
INFORMS JOURNAL ON COMPUTING
Articles in Advance, pp. 1–14

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

A New Scatter Search Design for Multiobjective Combinatorial
Optimization with an Application to Facility Location
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Abstract. Scatter search (SS) is a well-established metaheuristic solution methodology that
has seen most of its success in single-objective optimization. The literature includes a few
examples of the SS methodology adapted to multiobjective optimization, almost all dealing
with continuous, nonlinear problems. We describe an SS design that we believe has general
applicability in the area ofmultiobjective combinatorial optimization and show its effectiveness
by applying it to a facility location problem. Facility location consists of identifying the best
locations for a set of facilities. The set of best locations may vary substantially according to the
objective function employed to solve the optimization problem. We employ a facility location
problem with multiple objectives (mo-FLP) to test our design ideas for a multiobjective op-
timization scatter search.We focus on the objective functions associatedwith threewell-known
location problems in the literature: the p-Median Problem (pMP), the Maximal Coverage
Location Problem (MCLP), and the p-Center Problem (pCP). Our computational experiments
are configured to show that the proposed SS design is capable of producing high-quality
Pareto-front approximations.
Summary of Contribution: Metaheuristic optimization is at the heart of the intersection
between computer science and operations research. The INFORMS Journal on Computing
has been fundamental in advancing the ideas behind metaheuristic methodologies. Fred
Glover’s Tabu Search–Part Iwas published more than 30 years ago in the first volume of the
then ORSA Journal on Computing. This article, one of the most cited in the area of heuristic
optimization, paved the way for many contributions to the methodology and practice of
operations research. As a continuation of this stream of research, we describe a new scatter
search design for multiobjective optimization. The design includes a short-term memory
tabu search and a path relinking combination method. We show how the strategies and
mechanisms within scatter search and tabu search can be combined to produce a highly
effective approach to multiobjective optimization.
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1. Introduction
Scatter search (SS), originally proposed by Glover
(1977), is a population-based metaheuristic that has
been successfully applied to many optimization prob-
lems. SS relies on the idea that systematic designs and
strategies for generating solutions usually lead to better
results than those found with procedures that rely
heavily on randomization. Although SS starts with a
large population of solutions, contrary to other evolu-
tionary algorithms, it iterates on a small set of solutions
that are deliberately selected to maintain a balance be-
tween search diversification and intensification. SS has

established itself as a bona fide optimization method-
ology in the operations research literature (Sánchez-Oro
et al. 2015, 2016).
Our goal is to design an SS for multiobjective com-

binatorial optimization that adheres to the principles of
the original methodology and that can be shown to be
effective. We chose a facility location problem with
multiple objectives as the test case for our ideas. The
interest in solving locations problems is endorsed by the
significant number of studies andapplications in several
areas of operations research. The literature includes
descriptions of a variety of optimization problems for
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locating hospitals, fire stations, police stations, military
compounds, refugee camps, rescue centers, banks, ports,
airports, warehouses, supermarkets, schools, pharma-
cies, and electric vehicle charging stations, among many
others. The definition of “best” in the facility location
literature varies, as it depends on the idiosyncrasies of
each particular problem and its solution requirements.

We have organized the description of our work
and experiments as follows. Section 2 reviews the
literature related to multiobjective scatter search ap-
proaches. Section 3 describes the multiobjective lo-
cation problem thatwe use as a test case for our scatter
search design. Section 4 details our SS implementa-
tion and the strategies that we have developed for
multiobjective optimization. Section 5 describes our
experiments and the computational results. Our con-
clusions are in Section 6.

2. Multiobjective Scatter Search in
the Literature

Although SS was originally conceived as a solution
approach for single objective optimization problems,
it has been adapted to tackle multiobjective optimi-
zation problems. We provide a brief review of twelve
applications of scatter search to multiobjective optimi-
zation problems (see Table 1). Our descriptions focus on
the distinguishing features of each SS implementation.

