this problem but also for the applications of this
novel proposed methodology, the reactive path relinking, to
other multi-objective combinatorial optimization problems.

A future line of research is to adapt the reactive path
relinking algorithm to solve other combinatorial optimiza-
tion problems, whether single-objective or multi-objective
nature. A new strategy to prove would be the adaptive reac-
tive path relinking that will allow the algorithm to decide the
k parameter to consider to combine every pair of solutions
according their similarity or dissimilarity. Furthermore, it
would be interesting to test another constructive metaheuris-

tics as GRASP that includes randomization when selecting
one node from a restricted candidate list containing the
most promising nodes. Another interesting methodology to
test would be the Fixed Set Search (FSS) algorithm, see
Jovanovic et al. (2022), where a population of solutions is
generated with GRASP and the elements appearing with
more frequency in a subset of the most promising solutions
is fixed for the next generation of solutions. As the authors
hold, the FSS can be viewed as a metaheuristic that adds a
learning mechanism to the GRASP.
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See Figs. 5, 6 and Tables 10, 11, 12, 13, 14, 15, 16 and 17.
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Fig. 5 Pareto fronts obtained by scatter search and RPR
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Fig. 6 Pareto fronts obtained by scatter search and RPR
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Table 10 Number of efficient solutions in the Pareto front. Detailed
results for every instance and every algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 16 40 42 10 17 30

pmed2 22 35 41 12 19 50

pmed3 26 38 37 11 19 33

pmed4 16 23 23 6 17 35

pmed5 15 19 18 7 12 22

pmed6 23 65 59 18 22 62

pmed7 20 45 36 12 24 54

pmed8 7 19 25 10 14 40

pmed9 6 9 11 4 22 28

pmed10 4 8 5 3 16 19

pmed11 20 51 51 15 19 54

pmed12 14 30 31 11 19 54

pmed13 10 16 16 11 17 47

pmed14 5 2 3 3 24 28

pmed15 3 4 4 4 19 15

pmed16 14 46 53 12 25 49

pmed17 11 33 27 13 21 43

pmed18 3 3 5 2 17 31

pmed19 2 2 3 3 13 21

pmed20 1 2 2 2 10 12

pmed21 8 43 44 14 18 40

pmed22 10 29 21 10 21 40

pmed23 3 4 5 4 23 26

pmed24 1 5 3 3 17 18

pmed25 1 2 1 1 11 11

pmed26 11 46 42 14 22 42

pmed27 7 24 25 7 14 42

pmed28 4 6 3 2 14 22

pmed29 1 1 2 2 17 15

pmed30 1 2 2 2 15 10

pmed31 12 34 43 14 16 35

pmed32 5 27 25 10 18 37

pmed33 1 3 1 1 16 19

pmed34 1 2 2 1 13 14

pmed35 10 37 35 13 26 40

pmed36 5 21 16 9 21 37

pmed37 3 3 1 1 19 19

pmed38 7 34 28 12 13 34

Table 10 continued

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed39 7 20 14 6 9 31

pmed40 2 3 3 2 9 17

Average 8.45 20.90 20.20 7.43 17.45 31.90

D_250_1 17 15 22 8 8 32

D_250_2 10 25 24 9 7 37

D_250_3 10 17 14 9 8 49

D_250_5 12 21 26 9 8 45

D_250_6 14 21 22 9 7 46

D_250_7 10 10 15 9 9 40

D_250_8 12 22 24 9 9 42

D_250_9 10 19 22 8 8 32

D_250_10 14 11 22 9 9 30

D_350_1 11 9 23 9 7 66

D_350_2 7 23 26 9 7 42

D_350_3 10 18 19 9 7 46

D_350_4 13 23 24 9 8 54

D_350_5 7 26 28 9 8 57

D_350_6 11 22 24 9 8 46

D_350_7 9 16 24 8 8 46

D_350_8 12 20 19 9 9 59

D_350_9 8 23 19 9 8 41

D_350_10 7 22 21 9 8 39

Average 10.74 19.11 22.00 8.84 7.95 44.68

kmedian1 6 10 11 2 - 12

kmedian2 1 5 8 1 - 11

kmedian3 4 1 1 2 - 5

kmedian4 4 5 4 2 - 7

kmedian5 2 2 3 2 - 7

kmedian6 1 2 1 1 - 5

kmedian7 2 2 2 2 - 5

kmedian8 3 1 1 1 - 6

kmedian9 2 1 1 1 - 2

kmedian10 4 6 10 2 - 9

kmedian11 1 2 2 1 - 3

kmedian12 2 1 3 2 - 2

kmedian13 4 3 6 2 - 8

kmedian14 2 1 1 1 - 3

kmedian15 2 1 1 1 4

Average 2.67 2.87 3.67 1.53 - 5.93

123



A reactive path relinking algorithm for solving the bi-objective...

Table 11 Coveragemetric.Detailed results for every instance and every
algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 0.88 0.70 0.74 1.00 0.53 0.33

