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Abstract. The evolution and spread of social networks have attracted
the interest of the scientific community in the last few years. Specifically,
several new interesting problems which are hard to solve have arisen
in the context of viral marketing, disease analysis and influence analy-
sis, among others. Companies and researchers try to find the elements
that maximize profit, stop pandemics, etc. This family of problems are
usually known as Social Network Influence Maximization (SNIM) prob-
lems, whose goal is to find the most influential users (commonly known
as seeds) in the social network, simulating an influence di↵usion model.
Since SNIM is known to be an NP-hard problem, and most of the net-
works to analyze are considerably large, this problem have become a real
challenge for the scientific community. Di↵erent works have attempted
to solve it by means of heuristic or metaheuristic approaches, such as
evolutionary algorithms based on simulations of the spreading mecha-
nism, but they are not able to solve real-world large-scale networks due
to their limitations in computing time. The main drawback of this op-
timization problem lies in the computational e↵ort required to evaluate
a solution. Since the infection of a node is evaluated in a probabilistic
manner, the objective function value requires from a Monte Carlo simu-
lation to see the robustness of the method, resulting in a computationally
complex process. The current proposal tries to overcome this limitations
by considering a metaheuristic algorithm based on the Greedy Random-
ized Adaptive Search Procedure (GRASP) framework. The construction
phase is based on static features of the network, which notably increases
its e�ciency, since it does not require to perform any simulation during
construction. The local improvement involves a surrogate-assisted-swap
local search to find the most influential users based on swap moves.
Experiments performed on 6 well-known social networks datasets with
5 di↵erent seed set sizes confirm that the proposed algorithm is able to
provide competitive results in terms of quality and computing time when
comparing it with the best algorithms found in the state of the art.

Keywords: Information systems, Social networks, Influence maximization, Graph
theory, Viral marketing, GRASP.
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1 Introduction

Nowadays, social networks (SNs) are daily used by millions of users, while the
number of users continues to grow exponentially. This growth is extended to the
amount of behavioral data and, therefore, all classical network-related problems
are becoming computationally harder. SN can be defined as the representation of
social interactions that can be used to study the propagation of ideas, detection
of groups, finding weaknesses, social bond dynamics, disease propagation, viral
marketing, or advertisement, among others [1, 2, 3, 4, 5]. Algorithmically, a social
network is modeled with a graph G(V,E) where the set of nodes V represents
the users and each relation between two users is modeled as a pair (u, v) 2 E,
with u, v 2 V which indicates that user u can transmit information to (or infect)
user v.

Kempe et al. [6] originally formalized the influence model to analyze how the
information is transmitted among the users of a SN. Given a network with n
nodes where the edges represent the spreading or propagation process on that
network, the task is to choose a seed set S of size k < n with the aim of
maximizing the number of nodes in the network that are influenced by the seed
set S.

This problem was initially formulated in [7] and it was later proven NP-hard
for most Influence Di↵usion Models (IDMs) [8]. As with many other NP-hard
problems, heuristic and metaheuristic algorithms, such as greedy and evolution-
ary algorithms, have been considered to solve the problem by e↵ectively exploring
the solution space, avoiding the analysis of every possible subset of nodes.

Information represents anything that can be passed across connected peers
within a network. The influence level given by a node is determined by the
adoption or propagation process. Several IDMs can be found in the literature
but the most extended one is the Independent Cascade Model [6], a probabilistic
IDM where the edge (u, v) has a weight P representing the probability with which
u is able to influence v.

This work presents a novel metaheuristic approach for dealing with this prob-
lem, allowing us to find high quality solutions in the context of SNIM in a short
computing times. Our main goal is to design an e�cient algorithm where the
use of Monte Carlo simulation required for the IDM application is minimized,
thus increasing the e�ciency of the algorithm.

The remainder of the work is structured as follows. Section 2 formalizes the
problem and reviews the related literature. The proposed approach is described
within detail in Section 3. Section 4 presents the experimental results consider-
ing a public dataset which has been previously used for this task. The results
obtained are compared against the most popular algorithms for SNIM and they
clearly demonstrate the e�cacy of the proposed methodology. Finally, Section 5
draws some conclusions derived from this research.
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2 State of the art

In this section, we introduce some related work about SNIM and IDMs as well as
we briefly survey the existing methods for solving this problem, based on either
heuristics or computational intelligence algorithms.