SSMO (Nebro et al. 2005) is an adaptation of scatter
search to the optimization of constrained and un-
constrained nonlinear problems with multiple ob-
jective functions. The main contributions of SSMO
relate to the use of Pareto dominance, ranking, and
crowding in order to select reference solutions. The
authors also test the idea of applying clustering to
identify centroids of highly ranked solutions. These
centroids become candidates for the reference set. A
simple dominance test is used to update the reference
set. AbYSS (Nebro et al. 2008) is a marginal extension
of SSMO (Nebro et al. 2005), which (1) adds an ex-
ternal archive to store all nondominated solutions

found during the search, (2) uses genetic operators
(such as crossover and mutation), and (3) incorpo-
rates two different density estimators. Unfortunately,
Nebro et al. (2008) do not compare the performance of
AbYSS and SSMO, and therefore it is not known
whether the proposed extensions resulted in a mea-
surable performance difference. Bong et al. (2012)
adapt AbYSS for multiobjective clustering in in medi-
cal image segmentation.
The M-scatter search (Vasconcelos et al. 2005) is

another SS adaptation to nonlinear multiobjective
optimization. The design of M-scatter search mimics
the standard procedure in (Laguna and Martı́ 2005,
Guo and Liu 2014) but uses ranking and a niched
penalty in order to update the reference set, and an
external archive to store nondominated solutions.
MOSS (Beausoleil 2006) and MOSS-II (Beausoleil

2007) combine scatter and tabu search in the context of
multiobjective nonlinear optimization. The multistart
tabu search is used as the diversification generator
every time the reference set needs to be rebuilt. This
results in a design with two distinct phases: the tabu
search phase and the scatter search phase. MOSS-II
incorporates a constraint-handling mechanism and, in
the scatter search phase, creates combinations of only
those solutions that are both nondominated and fea-
sible. Like MOSS and MOSS-II, SSPMO (Molina et al.
2007) tackles multiobjective nonlinear optimization
problemswith a combination of tabu and scatter search.
Computational experiments in Molina et al. (2007)
show that SSPMO is capable of finding better approx-
imations of the Pareto front than various approaches in
the literature, including MOSS.
In terms of SS adaptations to combinatorial optimi-

zation problems with multiple objectives, we are aware
of an extension of SSPMO to clustering (Caballero et al.
2011). Tabu search is used in the initial phase in order
to generate a diverse set of solutions from which the
first reference set is built. It is also used as the im-
provement method within the scatter search itera-
tions. In addition, the procedure uses a tabu memory
to keep a record of past reference solutions in order to
forbid these solutions from belonging to the reference
set in future iterations.
Baños et al. (2009) approach the design of a water

distribution network as a multiobjective optimiza-
tion problem. The single-objective problem consists
of selecting pipe diameters for a predetermined pipe
layout in order to meet demand requirements at a
minimum cost. The authors propose to find Pareto
optimal solutions that minimize cost and maximize
reliability. Their SS implementation uses a single ref-
erence set,which is initializedwith the best (according to
Pareto dominance) solutions in a randomly generated
population and the most diverse solutions according to
Euclidean distances. Although not explicitly mentioned,

Table 1. List of Multiobjective Scatter Search in our
Literature Review

Reference Application

Nebro et al. (2005) Nonlinear optimization
Vasconcelos et al. (2005) Nonlinear optimization
Beausoleil (2006) Nonlinear optimization
Beausoleil (2007) Nonlinear optimization
Molina et al. (2007) Nonlinear optimization
Nebro et al. (2008) Nonlinear optimization
Baños et al. (2009) Looped water distribution networks
Rao and Lakshmi (2009) Hybrid laminate composite structures
Caballero et al. (2011) Clustering
Lwin et al. (2013) Portfolio optimization
Guo and Liu (2014) Selective disassembly sequencing
Guo et al. (2019) Selective disassembly sequencing
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it can be conjectured that the reference set is updated
by applying Pareto dominance rules. The improvement
method is based on a simulated annealing search. An ex-
ternal archive is used to record nondominated solutions,
which in turnbecometheapproximationof thePareto front.

Rao and Lakshmi (2009) adapt scatter search to the
problem of finding an optimal layup sequence of
laminate composite structures. The authors formulate
several multiobjective optimization models of this
problem and find approximations of the optimal
Pareto fronts with their SS adaptation. The pop-
ulation of solutions is randomly generated, and
the initial reference set consists of two subsets of
equal size, one consisting of nondominated solutions
from the population and the other one consisting of
diverse solutions. Pairwise combinations are limited
to solutions within each subset. That is, the method
does not combine solutions across the two subsets.
The combination of solutions is donewith a two-point
crossover operator that is common in genetic algo-
rithms. Combined solutions are improved with a
search that is based on exchanges that seek “local
optimality.” However, it is not clear whether all
search directions are explored (i.e., one direction for
each objective function) or a compromise function is
used to determine a single search direction. The ref-
erence set is updated with the selection of the best,
nondominated solutions from the union of the ref-
erence set solutions and the new trial solutions. It
is not specified how many of these solutions are
retained. The set is completed with nondominated
solutions that are diverse with respect to the solutions
already selected.