pmed2 1.00 1.00 1.00 1.00 0.89 0.00

pmed3 1.00 1.00 1.00 1.00 0.89 0.03

pmed4 1.00 1.00 1.00 1.00 1.00 0.00

pmed5 1.00 1.00 1.00 1.00 1.00 0.00

pmed6 1.00 0.80 0.93 0.89 0.18 0.53

pmed7 1.00 1.00 1.00 1.00 0.71 0.09

pmed8 1.00 1.00 1.00 1.00 0.79 0.00

pmed9 1.00 1.00 1.00 1.00 0.95 0.00

pmed10 1.00 1.00 1.00 1.00 0.94 0.00

pmed11 0.90 0.94 0.90 1.00 0.37 0.24

pmed12 1.00 0.90 1.00 1.00 0.32 0.28

pmed13 1.00 1.00 1.00 1.00 1.00 0.00

pmed14 1.00 1.00 1.00 1.00 0.96 0.00

pmed15 1.00 1.00 1.00 1.00 0.95 0.00

pmed16 0.79 0.87 0.91 1.00 0.44 0.47

pmed17 1.00 0.91 0.89 0.85 0.48 0.40

pmed18 1.00 1.00 1.00 1.00 0.94 0.03

pmed19 1.00 1.00 1.00 1.00 1.00 0.00

pmed20 1.00 1.00 1.00 1.00 0.90 0.00

pmed21 0.75 0.93 0.77 0.93 0.50 0.33

pmed22 0.90 0.97 0.90 0.90 0.43 0.28

pmed23 1.00 1.00 1.00 1.00 0.91 0.00

pmed24 1.00 1.00 1.00 1.00 1.00 0.00

pmed25 1.00 1.00 1.00 1.00 0.91 0.00

pmed26 0.64 0.74 0.93 1.00 0.68 0.29

pmed27 1.00 1.00 0.88 1.00 0.43 0.10

pmed28 1.00 1.00 1.00 1.00 0.93 0.05

pmed29 1.00 1.00 1.00 1.00 1.00 0.00

pmed30 1.00 1.00 1.00 1.00 0.93 0.00

pmed31 1.00 0.85 0.74 1.00 0.69 0.37

pmed32 1.00 0.96 0.96 0.80 0.39 0.43

pmed33 1.00 1.00 1.00 1.00 0.88 0.00

pmed34 1.00 1.00 1.00 1.00 1.00 0.00

pmed35 0.90 0.76 0.89 1.00 0.69 0.28

pmed36 0.80 0.90 0.94 0.78 0.62 0.16

pmed37 1.00 1.00 1.00 1.00 0.95 0.00

Table 11 continued

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed38 1.00 0.76 0.82 0.83 0.85 0.32

pmed39 1.00 1.00 0.79 1.00 0.11 0.29

pmed40 1.00 1.00 1.00 1.00 0.89 0.06

Average 0.96 0.95 0.95 0.97 0.75 0.13

D_250_1 1.00 1.00 1.00 0.88 0.00 0.63

D_250_2 1.00 0.76 1.00 0.89 0.00 0.51

D_250_3 0.70 0.88 0.93 1.00 0.00 0.41

D_250_5 1.00 1.00 0.96 1.00 0.00 0.71

D_250_6 1.00 1.00 1.00 0.89 0.00 0.57

D_250_7 1.00 0.70 0.87 1.00 0.00 0.73

D_250_8 0.83 1.00 1.00 0.89 0.00 0.81

D_250_9 1.00 1.00 0.95 0.88 0.00 0.59

D_250_10 1.00 1.00 0.91 1.00 0.00 0.87

D_350_1 1.00 1.00 1.00 0.89 0.00 0.58

D_350_2 1.00 1.00 0.96 1.00 0.00 0.60

D_350_3 1.00 1.00 1.00 0.89 0.00 0.54

D_350_4 1.00 1.00 1.00 0.89 0.00 0.91

D_350_5 1.00 1.00 1.00 0.89 0.00 0.61

D_350_6 1.00 1.00 1.00 0.89 0.00 0.59

D_350_7 0.67 0.75 0.92 0.88 0.00 0.80

D_350_8 1.00 1.00 1.00 0.89 0.00 0.69

D_350_9 0.88 1.00 1.00 0.89 0.00 0.76

D_350_10 1.00 1.00 1.00 0.89 0.00 0.77

Average 0.95 0.95 0.97 0.92 0.00 0.67

kmedian1 0.00 1.00 0.73 1.00 – 0.25

kmedian2 0.00 1.00 0.25 1.00 – 0.18

kmedian3 0.25 1.00 0.00 1.00 – 0.00

kmedian4 0.25 0.00 0.50 1.00 – 0.14

kmedian5 1.00 0.00 0.67 1.00 – 0.00

kmedian6 0.00 0.50 1.00 0.00 – 0.40

kmedian7 1.00 0.00 1.00 1.00 – 0.20

kmedian8 0.00 1.00 0.00 1.00 – 0.00

kmedian9 0.00 1.00 0.00 0.00 – 0.50

kmedian10 0.25 0.17 0.80 1.00 – 0.33

kmedian11 0.00 0.50 0.00 1.00 – 0.00

kmedian12 1.00 1.00 1.00 0.00 – 0.00

kmedian13 1.00 0.00 1.00 1.00 – 0.00

kmedian14 0.00 1.00 1.00 0.00 – 0.33

kmedian15 1.00 1.00 1.00 0.00 – 0.00

Average 0.38 0.61 0.60 0.67 – 0.16
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Table 12 Spread metric. Detailed results for every instance and every
algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 1.03 0.99 0.99 0.99 0.91 0.95