Richardson and Domingos [7] initially formulated the problem of selecting
target nodes in SNs. However, Kempe et al. [6] tried to solve the SNIM problem,
formulating it as a discrete optimization problem. It has been shown that com-
putation of the influence spread of a given node set is NP-hard [8]. Kempe et
al. [6] proposed a greedy algorithm called greedy hill-climbing algorithm with an
approximation of 1 � 1/e. Besides, they also proved that this greedy algorithm
can obtain a solution within 63% of optimality under three commonly used IDMs
as the Independent Cascade Model (ICM), the Weighted Cascade Model (WC),
and the Linear Threshold model (LT). ICM is one of the most popular IDMs
and it is the one used in this contribution. It considers the transmission of the
influence through the network in a tree-like fashion, where the seed nodes are
the roots.

The most extended way of evaluating the spread in ICM is a Monte Carlo
simulation. However, even a single iteration of the simulation in ICM is rather
time-consuming. Algorithm 1 shows the pseudocode of the Monte Carlo simula-
tion to evaluate the spread of information through the network given a seed set.
The algorithm performs a number of predefined iterations IT , finding in each
iteration which are the nodes that receives the information given a seed set S
(steps 2 � 18). Initially, the set of nodes A? reached by the initial seed set, S,
is actually the seed set (step 3). Then, the method iterates until no new nodes
are infected (steps 5-16). In each iteration, the new infected nodes are traversed
in order to check if they are able to transmit information to non-infected nodes
(steps 8-12). For each non-infected node adjacent to one of the newly infected
nodes, a random number is generated. If this number is smaller than the prob-
ability of infection P , then it becomes infected (steps 9-11). At the end of the
iteration, the set of infected nodes is updated (step 14) as well as the nodes
infected in the previous iteration (step 15). Finally, the algorithm returns the
mean number of infected nodes during the predefined number of iterations (step
19). This value, called influence spread, is considered as the objective function
to be optimized by the greedy algorithm. That is, the seed set maximizing the
spread value would compose the optimal solution to the problem. Notice that, as
infection is an stochastic process, the ICM must be run several times to achieve
an appropriate estimation by the mean of the variable, thus resulting in a Monte
Carlo simulation.

As a consequence of this computationally expensive drawback, Kempe et al
[6] also proposed several greedy heuristics based on social network analysis mea-
sures such as degree and closeness centrality [9]. When the considered measure
is the degree of the node, the algorithm is called high-degree heuristic.

Several extensions of those first greedy algorithms were later proposed. In
particular, Leskovec et al. [10] introduced the cost-e↵ective lazy forward (CELF )
selection which exploited the submodularity property to significantly reduce the
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Algorithm 1 ICM(G = (V,E), S, P, IT )

1: spread  ;
2: for i 2 1 . . . IT do
3: A?  S
4: A S
5: while A 6= ; do
6: B  ;
7: for v 2 A do
8: for (u, v) 2 E do
9: if rnd(0, 1)  p then
10: B  B [ {u}
11: end if
12: end for
13: end for
14: A?  A? [B
15: A B
16: end while
17: spread  spread + |A?|
18: end for
19: return spread/IT

run time of the greedy hill-climbing algorithm, becoming over 700 times faster
than greedy hill-climbing algorithm. The rationale is that the expansion of each
node is computed a priori and it only needs to be recomputed for a few nodes.
Meanwhile, Chen, Wang, and Yang [11] used the concept of degree-discount
heuristics to optimize the high-degree heuristic. The greedy selection function
considers the redundancy between likely influenced nodes and does not count
those reached by the already selected seed nodes to develop a better estimation
of the total spread.

In [12] a new algorithm called CELF++ was proposed with the aim of im-
proving the e�ciency of the original CELF. According to the authors it is 35-55%
faster than CELF. However, further studies [13] showed that CELF++ is much
slower than CELF, which is di↵erent from the results reported in [12]. In this
work algorithm CELF++ was carefully re-implemented following the instruc-
tions of [12] and tested with di↵erent instances, confirming the results published
in [13].

A large number of works have been developed in the area since those first
proposals [14]. Di↵erent kinds of heuristic and metaheuristic algorithms have
been considered to solve the SNIM problem. Table 1 shows the acronyms of the
methods reported in Table 2.