Multiobjective SS has also been applied to portfolio
optimization. The portfolio selection problem is con-
cerned with the optimal allocation of a limited capital
among available assets that involve various level of risk.
Markowitz’s mean-variance model for the portfolio
selection problem deals with two objectives: maxi-
mizing mean returns while minimizing the variance
of the returns. In this model, variance is used as a
measure of risk. Lwin et al. (2013) apply scatter search
to the problem of finding portfolios that are Pareto
efficient with respect to these two objectives. The
main feature of this SS adaptation consists of a ref-
erence set update method that employs an external
archive. The external archive of nondominated so-
lutions is updated every time a new solution is pro-
duced—e.g., when generating the initial population
(randomly) and when combining and improving so-
lutions. The reference set is divided into two subsets of
equal size. One subset contains the best solutions
(according to Pareto dominance) from the external
archive and the other contains the solutions with the
smallest crowding measure. After each SS iteration,
the reference set is updated with the solutions that

are currently in the external archive. The procedure
overall departs from the fundamental tenets of the SS
methodology and relies heavily on randomization. For
instance, the subset generation method is random and
the improvement method mimics the genetic algo-
rithm notion of random mutations.
Reuse and remanufacturing of used products in

order to protect the environment requires a sequence
of disassembly operations. Disassembly modeling
and planning have been approached as optimization
problems in graphs. Guo and Liu (2014) formulate
the selective disassembly sequence problem as a bi-
objective model that seeks to maximize profit and
minimize disassembly time. The authors develop a
scatter search that initiates with a randomly generated
population of solutions. The improvement method is
based on exchanges of positions in the sequence, and
all solutions are tested for inclusion in an external
archive of nondominated solutions. The initial refer-
ence set contains three subsets, one with the best so-
lutions for the first objective function, another one with
the best solutions for the second objective function,
and a third one with diverse solutions. No details are
given regarding the dynamic updating of the refer-
ence set. The subset generation consists of all solution
pairs, considering all subsets. Combination is done
using PPX (precedence preserving crossover), a well-
known operator in the genetic algorithm literature
(Bierwirth and Mattfeld 1999).
Guo et al. (2019) propose an extension of the disas-

sembly model in (Guo and Liu 2014). The main ad-
dition consists of a third objective function; therefore,
the model seeks to minimize energy consumption,
maximize profit, andminimize disassembly time. The
design is essentially the same as in (Guo and Liu 2014)
with the difference that the objective functions are
treated lexicographically. The authors state that de-
cision makers and mangers in this context prioritize
the objective functions, given preference to mini-
mizing energy consumption, followed by maximiz-
ing profit, and lastly minimizing disassembly time.
Therefore, the reference set update method is designed
to assess the merit of new trial solutions following the
stated order of preferences. That is, a new solution is
tested for inclusion in the reference set for energy con-
sumption first. If rejected, then it is tested for its profit
and finally for its disassembly time. If rejected by all
three objective functions, then it is tested for diversity.
One of themain shortcomings of the SS adaptations

reviewed above is that their use of a single reference
set (excect for Guo et al. 2019 lexicographical refer-
ence sets) forces an interpretation of the notion of
“best” in order to select reference solutions. If a
dominance test is implemented, a trial solution is
added to the reference set if the solution dominates at
least one of the existing reference solutions. The trial
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solution is also added if the current reference solu-
tions do not dominate it and the reference set is
not full. However, if the reference set is full, then a
newly created nondominated solution that does not
dominate any of the reference solutions is sent di-
rectly to the external archive. This means that the
new solution is not given the opportunity to serve
as a reference point and therefore never combined
with other reference (nondominated) solutions in
future iterations.

Another major shortcoming relates to the improve-
ment method. MOSS and MOSS-II do not include an
improvement method. Several of the improvement
methods are based on random perturbations (mutation)
to move from one solution to another as long as the
mutated solution dominates the current solution. These
random perturbations do not represent a deliberate
process for finding solutions that either fill gaps in the
Pareto front or stretch the front toward the extreme
points (i.e., where the optimal solutions to the single-
objective problems are). In addition, the randomness of
this process represents a significant departure from the
SS methodology.