pmed2 1.12 0.96 0.98 0.98 0.93 0.99

pmed3 1.11 0.99 0.97 1.01 1.00 0.95

pmed4 1.01 0.97 0.98 0.98 0.97 0.97

pmed5 0.97 0.98 0.97 0.99 0.97 0.98

pmed6 1.14 0.98 0.92 0.99 0.89 0.95

pmed7 1.11 0.98 1.01 0.99 0.93 1.03

pmed8 0.98 1.03 1.01 0.99 0.88 0.96

pmed9 1.01 1.03 1.00 1.00 0.91 0.95

pmed10 1.00 1.00 1.00 1.00 0.92 0.97

pmed11 1.20 0.96 0.99 0.99 0.98 0.98

pmed12 1.06 0.96 0.97 0.99 0.91 0.96

pmed13 1.00 0.99 0.98 1.01 0.89 0.94

pmed14 1.01 1.00 1.00 1.00 0.91 0.97

pmed15 1.00 1.00 1.00 1.00 0.98 0.99

pmed16 1.15 0.98 1.00 0.99 0.95 0.98

pmed17 1.10 0.96 0.93 0.98 0.87 0.91

pmed18 0.99 1.00 1.00 1.00 0.92 0.95

pmed19 1.00 1.00 1.00 1.00 0.95 0.94

pmed20 1.00 1.00 1.00 1.00 0.96 0.97

pmed21 1.08 0.92 0.94 0.94 0.97 0.92

pmed22 1.10 0.97 0.98 1.01 0.92 0.96

pmed23 1.00 0.99 1.00 1.00 1.00 0.98

pmed24 1.00 1.00 1.00 1.00 0.96 1.01

pmed25 1.00 0.96 1.00 1.00 0.94 1.04

pmed26 1.14 0.95 0.97 1.00 1.04 0.93

pmed27 1.05 0.94 0.91 0.98 0.93 0.90

pmed28 1.00 1.00 1.00 1.00 0.93 0.93

pmed29 1.00 1.00 1.00 1.00 0.95 0.97

pmed30 1.00 1.00 1.00 1.00 0.96 1.02

pmed31 1.16 0.96 0.92 0.96 0.94 0.96

pmed32 1.01 0.97 0.98 1.02 0.93 0.89

pmed33 1.00 1.01 1.00 1.00 0.91 0.93

pmed34 1.00 1.00 1.00 1.00 0.97 0.93

pmed35 1.14 0.93 0.96 0.95 0.96 0.97

pmed36 1.02 0.90 0.93 0.99 0.93 0.94

pmed37 1.00 1.00 1.00 1.00 0.95 0.98

Table 12 continued

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed38 1.13 0.93 0.92 0.99 0.98 0.92

pmed39 1.06 0.91 0.98 0.99 0.91 0.87

pmed40 0.94 1.00 1.00 0.99 0.94 0.98

Average 1.05 0.98 0.98 0.99 0.94 0.96

D_250_1 1.00 0.99 0.99 0.98 0.99 0.97

D_250_2 1.00 0.99 0.99 0.98 0.95 0.97

D_250_3 1.01 0.99 0.99 0.97 0.99 0.98

D_250_5 1.00 0.99 0.99 0.96 0.98 0.99

D_250_6 1.01 0.99 0.99 0.99 0.99 0.97

D_250_7 1.01 1.00 0.99 0.98 0.99 0.98

D_250_8 1.01 0.99 1.00 0.98 1.00 0.98

D_250_9 1.01 0.99 1.01 0.98 0.99 0.99

D_250_10 0.99 0.99 0.99 0.98 0.99 0.98

D_350_1 1.00 1.00 0.99 0.97 0.97 0.98

D_350_2 1.02 0.99 0.99 0.97 0.97 0.99

D_350_3 1.00 0.99 0.99 0.98 0.98 0.99

D_350_4 1.01 0.99 0.99 0.98 0.99 0.99

D_350_5 1.00 0.99 0.98 0.98 0.97 0.98

D_350_6 1.02 0.99 0.99 0.97 0.98 0.97

D_350_7 1.01 1.00 1.00 0.98 0.99 0.98

D_350_8 1.00 0.99 1.00 0.98 0.99 0.96

D_350_9 1.00 0.99 0.99 0.98 0.98 1.01

D_350_10 1.00 0.99 0.99 0.98 0.98 0.99

Average 1.01 0.99 0.99 0.98 0.98 0.98

kmedian1 1.00 1.00 1.00 0.99 – 1.00

kmedian2 1.00 1.00 1.00 1.00 – 0.99

kmedian3 1.00 1.00 1.00 1.00 – 1.00

kmedian4 1.00 1.00 1.00 0.99 – 1.00

kmedian5 0.98 1.00 1.00 1.00 – 1.00

kmedian6 1.00 1.00 1.00 1.00 – 1.00

kmedian7 1.00 1.00 1.00 1.00 – 1.00

kmedian8 1.00 1.00 1.00 1.00 – 1.00

kmedian9 1.00 1.00 1.00 1.00 – 1.00

kmedian10 1.00 1.00 1.00 1.00 – 1.00

kmedian11 1.00 1.00 1.00 1.00 – 1.00

kmedian12 0.96 1.00 1.00 0.00 – 1.00

kmedian13 1.00 1.00 1.00 1.00 – 1.00

kmedian14 1.00 1.00 1.00 1.00 – 1.00

kmedian15 1.00 1.00 1.00 1.00 – 1.00

Average 1.00 1.00 1.00 0.93 – 1.00
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Table 13 Hypervolume metric. Detailed results for every instance and
every algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 0.54 0.59 0.59 0.41 0.63 0.63