Analyzing previous studies we can conclude that more complex metaheuristic
approaches usually result in better solutions than simple greedy approaches.
Yang et al. [37] proposed an Ant Colony Optimization (ACO) algorithm based
on a parameterized probabilistic model to address the SNIM problem. They
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Table 1: Long terms acronym
Definition Acronym
Independent Cascade Model ICM
Independent Poisson Clock IPC
Dynamic Programming DP
Latency Aware LA
Linear Threshold LT
Polarity-Related PR
Simulated Annealing SA
Suspected Infected SI
Mixed Integer Programming MIP
Partial Parallel Cascade PPX
Multi-Objective Evolutionary Algorithm MOEA
SIR epidemic spreading model [15] SIR

Table 2: State of the art
Study Algorithm Model
(Kempe et al., 2003)[6] Greedy ICM-LT
(Jiaguo et al., 2014)[13] Greedy ICM
(Goyal et al., 2011)[12] Greedy ICM
(Tong et al., 2016)[16] Greedy ICM
(Song et al., 2017)[17] Greedy ICM
(Ok et al., 2016)[18] Greedy IPC
(Lappas et al., 2010)[19] DP ICM
(Nguyen, & Zheng, 2013)[20] Greedy ICM
(Liu et al., 2014)[21] Greedy LA-ICM
(Song et al., 2015)[22] Greedy ICM
(Lee & Chung, 2015)[23] Greedy ICM
(Zhang et al., 2016)[24] Greedy LT-ICM
(Gong et al., 2016)[25] Particle Swarm ICM
(Chen et al., 2009)[11] Greedy ICM
(Zhang et al., 2017)[26] Genetic LT
(Li et al., 2014)[27] Greedy PR-ICM
(Li et al., 2017)[28] SA PR-ICM
(Peng et al., 2017)[29] Greedy SI
(Samadi et al., 2018)[30] MIP PPC
(Bucur et al., 2018)[31] MOEA ICM
(Bucur et al., 2017)[32] MOEA ICM
(Bucur et al., 2016)[33] Genetic ICM
(Liu et al., 2019)[34] Evolutionary SIR
(Salavati et al., 2019)[35] Ant Colony ICM
(Bucur et al., 2018)[36] MOEA ICM

used the degree centrality, distance centrality, and simulated influence methods
for determining the heuristic values.
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Meanwhile, the method based on simulated annealing (SA) presented in [38]
applied two heuristic methods to accelerate the convergence process of SA, along
with a new method of computing influence spread to speed up the proposed al-
gorithm. In [32], an Evolutionary Multiobjective Optimization (EMO) algorithm
[39] was proposed for SNIM, where the two considered objectives were (i) max-
imizing the influence of a seed set, and (ii) minimizing the number of nodes in
the seed set.

As said, some heuristics have been proposed as time-saving solutions for
greedy decisions: random, degree, and centrality [6]. The random heuristic selects
nodes randomly, without considering node influence, to form the seed set in
the network. Degree and centrality heuristics derive from the definition of the
node influence in social network analysis [9]. Degree centrality heuristic usually
produces less accurate results to the SNIM problem. Based on the high-degree
heuristic, another heuristic, targets the SNIM problem by taking into account
prior knowledge of the node’s neighbors [11].

The aforementioned metaheuristic methods are able to obtain good results
but require large computational times. Our proposal considers a balanced method
based on the ICM. With the aim of reducing the required computing time, we
consider the GRASP methodology, combining good heuristic solutions that are
fastly generated and an e�cient local search method which minimizes the num-
ber of Monte Carlo evaluations to further improve the initial solution.

3 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic
developed in the late 1980s [40] and formally introduced in Feo et al. [41]. We
refer the reader to [42, 43] for a complete survey of the last advances in this
methodology. GRASP is a multi-start framework that consists of two distinct
stages: construction and local search. The former is a greedy, randomized, and
adaptive method to generate a solution from scratch. The latter is devoted to
obtain a local optimum with respect to a certain neighborhood starting from the
constructed solution. These two phases are repeated until a termination criterion
is met, returning the best solution found.

3.1 Construction phase

The construction phase of GRASP is devoted for generating an initial solution
and it is usually guided by a greedy selection function which helps the construc-
tive method to select the next elements to be included in the partial solution.
Algorithm 2 depicts the pseudocode of the proposed constructive procedure.