We seek a new approach to adapting scatter search
to multiobjective optimization that focuses on find-
ing the best approximation of the Pareto front. The
methods are designed for the specific purpose of
identifying nondominated solutions and improving
the set of these solutions during the search. As de-
scribed in Section 4, the diversification generation
method addresses each objective in the problem in-
stead of simply producing random solutions. A new
solution is improved in the direction of the objective
functions that have not been used to create the so-
lution. One reference set per objective function is used
and pairwise combinations are limited to solutions
proceeding from different sets. To test our design, we
apply it to a multiobjective facility location problem.

3. Multiobjective Facility
Location Problem

Formally, a location problem can be stated as follows.
Let G ! (V,E) be a graph such that V ! Vf ∪  Vd, with
Vf ! {1, . . . ,m} denoting the set of candidate facility
locations (|Vf | ! m) and Vd ! {1, . . . ,n} the set of de-
mand points (|Vd | ! n). There is aweightwi associated
with each demand point i∈Vd, which typically rep-
resents the volume of demand. The set of edges E !
{(i, j) : i∈Vd, j∈Vf } represents paths between demand
points and candidate facility locations in such a way
that edge (i, j) is the path between the demand point
i∈Vd and the candidate facility location j∈Vf . The
length of path (i, j) ∈E is dij ≥ 0. The goal is to choose p
locations out of m candidate facilities in order to op-
timize one or more objective functions. Consequently, a

different location problem emerges depending on the
objective function under consideration. We point out
that this definition excludes other types of location
problems for which possible locations are not a priori
restricted to a finite set of points, such as in competitive
location models (Kress and Pesch 2012).
In the p-Median Problem (pMP), for instance, the

objective function seeks to minimize the average
weighted distance between demand points and their
nearest facility.Wewill refer to this objective function
as f1. The pMP was first studied in the mid-1960s by
Hakimi (1964, 1965). Since then, many authors have
tackled this problem whether using exact methods or
heuristics. For instance, Garcı́a-López et al. (2002)
proposed, for the pMP, several parallel-computing de-
signswithin a variable neighborhood search framework
to reduce the computational time and increase the ex-
ploration of the search space. An interesting application
of the pMP deals with the location of emergency
vehicles (ambulances) in Perth City (Australia) using a
simple algorithm that consists of a reduction heuristic
and an exchange procedure (Dzator and Dzator 2013).
Recently, Herda and Haviar (2017) proposed two
hybrid genetic algorithms for finding high-quality
solutions for pMP instances that are intractable with
exact algorithms.
The Maximal Coverage Location Problem (MCLP)

is another variant of the facility location problem. The
MCLP consists of maximizing the total weighted
number of demand points covered by the facilities. In
this context, a demand point is covered if it is located
within a specific distance, r, also known as the cover
radius of a chosen facility. This problem is applicable
to the planning of service and emergency facilities.
We will refer to this objective function as f2. The MCLP
was first introduced by Church and ReVelle (1974). A
recent study developed and tested a branch-and-
bound algorithm that exploits the structure of the
problem (Blanquero et al. 2016). Specifically, the au-
thors introduced, within a geometric branch and
bound, specialized data structures that successfully
coped with the combinatorial nature of the problem.
Lastly, the p-Center Problem (pCP) is a variant that

seeks to minimize the maximum distance between
demand points and their nearest facilities. We will
refer to this objective function as f3. The first solution
method for the pCP was based on a set-covering
approach (Minieka 1970). The procedure systemati-
cally updates a set covering matrix that eventually
converges to an optimal solution in a finite number of
iterations. Some years later, Kariv and Hakimi (1979)
showed that the pCP is NP-hard and proposed an
enumeration algorithm. The first metaheuristic ap-
proaches for the pCP were based on variable neigh-
borhood search and tabu search (Mladenović et al.
2003). Since then, various authors have focused on the
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pCP from both theoretical and practical points of
view. For a comprehensive review of the pCP, see
Calik et al. (2015).

Our interest is in addressing simultaneously the three
locations problems described above (pMP, MCLP, and
pCP). We focus on the multiobjective facility location
problem (mo-FLP) that results from considering the
objective functions associated with these three location
problems. The interest in tackling the multiobjective
problem is to provide decision makers with the possi-
bility of identifying solutions that consider the trade-off
among various objective functions. In most situations,
the three objectives that we are considering are not
aligned, creating conflicts and trade-offs. Typically, no
single solution is optimal with respect to the three
objective functions. The goal is to find solutions for
which it is not possible to improve the value of one
objective function without deteriorating the value of at
least another objective function. Those solutions are
known as efficient solutions, nondominated solutions,
or Pareto optimal solutions.