pmed2 0.51 0.52 0.53 0.38 0.63 0.71

pmed3 0.60 0.67 0.68 0.41 0.73 0.80

pmed4 0.27 0.30 0.32 0.21 0.36 0.70

pmed5 0.01 0.01 0.01 0.00 0.01 0.77

pmed6 0.48 0.63 0.62 0.34 0.64 0.64

pmed7 0.52 0.60 0.55 0.38 0.70 0.72

pmed8 0.32 0.44 0.49 0.37 0.67 0.73

pmed9 0.12 0.21 0.22 0.02 0.57 0.80

pmed10 0.00 0.02 0.00 0.00 0.34 0.87

pmed11 0.54 0.70 0.70 0.43 0.62 0.72

pmed12 0.39 0.46 0.42 0.19 0.54 0.60

pmed13 0.27 0.37 0.30 0.09 0.58 0.68

pmed14 0.14 0.03 0.05 0.08 0.54 0.78

pmed15 0.00 0.00 0.00 0.00 0.37 0.87

pmed16 0.46 0.63 0.63 0.25 0.64 0.65

pmed17 0.45 0.54 0.51 0.34 0.61 0.63

pmed18 0.06 0.08 0.09 0.06 0.56 0.64

pmed19 0.00 0.00 0.00 0.00 0.34 0.67

pmed20 0.00 0.00 0.00 0.00 0.32 0.88

pmed21 0.43 0.66 0.65 0.40 0.55 0.67

pmed22 0.42 0.49 0.45 0.31 0.63 0.67

pmed23 0.10 0.17 0.20 0.11 0.59 0.69

pmed24 0.00 0.04 0.00 0.00 0.39 0.70

pmed25 0.00 0.00 0.00 0.00 0.29 0.84

pmed26 0.47 0.71 0.68 0.37 0.65 0.71

pmed27 0.33 0.43 0.44 0.17 0.48 0.62

pmed28 0.08 0.12 0.04 0.04 0.52 0.62

pmed29 0.00 0.00 0.00 0.00 0.32 0.62

pmed30 0.00 0.00 0.00 0.00 0.42 0.87

pmed31 0.41 0.65 0.65 0.38 0.56 0.67

pmed32 0.36 0.55 0.53 0.33 0.58 0.65

pmed33 0.05 0.09 0.05 0.05 0.56 0.62

pmed34 0.00 0.00 0.00 0.00 0.32 0.64

pmed35 0.40 0.63 0.62 0.36 0.66 0.67

pmed36 0.32 0.43 0.35 0.22 0.54 0.61

pmed37 0.00 0.10 0.00 0.00 0.50 0.62

pmed38 0.33 0.58 0.50 0.27 0.52 0.68

pmed39 0.51 0.58 0.51 0.39 0.67 0.71

Table 13 continued

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed40 0.00 0.06 0.06 0.00 0.56 0.66

Average 0.25 0.33 0.31 0.18 0.52 0.70

D_250_1 0.50 0.44 0.57 0.44 0.77 0.74

D_250_2 0.37 0.57 0.52 0.51 0.75 0.72

D_250_3 0.53 0.55 0.53 0.48 0.74 0.76

D_250_5 0.44 0.46 0.56 0.40 0.72 0.69

D_250_6 0.45 0.51 0.56 0.46 0.74 0.73

D_250_7 0.34 0.41 0.48 0.51 0.73 0.73

D_250_8 0.57 0.51 0.61 0.54 0.78 0.76

D_250_9 0.52 0.57 0.68 0.51 0.80 0.80

D_250_10 0.47 0.50 0.56 0.45 0.72 0.66

D_350_1 0.31 0.34 0.41 0.44 0.72 0.71

D_350_2 0.30 0.34 0.42 0.29 0.65 0.63

D_350_3 0.34 0.40 0.39 0.44 0.75 0.74

D_350_4 0.44 0.44 0.53 0.50 0.77 0.72

D_350_5 0.26 0.34 0.46 0.40 0.67 0.65

D_350_6 0.44 0.50 0.51 0.44 0.75 0.73

D_350_7 0.49 0.57 0.59 0.48 0.81 0.75

D_350_8 0.44 0.39 0.45 0.45 0.72 0.71

D_350_9 0.37 0.50 0.47 0.46 0.77 0.71

D_350_10 0.40 0.43 0.49 0.43 0.79 0.74

Average 0.42 0.46 0.52 0.45 0.75 0.72

kmedian1 0.54 0.36 0.55 0.05 – 0.33

kmedian2 0.00 0.00 0.27 0.00 – 0.20

kmedian3 0.28 0.11 0.19 0.09 – 0.14

kmedian4 0.32 0.48 0.53 0.02 – 0.29

kmedian5 0.02 0.11 0.22 0.00 – 0.05

kmedian6 0.00 0.26 0.13 0.14 – 0.12

kmedian7 0.00 0.20 0.14 0.01 – 0.16

kmedian8 0.15 0.14 0.18 0.00 – 0.11

kmedian9 0.07 0.24 0.25 0.01 – 0.00

kmedian10 0.47 0.56 0.51 0.00 – 0.09

kmedian11 0.00 0.20 0.20 0.00 – 0.02

kmedian12 0.00 0.00 0.00 0.02 – 0.00

kmedian13 0.00 0.03 0.00 0.01 – 0.06

kmedian14 0.11 0.00 0.01 0.05 – 0.01

kmedian15 0.00 0.00 0.00 0.00 – 0.03

Average 0.13 0.18 0.21 0.03 – 0.11
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Table 14 ε-indicator metric. Detailed results for every instance and
every algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 0.16 0.10 0.10 0.43 0.03 0.08