The method starts from an empty solution S (step 1), creating the candidate
list, CL, with the complete set of vertices V (step 2). Then, the constructive
method iteratively adds new elements to the solution until it becomes feasible
(steps 3-11). In each iteration, the minimum and maximum value of the greedy
heuristic is evaluated (steps 4-5). Then, a threshold µ is calculated (step 6). This
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threshold is required for creating the Restricted Candidate List (RCL) with the
most promising nodes (step 7). Finally, the next node is selected at random from
the RCL (step 8), including it in the solution (step 9) and updating the CL (step
10). The method ends returning the constructed solution S (step 12).

Algorithm 2 GRASP (G = (V,E))

1: S ;
2: CL V
3: while |S| < K do
4: gmin  minu2CL g(u)
5: gmax  maxu2CL g(u)
6: µ gmax � ↵ · (gmax � gmin)
7: RCL {v 2 CL : g(v) � µ}
8: u rnd(RCL)
9: S  S [ {u}
10: CL CL \ {u}
11: end while
12: return S

The greedy heuristic function (used in steps 4-5) is one of the features that
will improve the GRASP solution. In the context of this problem, we propose
di↵erent greedy functions to generate the initial solution.

The first one (ALG-NEIGH) is a heuristic based on the first and second
degree neighbors of a given user. Given a user u, this method calculates the
sum of out degree of u and its neighbors. Let us define d(A) as the degree
of node A. Then, in the graph depicted in Figure 1, the heuristic value for
node A is d(A) + d(B) = 1 + 4 = 5, while the heuristic value for node B
is 11 due to d(B) + d(A) + d(C) + d(E) + d(F ) = 4 + 1 + 2 + 2 + 2 = 11.
Then, if we represent, for each node v, the heuristic value h(v), in a vector
where the first position corresponds to node A, the second one to node B, and
so on, it results in [5, 11, 6, 2, 6, 6, 2, 2]. Then the node with the highest value
is chosen, the remaining nodes are updated by subtracting the selected node
degree to his neighbors and for all nodes subtracting the number of neighbors
that has an edge with selected node. In the example, the user selected is B,
because it presents the largest value in the vector, and the nodes degrees are
recomputed as [1, X, 2, 1, 1, 1, 2, 2]. For example the update of node F is computed
as |{h(F )}|� |{d(B), E}| = 6� 4� 1 = 1.

The second greedy criterion considers the clustering coe�cient as heuristic
value (ALG-CLUS). The clustering coe�cient is the measure of the degree
to which nodes in a graph tend to cluster together. To speed up its computa-
tion, every value is precalculated before the algorithm’s run. All the information
related to the implementation of the clustering coe�cient can be found in [44].

Closeness centrality is another way of detecting nodes that are able to spread
information. The closeness centrality of a node measures its average distance to
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Fig. 1: Example graph with 8 users and 7 relations among them to show the
heuristic function proposed to evaluate each user.

all the other nodes. Nodes with large closeness scores have the shortest distances
to all other nodes. The Closeness of a node v is evaluated as C(v) = n�1P

u2V d(u,v) .

The algorithm calculates the sum of Hamiltonian distances to all other nodes,
based on calculating the shortest paths between every pair of nodes. The result-
ing sum is then averaged and inverted to determine the closeness centrality score
for that node.

An e�cient method to get the Closeness (represented by ALG-CLOSS)
value is to precalculate the shortest path distances for every pair of nodes and
save it in cache. That can be done with a Breadth First Search over all nodes
[45]. Once the minimum distance over all nodes is obtained, we have to compute
its average. The main drawback is the memory needed to store this information
in real-life networks, requiring an extra matrix of n2 elements.

3.2 Local Search Phase

The second phase of GRASP consists of improving the solution generated by the
constructive procedure with the aim of reaching a local optimum. This phase
can be accomplished by using simple local search procedures or more complex
heuristics. Due to the complexity of the problem under consideration, we propose
a local search procedure.