As discussed by Karatas and Yakici (2018), this
particular mo-FLP is important in the location of
emergency services. Consider, for example, the lo-
cation of ambulance services. On the one hand, it is
desired tominimize the average time of responding to
emergencies. However,minimizing average response
time tends to favor locations in the proximity of
population centers, which neglects patients who are
not close to the center. This can be addressed by
minimizing the maximum distance between emer-
gency stations and potential patients. Finally, many
ambulance service providers operate with a pre-
determined critical response time threshold in order
to mitigate the risk of fatalities. Then, they would like
to maximize the number of patients who can be
reached within the time threshold.

Figure 1 shows a simple facility location example
that helps us illustrate the differences among the three
objective functions. The example consists of m ! 5
candidate facilities (red squares), n ! 6 demand points
(blue circles) with their corresponding weight, and
p ! 2 facilities to locate. Table 2 enumerates the 10
possible solutions, where the Facilities column shows
the coordinates of the chosen locations in each so-
lution. The f1, f2, and f3 columns show the values of the
three objective functions, where the best objective
function values are highlighted in bold. Solution 10,
with facilities at D and E, is best for f1 and has an
objective function value of 12.37. Solutions 7 and 9
achieve the best value of 2.85 for f2 and correspond to
locating facilities at B and E, and C and E, respec-
tively. There are four solutions, number 3, 6, 8, and 10,
that optimize f3 with a value of 4.24. None of these
solutions coincides with the optimal solution for f2.
Solution 10 is able to optimize two of the objective

functions, f1 and f3. However, in general, there is no
guarantee that a single solution will be optimal for
more than one of the three objective functions that we
are considering. The results in Table 2 indicate that
there is a strong preference for selecting the E location,
as it appears in at least one of the optimal solutions for
all of the objective functions. The strong candidates
for the second location are C and D.
A recent study addresses the mo-FLP (Karatas and

Yakici 2018). The authors considered the aforemen-
tioned objectives functions, developing an algorithm
named ITER-FLOC, which consists of a hybrid ap-
proach that combines branch and bound techniques
and iterative goal programming. Computational re-
sults show that ITER-FLOC performs well on small-
to medium-sized problems. However, Karatas and
Yakici (2018, p. 284) mention the following drawbacks:

We must also note that, there are a number of dis-
advantages of the proposed methodology. In the ex-
periments conducted, we apply an exact solution
method to solve FLPs. This may not be a desirable
option especially when the problem size is big.

It should also be noted that, the algorithm requires that
the decision maker must determine a set of input pa-
rameters such as the objective function value improve-
ment thresholds, upper and lower bound improvement

Figure 1. (Color online) Candidate Facility Locations and
Demand Points

Table 2. Enumeration of All Possible Solutions for the
Example Depicted in Figure 1

Solution Facilities f1 f2 f3

1 A and B 22.53 1.65 7.28
2 A and C 17.05 2.55 5.66
3 A and D 13.45 2.75 4.24
4 A and E 13.42 2.10 5.10
5 B and C 17.95 2.55 5.66
6 B and D 14.35 2.75 4.24
7 B and E 13.11 2.85 5.10
8 C and D 14.35 2.75 4.24
9 C and E 13.11 2.85 5.10
10 D and E 12.37 2.15 4.24
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thresholds and resolution coefficients before starting it-
erative solution procedure. Choosing the values of these
parameters is another challenge and disadvantage of the
ITER-FLOC.

The motivation for our work is to show how scatter
search can be adapted to multiobjective optimization
and to test the merit of our ideas on the mo-FLP. Our
SS adaptation aims at overcoming the aforemen-
tioned ITER-FLOC’s limitations. In particular, we
produce an approximation of the Pareto front with a
single run and without requiring preference infor-
mation. While our work follows the SS methodol-
ogy (Laguna and Martı́ 2003, Martı́ et al. 2006), it
introduces new strategies in the context of multi-
objective problems that contrast with the hybrid SS
designs described in the literature, which we have
briefly reviewed above. Our main contributions are
as follows:

• We show how to design a diversification gener-
ation method that considers simultaneously more
than one objective function with the goal of con-
structing a population of solutions that balances so-
lution quality and diversity.