pmed2 0.21 0.37 0.31 0.56 0.08 0.08

pmed3 0.22 0.13 0.15 0.54 0.09 0.04

pmed4 0.51 0.43 0.38 0.66 0.28 0.00

pmed5 0.84 0.85 0.84 0.93 0.80 0.00

pmed6 0.29 0.05 0.06 0.60 0.04 0.05

pmed7 0.37 0.22 0.37 0.59 0.06 0.04

pmed8 0.65 0.49 0.41 0.60 0.08 0.06

pmed9 0.85 0.72 0.72 0.98 0.17 0.02

pmed10 1.09 0.95 1.09 1.19 0.42 0.02

pmed11 0.28 0.04 0.06 0.49 0.30 0.02

pmed12 0.46 0.43 0.50 0.81 0.28 0.05

pmed13 0.70 0.58 0.66 0.50 0.12 0.00

pmed14 0.81 0.97 0.94 0.91 0.17 0.03

pmed15 1.05 1.00 1.00 1.00 0.42 0.05

pmed16 0.30 0.06 0.08 0.73 0.04 0.06

pmed17 0.33 0.30 0.37 0.63 0.05 0.03

pmed18 0.94 0.91 0.91 0.94 0.12 0.01

pmed19 1.10 1.05 1.00 1.00 0.27 0.00

pmed20 1.15 1.15 1.15 1.15 0.47 0.03

pmed21 0.33 0.05 0.05 0.52 0.35 0.03

pmed22 0.42 0.40 0.49 0.67 0.08 0.05

pmed23 0.89 0.81 0.78 0.89 0.13 0.00

pmed24 1.12 0.94 1.00 1.12 0.27 0.00

pmed25 1.38 1.29 1.38 1.38 0.48 0.05

pmed26 0.33 0.08 0.11 0.60 0.14 0.07

pmed27 0.54 0.46 0.46 0.82 0.24 0.02

pmed28 0.91 0.87 0.96 0.96 0.16 0.02

pmed29 1.21 1.14 1.14 1.14 0.28 0.00

pmed30 1.19 1.09 1.19 1.19 0.42 0.06

pmed31 0.37 0.10 0.05 0.57 0.19 0.04

pmed32 0.57 0.29 0.33 0.64 0.17 0.03

pmed33 0.95 0.90 0.95 0.95 0.18 0.02

pmed34 1.08 1.08 1.08 1.23 0.32 0.00

pmed35 0.39 0.10 0.16 0.59 0.03 0.02

pmed36 0.60 0.48 0.60 0.78 0.15 0.04

pmed37 1.00 0.89 1.00 1.00 0.13 0.02

pmed38 0.51 0.21 0.36 0.70 0.38 0.02

pmed39 0.38 0.30 0.45 0.60 0.10 0.03

Table 14 continued

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed40 1.00 0.94 0.94 1.06 0.13 0.04

Average 0.69 0.58 0.61 0.82 0.22 0.03

D_250_1 0.38 0.51 0.29 0.35 0.04 0.06

D_250_2 0.52 0.31 0.39 0.27 0.06 0.07

D_250_3 0.40 0.39 0.41 0.31 0.12 0.04

D_250_5 0.49 0.46 0.31 0.35 0.07 0.08

D_250_6 0.47 0.40 0.35 0.34 0.09 0.06

D_250_7 0.63 0.56 0.47 0.28 0.11 0.09

D_250_8 0.38 0.45 0.30 0.28 0.07 0.07

D_250_9 0.41 0.34 0.21 0.34 0.05 0.07

D_250_10 0.44 0.44 0.36 0.33 0.05 0.13

D_350_1 0.65 0.62 0.55 0.32 0.06 0.05

D_350_2 0.64 0.59 0.51 0.44 0.08 0.09

D_350_3 0.59 0.55 0.57 0.33 0.05 0.06

D_350_4 0.52 0.51 0.38 0.29 0.07 0.07

D_350_5 0.70 0.61 0.44 0.34 0.05 0.11

D_350_6 0.50 0.44 0.41 0.33 0.04 0.07

D_350_7 0.48 0.38 0.34 0.36 0.05 0.10

D_350_8 0.49 0.57 0.51 0.31 0.06 0.07

D_350_9 0.60 0.45 0.47 0.34 0.02 0.11

D_350_10 0.57 0.52 0.44 0.39 0.05 0.07

Average 0.52 0.48 0.40 0.33 0.06 0.08

kmedian1 0.45 0.59 0.38 0.78 – 0.59

kmedian2 1.00 1.00 0.69 0.97 – 0.73

kmedian3 0.70 0.88 0.80 0.88 – 0.84

kmedian4 0.68 0.50 0.42 0.92 – 0.69

kmedian5 0.98 0.89 0.77 1.02 – 0.93

kmedian6 1.00 0.73 0.86 0.82 – 0.86

kmedian7 1.05 0.80 0.85 0.91 – 0.81

kmedian8 0.85 0.85 0.81 0.99 – 0.87

kmedian9 0.93 0.73 0.73 0.98 – 1.00

kmedian10 0.51 0.41 0.39 1.00 – 0.90

kmedian11 1.00 0.77 0.78 1.03 – 0.98

kmedian12 1.06 1.13 1.14 0.07 – 1.00

kmedian13 1.18 0.97 1.18 0.96 – 0.93

kmedian14 0.89 1.03 0.95 0.94 – 0.99

kmedian15 19.56 23.82 23.18 1.00 – 0.96

Average 2.12 2.34 2.26 0.89 – 0.87
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Table 15 Generational distance
metric. Detailed results for every
instance and every algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 1840.31 1276.50 1259.61 2276.92 1939.05 1502.49