In order to properly define a local search, we first need to introduce the
neighborhood considered. The neighborhood of a solution can be defined as the
set of new solutions that can be reached by performing a single move over the
original solution. Therefore, a move must be defined in order to present the
neighborhood. In the context of this problem, the swap move is considered,
which replaces a selected seed node with a non-selected one. This swap move is
formally defined as:

Swap(S, v, u) = (S \ {v}) [ {u}
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Then, the neighborhood Ns of a given solution S is defined as the set of
solutions that can be reached by performing a single swap move to S. More
formally,

Ns(S) = {Swap(S, v, u) 8 v 2 S ^ 8 u 2 V \ S}

Once the neighborhood has been defined, we finally need to clarify in which
order it is explored. Specifically, we propose to randomly traverse the neighbor-
hood performing the first move that leads to a better solution (First Improve-
ment).

Due to the vast size of the resulting neighborhood, k ⇥ (n� k), a surrogate
search is presented with the aim of reducing the number of solutions explored
within each neighborhood. The search space explored is limited by reducing the
percentage of nodes considered for the swap move.

Two di↵erent proposals are used to select the number of neighboring solutions
to be explored for each solution. The first idea is to limit the maximum number
of solutions to be explored, X. Following this approach, the local search will
explore min(|Ns(S)|, X) neighbor solution. Notice that the larger the value of
X, the better the quality of the solutions but also the higher the computing time
required to reach them.This approach is named as Minimum N Values (MNV).
The second approach takes into account a certain percentage Y of neighbors to
explore to ease the scalability of the process, defined as |Ns(S)| ⇤ Y , and it is
named as Percentage of Candidates Values (PCV). Notice that the number of
neighbors explored directly depends on the network size. The results of both
proposals are provided in next section.

4 Experiments

This section describes the experimental setup designed to validate the proposal.
Relevant information about the instances used is collected in Table 3. All of them
are publicly available in Stanford Network Analysis Project (SNAP): https:
//snap.stanford.edu/. All the experiments have been performed in a computer
with an AMD Ryzen 5 3600 (3,60 GHz) and 16GB RAM.

Table 3: Instances
Instance Nodes Edges Diameter

p2p-Gnutella31 62586 147892 11
ca-AstroPh 18772 198110 14
ca-CondMat 23133 93497 14
cit-HepPh 34546 421578 12
email-Enron 36692 183831 11
email-EuAll 265214 420045 14

https://snap.stanford.edu/
https://snap.stanford.edu/
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First of all, it is important to show the values used for the ICM algorithm
with Monte Carlo and the number of iterations performed to get the best value
with GRASP. In all the experiments, GRASP constructs 100 solutions and ICM
runs for 100 iterations (IT) with a probability of infection (P) of 0.01%. These pa-
rameter values are the most extended ones in the literature. The number of seed
nodes K to conform a solution are selected in the range K = {10, 20, 30, 40, 50},
thus obtaining 6⇥5 = 30 di↵erent problem instances (6 networks and 5 seed set
sizes).

The experiments are divided into two parts: preliminary and final experi-
mentation. The former refers to those experiments performed to select the best
parameters to set up the algorithm, while the latter validates the best configu-
ration, comparing it with the best methods found in the state of the art.

All the experiments report the following metrics: OF, the average objective
function value; Time (s), the average computing time required by the algorithm
in seconds; Dev(%), the average deviation with respect to the best value found
in the experiment; and # Best, the number of times that the algorithm matches
the best solution.

The preliminary experimentation has been performed with a small set of in-
stances (CA-AstroPh and CA-CondMat with K = {10, 20}; and Email-Enron
and Email-EuAll with K = {30, 40, 50}) to avoid overfitting. This selection com-
prehends a 33.33% of the global set and provide enough variability in instances
and values of K. The results obtained in this preliminary experimentation are
shown in Table 4. As it can be seen, ALG-NEIGH provides the best results in
both quality and computing time, so it is the selected greedy function to use in
GRASP constructive.

Table 4: Constructive algorithms results

OF Time(s) Dev(%) Best
ALG�HEUR 490.80 14.69 0.00 10/10
ALG� CLUS 356.10 81.14 34.33 0/10
ALG� CLOSS⇤ 459.57 5.68 43.88 0/10

* The algorithm did not finish due to memory limits.