• We develop a solution improvement method
whose behavior depends onwhether the reference set
is being built from scratch or updated.

• The subset generation method departs from the
traditional pairwise mechanism that operates on sin-
gle reference set.

• We adapt path relinking as the combination
method. This adaptation, which is new to the litera-
ture, takes into consideration the multiobjective na-
ture of the problem.

Although our SS design is described in the con-
text of the multiobjective facility location problem
introduced above, we believe that the ideas have
general applicability and can be extrapolated to
other problems.

4. Proposed Multiobjective Scatter Search
The metaheuristic known as scatter search (SS) be-
longs to the family of the evolutionary program-
ming methods. The procedure starts with the con-
struction of a population of solutions from which
a reference set (RefSet) is selected and evolved by
means of combination and improvement mecha-
nisms. The standard SS consists of five methods:

1. Diversification generation method
2. Reference set update method
3. Subset generation method
4. Solution combination method
5. Improvement method.
As described by Laguna and Martı́ (2003), there are

standard (problem independent) implementations of
the reference set update and the subset generation

methods. For instance, a static update of the refer-
ence set is typical in most SS implementations. This
method consists of constructing theRefSet by selecting
solutions from a population created by the diversi-
fication generator. Half of the initial reference solu-
tions are the best (according to their objective function
values) solutions in the population and the other
half are selected for diversity purposes. Diversity is
measured by an appropriate distance metric (e.g.,
Euclidean or Hamming). After the initial construc-
tion, the RefSet is updated by selecting the solutions
with the highest quality in the set of solutions con-
sisting of the union of the current RefSet and the set of
solutions that have been subjected to the improve-
ment method after being generated by the solution
combination method. Both the improvement and
the combination methods are designed taking into
consideration the problem context and the solution
representation. A standard subset generationmethod
consists of all pairs of reference solutions for which at
least one of the two solutions is “new.” That is, pairs
that have already been examined in previous itera-
tions are not considered.
Figure 2 depicts the multiobjective SS framework

that we propose. The procedure starts with the se-
quential application of the diversification generation
and improvement methods (described in Sections 4.1
and 4.2), which result in a population P of feasible
solutions. Then, we build one reference set (RefSet)
for each objective function value. Each reference set
consists of β solutions. The initial reference solutions
are chosen from P. Half of the reference solutions are
selected because of their quality (as measured by the
corresponding objective function value) and half are
selected to add diversity.
The selection of themost diverse subset of solutions

is a hard problem on its own right. Instead of solving
the maximum diversity problem, as done in Martı́
et al. (2009), we select solutions heuristically, one
at a time. To measure solution diversity, we define
the distance between two solutions S1 and S2 as the
number of facilities selected in S1 that are not se-
lected in S2, and vice versa. Then, the distance of a
given solution Si to the RefSet is evaluated as the
minimum distance between Si and every solution
Sj ∈RefSet. Formally,

d(Si,RefSet) ! min
Sj∈RefSet

d(Si,Sj) ·

The distance d(Si,RefSet) is calculated for each solu-
tion Si ∈P\RefSet. The solution with the maximum
distance is selected and added to RefSet. This is re-
peated β/2 to build aRefSetwith β solutions. As shown
in Figure 2, our SS adaptation to multiobjective op-
timization employs three reference sets instead of one,
as SS is traditionally implemented. Solution quality for
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RefSet1, RefSet2, and RefSet3 is measured according to
f1, f2, and f3, respectively. This partition of the refer-
ence solutions is a departure of the previous SS ad-
aptations to multiobjective optimization problems,
all of which operate on a single reference set.

We point out that the proposed search structure has
some similarity with what is known in the literature as
Vector Evaluated Genetic Algorithms (VEGA) (Schaffer
1985). VEGA divides the population of solutions into
subpopulations, each of which evolves toward a
single objective. The main difference between VEGA
and our proposal is that in VEGA the elements in the
subpopulations are shuffled to create a single pop-
ulation before applying the genetic operators. When
dealing with a single-objective problem, VEGA be-
haves like a regular genetic algorithm (GA); therefore,
it can be considered a generalization of a scalar GA.
As it will become clear later, our SS is very deliberate
about how solutions are chosen for combination from
the reference sets, while VEGA operates under the
typical GA (probabilistic) selection rules.