pmed2 1085.73 874.16 812.73 1425.89 1389.51 765.18

pmed3 988.04 908.91 873.90 1484.54 1307.97 948.96

pmed4 959.39 843.97 827.27 1579.43 1036.96 637.37

pmed5 615.73 559.08 569.39 878.93 822.97 375.82

pmed6 1939.57 1353.84 1426.20 2145.29 2279.50 1407.37

pmed7 1396.11 1102.49 1084.74 1796.33 1604.92 1001.64

pmed8 1849.87 1175.75 1079.75 1568.02 1682.35 936.99

pmed9 1397.00 1156.68 1058.14 1681.10 916.81 684.37

pmed10 1158.76 842.74 1038.53 1329.83 692.01 360.40

pmed11 2128.70 1628.41 1576.39 2515.04 2079.48 1605.68

pmed12 1976.38 1541.21 1461.15 2094.22 2014.24 1405.10

pmed13 1528.50 1278.95 1261.48 2553.81 1601.56 886.68

pmed14 1719.92 2647.42 2180.86 2146.24 973.84 735.35

pmed15 1720.51 1493.38 1496.75 1488.26 802.29 518.32

pmed16 2700.20 1913.10 1804.43 2678.76 2656.81 1958.24

pmed17 2443.23 1671.92 1801.96 2174.58 2387.76 1667.45

pmed18 2964.91 2979.79 2280.37 3562.42 1660.10 1169.25

pmed19 2475.23 2469.22 2010.92 1991.86 1183.27 785.07

pmed20 3133.00 2212.54 2214.66 2199.81 1116.79 619.54

pmed21 4102.86 2078.16 2152.87 3156.16 2662.03 2285.21

pmed22 3084.42 2065.38 2233.83 2921.87 2874.68 1993.50

pmed23 2849.23 2592.11 2244.13 2443.50 1366.25 1202.49

pmed24 3663.00 1639.59 2117.72 2843.37 1032.65 863.52

pmed25 3261.00 2338.79 3260.00 3238.00 1119.83 669.33

pmed26 3487.64 2140.78 2266.90 3106.65 3080.21 2392.74

pmed27 3595.75 2189.88 2166.63 3348.43 3287.50 2136.92

pmed28 2433.74 1977.82 2773.98 3356.29 1709.65 1368.42

pmed29 3779.00 3801.00 2676.40 2654.48 1107.04 1011.25

pmed30 3449.00 2448.00 2444.47 2448.71 1031.76 744.87

pmed31 3369.68 2465.50 2346.81 3242.81 3743.74 2608.97

pmed32 4615.17 2374.35 2322.69 3302.49 3056.54 2277.78

pmed33 5014.00 2986.95 5064.00 4959.00 1582.95 1560.63

pmed34 3790.00 2696.91 2683.82 3794.00 1317.40 1071.83

pmed35 3856.33 2680.10 2639.29 3563.52 3404.25 2709.75

pmed36 5000.78 2792.59 2939.20 3520.70 3263.21 2696.92

pmed37 3153.50 3180.24 5439.00 5359.00 1601.79 1675.71
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Table 15 continued Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed38 4906.76 2728.05 2973.71 3693.78 3697.99 2963.34

pmed39 4034.86 2788.39 2917.82 4123.19 4577.15 2498.70

pmed40 4042.46 3225.66 3204.30 3896.53 2380.05 1687.21

Average 2787.76 2028.01 2124.67 2713.59 1951.12 1409.76

D_250_1 301.02 322.30 274.81 489.62 444.84 231.98

D_250_2 385.58 245.65 252.95 457.27 470.64 214.28

D_250_3 374.87 291.67 323.88 449.26 422.97 182.68

D_250_5 360.17 278.97 253.85 472.35 451.93 198.35

D_250_6 312.02 259.16 255.89 438.12 446.92 183.09

D_250_7 391.97 395.16 330.23 468.02 439.45 211.63

D_250_8 352.72 266.51 257.68 464.86 415.79 201.48

D_250_9 377.71 281.37 260.53 466.82 422.32 223.04

D_250_10 338.49 382.70 273.92 473.40 437.32 244.41

D_350_1 479.62 534.43 335.88 609.02 623.58 214.63

D_350_2 598.78 334.26 314.38 601.41 623.14 258.09

D_350_3 516.85 388.21 373.50 611.60 629.62 253.49

D_350_4 445.29 343.84 341.33 612.62 584.62 234.88

D_350_5 615.44 322.68 318.35 611.83 605.08 228.32

D_350_6 474.54 340.18 324.46 594.99 570.10 248.89

D_350_7 495.69 378.97 313.57 600.79 538.24 240.25

D_350_8 461.35 361.64 365.94 603.13 559.30 228.30

D_350_9 538.30 326.91 359.91 588.53 561.52 259.56

D_350_10 578.79 336.83 344.94 597.17 561.52 265.12

Average 442.06 336.39 309.26 537.41 516.26 227.50

kmedian1 200134.79 157649.17 150661.68 393170.71 – 158578.93

kmedian2 240771.34 108851.12 87021.15 281918.30 – 83224.22

kmedian3 80919.26 162329.19 161589.22 130629.77 – 82922.07

kmedian4 348937.47 313863.41 352431.35 558586.91 – 292549.95

kmedian5 246385.39 243655.99 201040.75 282386.12 – 149342.36

kmedian6 227730.05 161681.43 230121.07 258461.15 – 116820.35

kmedian7 608698.68 604969.57 610557.23 676403.99 – 427152.31

kmedian8 244457.03 426763.05 424318.05 482584.08 – 194814.74

kmedian9 202002.04 290646.03 288045.03 321349.07 – 227617.37

kmedian10 495149.42 406708.23 318972.69 784146.15 – 366940.86

kmedian11 500770.02 358673.59 357924.04 557704.05 – 320,801.74

kmedian12 286325.02 422771.00 244942.15 182801.03 – 263472.64

kmedian13 556465.40 636088.62 452559.75 865121.97 – 432153.26

kmedian14 418772.33 622599.01 617124.00 620031.04 – 358881.35

kmedian15 352585.08 517048.00 514208.00 412368.04 – 208340.77

Average 334006.89 362286.49 334101.08 453844.16 – 245574.20
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Table 16 Inverted generational
distance metric. Detailed results
for every instance and every
algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 5910.71 5910.71 5910.71 6015.71 5842.71 5818.71