The second experiment is devoted to test the impact of the surrogate local
search to select the X and Y values as shown in the previous section with the
same instances used in the last experimentation. The X values tested are {10,
25, 30} in MNV and {0.000125, 0.00025, 0.0005} for PCV. The Y value denote
the average number of nodes influenced. In view of the results obtained, the
better the values, the larger the computing time required. Figure 2a compares
the quality using the average number of influenced nodes while in Figure 2b
shows the run time taken. Analyzing Figure 2a it is showed that PCV achieves
better quality than MNV. The average number of influenced nodes reach the
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largest values when considering the largest parameter values but the MNV is
faster than the PCV in all the cases (see Figure 2b). Analyzing the results of the
PCV we found a major drawback. If the same percentage Y is used in a large and
also in a small social network, it could require long times for the large network
if it is a large value and it can deteriorate the quality of the solutions generated
in a small social network if a small value is chosen. Since MNV presents similar
quality in the last experiment and the computing time for PCV is considerably
larger than the one for MNV, we select MNV to be used in the local search
phase.

(a) (b)

Fig. 2: Quality (left) and time (right) comparison for PCV and MNV

The final experiment is intended to evaluate the quality of the best proposed
GRASP design, conformed with ALG-NEIGH in constructive phase and the
MNV formula in local search phase, when comparing it with the best method
found in the state of the art, CELF. Table 5 shows the results of the comparison.
Notice that the run time is lower for GRASP in every case but K=50 where it
is higher but at the expense of obtaining a more accurate solution than CELF.
In all the executions, GRASP performs equal or better than CELF maintaining
competitive running times. The last column shows the number of instances where
each algorithm reaches the best solution.

Figure 3a graphically illustrates that the superiority of GRASP become more
evident when the seed set size increases, but we can also see in Figure 3b how
the run time also grows.

In order to confirm that there are statistically significant di↵erences between
both algorithms, we have performed the well-known non-parametric Wilcoxon
test. The resulting p-value smaller than 0.001 confirms these di↵erences and,
therefore, the superiority of the proposal.

5 Conclusions

In this work a GRASP algorithm has been proposed for the SNIM problem.
Di↵erent heuristic functions and surrogate local search designs were tested to
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Table 5: GRASP vs CELF
K OF Time (s) Dev(%) #Best

CELF 10 272.83 416.90 0.23 5/6
GRASP 10 274.33 31.84 0.12 4/6
CELF 20 311.00 494.18 1.02 4/6
GRASP 20 318.83 115.42 0.00 6/6
CELF 30 341.00 502.78 2.03 3/6
GRASP 30 354.67 294.06 0.00 6/6
CELF 40 367.17 509.34 2.53 3/6
GRASP 40 384.83 489.75 0.00 6/6
CELF 50 391.67 516.21 2.74 3/6
GRASP 50 412.17 707.71 0.08 5/6

(a) (b)

Fig. 3: Quality (left) and time (right) comparison for GRASP and CELF.

reduce the number of solutions to be explored and get better solutions in terms
of both quality and computing time. The heuristic function provides flexibility
in the GRASP method design in order to reach a trade-o↵ between the quality
and the computing time. GRASP o↵ers very competitive results with respect to
CELF, drastically reducing the computing time while providing better solutions
on average.

Therefore, it can be concluded that a careful algorithmic design is necessary
in SNIM in order to be able to deal with large social networks without requiring
vast computing times. The surrogate local search presented in this work is able
to balance quality and computing time by means of a single parameter, which
makes it adequate for most social networks.

Acknowledgment

This work has been partially supported by the “Ministerio de Ciencia, Inno-
vación y Universidades” under grant ref. PGC2018-095322-B-C22 and “Comu-
nidad de Madrid” and “Fondos Estructurales” of European Union with grants
ref. S2018/TCS-4566 and Y2018/EMT-5062.



Metaheuristics for maximizing user influence 13

References

[1] Stephen F. King and Thomas F. Burgess. “Understanding success and
failure in customer relationship management”. In: Industrial Marketing

Management 37.4 (June 2008), pp. 421–431. doi: 10.1016/j.indmarman.
2007.02.005.

[2] Adam D’angelo et al. Targeting advertisements in a social network. US
Patent App. 12/195,321. Mar. 2009.

[3] Alden S. Klovdahl. “Social networks and the spread of infectious diseases:
The AIDS example”. In: Social Science & Medicine 21.11 (Jan. 1985),
pp. 1203–1216. doi: 10.1016/0277-9536(85)90269-2.
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