pmed2 4304.75 4235.75 4251.75 4398.75 4177.75 4092.75

pmed3 4453.75 4453.75 4465.75 4704.75 4414.75 4249.75

pmed4 3650.66 3641.66 3641.66 3674.66 3619.66 3091.66

pmed5 2270.67 2287.67 2275.67 2260.67 2227.67 1376.67

pmed6 7837.73 7888.73 7837.73 7919.73 7758.73 7823.73

pmed7 5791.76 5750.76 5775.76 5907.76 5705.76 5638.76

pmed8 4691.73 4779.73 4692.73 4680.73 4560.73 4491.73

pmed9 3360.75 3357.75 3395.75 3333.75 3263.75 2749.75

pmed10 2303.84 2311.84 2313.84 2302.84 2274.84 1267.84

pmed11 7715.73 7732.73 7760.73 8015.73 7646.73 7695.73

pmed12 6688.59 6705.59 6691.59 6686.59 6593.59 6639.59

pmed13 4653.69 4770.69 4695.69 6290.69 4588.69 4410.69

pmed14 3740.76 3740.76 3767.76 3703.76 3666.76 2983.76

pmed15 2975.86 2980.86 2986.86 2969.86 2956.86 1740.86

pmed16 8179.68 8241.68 8196.68 8509.68 8142.68 8197.68

med17 7130.62 7152.62 7223.62 7238.62 6998.62 7009.62

pmed18 5114.67 5110.67 5077.67 5034.67 4978.67 4813.67

pmed19 3499.67 3491.67 3478.67 3445.67 3414.67 2875.67

pmed20 3133.83 3128.83 3131.83 3110.83 3079.83 1845.83

pmed21 9275.71 9202.71 9213.71 9683.71 9115.71 9137.71

pmed22 8729.71 8733.71 8736.71 8711.71 8578.71 8604.71

pmed23 4927.71 4912.71 4958.71 4883.71 4869.71 4655.71

pmed24 3663.72 3656.72 3665.72 4887.72 3575.72 2983.72

pmed25 3261.82 3247.82 3260.82 3238.82 3191.82 1895.82

pmed26 9957.73 9928.73 9987.73 10245.73 9908.73 9938.73

pmed27 8351.62 8388.62 8347.62 8337.62 8288.62 8309.62

pmed28 4819.60 4804.60 4799.60 4746.60 4680.60 4555.60

pmed29 3779.65 3801.65 3781.65 3750.65 3704.65 3100.65

pmed30 3449.85 3460.85 3456.85 3461.85 3409.85 2089.85

pmed31 10095.69 10095.69 10113.69 10633.69 10088.69 10085.69

pmed32 9398.63 9444.63 9461.63 9428.63 9235.63 9317.63

pmed33 5014.61 5027.61 5064.61 4959.61 4918.61 4780.61

pmed34 3790.67 3810.67 3795.67 3794.67 3698.67 3085.67

pmed35 10562.69 10486.69 10563.69 10707.69 10372.69 10399.69

pmed36 9955.64 10113.64 10043.64 10005.64 9979.64 9933.64

pmed37 5443.63 5501.63 5439.63 5359.63 5332.63 5109.63
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Table 16 continued Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed38 11144.74 11,085.74 11160.74 11247.74 11103.74 11134.74

pmed39 9527.68 9639.68 9567.68 9670.68 9359.68 9450.68

pmed40 5532.68 5582.68 5541.68 5494.68 5430.68 5180.68

Average 5952.33 5965.03 5963.36 6086.41 5868.96 5564.13

D_250_1 1213.67 1224.67 1232.67 1315.74 1198.67 1211.67

D_250_2 1174.71 1175.71 1182.71 1274.89 1156.71 1176.71

D_250_3 1151.66 1157.66 1163.66 1259.52 1144.66 1160.66

D_250_5 1218.68 1236.68 1231.68 1328.09 1212.68 1219.68

D_250_6 1142.64 1161.64 1155.64 1247.57 1126.64 1132.64

D_250_7 1224.74 1224.74 1238.74 1328.15 1211.74 1214.74

D_250_8 1197.73 1203.73 1203.73 1302.78 1186.73 1196.73

D_250_9 1159.70 1163.70 1162.70 1266.12 1149.70 1150.70

D_250_10 1233.66 1237.66 1240.66 1335.38 1219.66 1232.66

D_350_1 1568.68 1565.68 1564.68 1706.22 1542.68 1546.68

D_350_2 1555.67 1566.67 1557.67 1693.30 1535.67 1544.67

D_350_3 1594.74 1602.74 1599.74 1738.14 1578.74 1589.74

D_350_4 1578.70 1586.70 1614.70 1725.65 1570.70 1593.70

D_350_5 1598.64 1588.64 1597.64 1728.93 1561.64 1570.64

D_350_6 1543.69 1537.69 1540.69 1679.01 1515.69 1522.69

D_350_7 1464.74 1487.74 1496.74 1621.78 1461.74 1474.74

D_350_8 1559.61 1566.61 1568.61 1704.34 1544.61 1551.61

D_350_9 1501.75 1506.75 1516.75 1660.17 1494.75 1506.75

D_350_10 1507.76 1526.76 1519.76 1694.86 1494.76 1503.76

Average 1378.48 1385.38 1388.90 1505.82 1363.59 1373.75

kmedian1 488,462.57 495659.57 493967.57 553918.57 – 537846.57

kmedian2 240,771.47 243005.47 245423.47 281918.47 – 271541.47

kmedian3 160,433.48 162329.48 161589.48 184726.48 – 183763.48

kmedian4 696,428.67 699489.67 704269.67 787811.67 – 764522.67

kmedian5 345089.32 344,552.32 348081.32 398402.32 – 393722.32

kmedian6 227,730.40 228630.40 230121.40 258461.40 – 259711.40

kmedian7 859662.40 855,393.40 862908.40 954856.40 – 947076.40

kmedian8 422,881.45 426763.45 424318.45 482584.45 – 475294.45

kmedian9 285,599.59 290646.59 288045.59 321349.59 – 321846.59

kmedian10 985,828.58 992980.58 1005136.58 1107094.58 – 1094360.58

kmedian11 500,770.53 507074.53 506145.53 557704.53 – 555109.53

kmedian12 396001.25 422771.25 423916.25 0.00 – 372498.25

kmedian13 1105190.30 1,101,192.30 1107665.30 1222864.30 – 1219656.30

kmedian14 592,194.41 622599.41 617124.41 620031.41 – 621424.41

kmedian15 498313.21 517048.21 514208.21 412,368.21 – 416571.21

Average 520,357.18 527342.44 528861.44 542939.49 – 562329.71
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Table 17 CPU time. Detailed
results for every instance and
every algorithm

Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed1 3600.00 3600.00 3600.00 750.00 116.91 1.69

pmed2 3600.00 3600.00 3600.00 750.00 102.55 4.23

pmed3 3600.00 3600.00 3600.00 750.00 162.63 3.81

pmed4 3600.00 3600.00 3600.00 750.00 39.11 9.86

pmed5 3600.00 3600.00 3600.00 750.00 10.08 19.54

pmed6 3600.00 3600.00 3600.00 750.00 2562.56 4.68

pmed7 3600.00 3600.00 3600.00 750.00 2166.09 10.27

pmed8 3600.00 3600.00 3600.00 750.00 1725.86 29.52

pmed9 3600.00 3600.00 3600.00 750.00 1082.85 87.43

pmed10 3600.00 3600.00 3600.00 750.00 120.32 215.20

pmed11 3600.00 3600.00 3600.00 750.00 1942.85 11.39

pmed12 3600.00 3600.00 3600.00 750.00 3122.69 37.70

pmed13 3600.00 3600.00 3600.00 750.00 3783.52 182.76

pmed14 3600.00 3600.00 3600.00 750.00 2602.36 455.56

pmed15 3600.00 3600.00 3600.00 750.00 785.48 837.99

pmed16 3600.00 3600.00 3600.00 750.00 3889.25 21.72

pmed17 3600.00 3600.00 3600.00 750.00 4135.74 56.34

pmed18 3600.00 3600.00 3600.00 750.00 5253.96 397.17

pmed19 3600.00 3600.00 3600.00 750.00 4976.48 1155.27

pmed20 3600.00 3600.00 3600.00 750.00 1752.63 2390.48

pmed21 3600.00 3600.00 3600.00 750.00 3538.66 33.20

pmed22 3600.00 3600.00 3600.00 750.00 6920.24 81.87

pmed23 3600.00 3600.00 3600.00 750.00 4802.91 993.01

pmed24 3600.00 3600.00 3600.00 750.00 4305.88 3141.25

pmed25 3600.00 3600.00 3600.00 750.00 3482.32 5521.56

pmed26 3600.00 3600.00 3600.00 750.00 6020.31 41.73

pmed27 3600.00 3600.00 3600.00 750.00 5489.43 137.98

pmed28 3600.00 3600.00 3600.00 750.00 4503.29 1966.87

pmed29 3600.00 3600.00 3600.00 750.00 2920.57 5878.63

pmed30 3600.00 3600.00 3600.00 750.00 2985.58 12007.19

pmed31 3600.00 3600.00 3600.00 750.00 5776.80 59.84

pmed32 3600.00 3600.00 3600.00 750.00 5535.60 169.07

pmed33 3600.00 3600.00 3600.00 750.00 5672.08 3401.64

pmed34 3600.00 3600.00 3600.00 750.00 5704.44 10597.65

pmed35 3600.00 3600.00 3600.00 750.00 6850.11 80.67

pmed36 3600.00 3600.00 3600.00 750.00 7402.39 232.95

pmed37 3600.00 3600.00 3600.00 750.00 5810.91 5835.00

pmed38 3600.00 3600.00 3600.00 750.00 5190.86 124.52
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Table 17 continued Instance MOEA/D NSGA-II SPEA2 SS ε-C RPR

pmed39 3600.00 3600.00 3600.00 750.00 4293.78 304.18

pmed40 3600.00 3600.00 3600.00 750.00 5647.92 9223.30

Average 3600.00 3600.00 3600.00 750.00 3579.7031 1644.12

D_250_1 3600.00 3600.00 3600.00 750.00 656.17 128.55

D_250_2 3600.00 3600.00 3600.00 750.00 620.38 129.28

D_250_3 3600.00 3600.00 3600.00 750.00 789.03 188.02

D_250_4 3600.00 3600.00 3600.00 750.00 595.00 149.67

D_250_5 3600.00 3600.00 3600.00 750.00 991.99 179.95

D_250_6 3600.00 3600.00 3600.00 750.00 2239.39 152.64

D_250_8 3600.00 3600.00 3600.00 750.00 1022.35 158.40

D_250_9 3600.00 3600.00 3600.00 750.00 561.53 146.44

D_250_10 3600.00 3600.00 3600.00 750.00 1078.05 122.42

D_350_1 3600.00 3600.00 3600.00 1650.00 1947.16 742.52

D_350_2 3600.00 3600.00 3600.00 1650.00 1907.66 657.00

D_350_3 3600.00 3600.00 3600.00 1650.00 1602.20 587.17

D_350_4 3600.00 3600.00 3600.00 1650.00 2342.34 613.34

D_350_5 3600.00 3600.00 3600.00 1650.00 2967.38 579.26

D_350_6 3600.00 3600.00 3600.00 1650.00 1355.43 701.97

D_350_7 3600.00 3600.00 3600.00 1650.00 917.40 458.42

D_350_8 3600.00 3600.00 3600.00 1650.00 1749.88 806.78

D_350_9 3600.00 3600.00 3600.00 1650.00 2674.02 448.30

D_350_10 3600.00 3600.00 3600.00 1650.00 2798.09 489.62

Average 3600.00 3600.00 3600.00 1223.68 1516.60 391.57

kmedian1 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian2 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian3 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian4 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian5 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian6 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian7 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian8 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian9 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian10 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian11 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian12 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian13 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian14 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

kmedian15 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

Average 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
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