The subset generation method (Section 4.3) gen-
erates pairs of solutions that are the input to the so-
lution combination method described in Section 4.4.
The solution pairs (Si,Sj) are constructed in such a
way that Si has not been combined with Sj in previous
iterations and that Si belongs to a reference set that is

different from the reference set of Sj. We have observed
that this design induces search diversification and
increases the density of the Pareto front by closing
gaps that occurred naturally when solutions are
generated with only one objective function in mind.
These gaps may occur in VEGA implementations
because the population towhich the genetic operators
are applied is not stratified by the objective function.
New trial solutions are generated as combinations

of reference solutions and they are subjected to the
improvement method described in Section 4.2. Spe-
cifically, each solution Si is improved in the direction
of the three objective functions, generating solutions
S1i ,S2i , and S3i for the first, second, and third objective
functions, respectively. Every solution during the
improvement phase is a candidate for the approxi-
mation of the Pareto front, which is kept as an external
archive. The best solutions at the end of the improving
phase become candidates for theRefSet. For instance, S1i
is added to RefSet1 if f1(S1i ) is better than the f1 value
of at least one of the solutions currently in RefSet1.
Let Sj ∈RefSet1 and f1(Sj)> f1(S1i ), then S1i replaces the
solution Sj for which d(S1i ,Sj) is minimum. That is, the
trial solution to be added to RefSet replaces, among
those solutions of inferior quality, the most similar
reference solution. This replacement strategy adds
diversification to each reference set.

Figure 2. Scatter Search Framework
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4.1. Diversification Generation Method
The first stage of scatter search consists of building a
population P of solutions. The literature shows that
the best SS performance is achieved when P consists
of solutions that balance quality and diversity. This
is why the most successful SS implementations do
not start with a population of solutions generated
completely at random.

Solutions for a location problem consist of selecting a
set S of p facilities. We use a single constructive
procedure that is adapted to each objective function,
creating |P|/3 solutions guided by pMP, |P|/3 solu-
tions guided by MCLP, and |P|/3 solutions guided
by pCP.

Solution construction is based on the Greedy Ran-
domized Adaptive Search Procedure (GRASP) meth-
odology. GRASP is an established, stand-alone met-
aheuristic (Feo and Resende 1989, Feo et al. 1994), but
in our case we only use one of its major elements
(namely, the solution construction phase) in order to
generate well-balanced solutions. We start with a
random selection of the first facility, among all pos-
sible candidate locations. Then, a Candidate List (CL)
is created with all the remaining available locations.
Subsequently, a Restricted Candidate List (RCL) is
generated with the most promising candidates to
host a facility. A facility is considered promising if its
greedy function value exceeds a threshold τ, which is
calculated as

τ ! gmax − α · gmax − gmin
( )

,

where gmin and gmax are, respectively, the minimum
and maximum value of the greedy function g for all
candidate facilities. The greedy functionmeasures the
attractiveness of a candidate facility as it relates to the
change in the objective function value. Since pMP and
pCP are minimization problems, the attractiveness
of a facility is measured as the change in 1/f1 and 1/f3,
respectively. The attractiveness of a facility in MCLP
is directly related to the change in the value of f2.
Since a facility is selected at random among those
facilities in RCL (i.e., those facilities with greedy
values that at least τ), then the α parameter controls
the level of randomness in the construction. A value of
α ! 1 makes the construction totally random, because
RCL = CL, while a value of α ! 0 makes it totally
deterministic, because only the location with a maxi-
mum greedy value is considered. Once a facility is
selected from the RCL, the CL is updated by removing
the selected location. The construction process is re-
peated p times to create a feasible solution.

4.2. Improvement Method
The improvement method is applied in two different
stages of the search, as shown in Figure 2. The first

time is during the initialization phase. The P/3 so-
lutions that are constructed guided by pMP are im-
proved considering f1, the P/3 solutions that are built
guided by MCLP are improved according to f2, and
the P/3 solutions that are generated guided by pCP
are improved following f3. During this stage, the
search focuses on each objective function separately.
The improvement method is also applied after the
solution combination method generates trial solu-
tions, as described in Section 4.4. In this stage, solu-
tions are improved in three different directions, each
one guided by one of the objective functions. That is,
each trial solution is subjected to the improvement
method three times in order to find local optima with
respect to f1, f2, and f3. When optimizing with respect
to one objective function, say f1, the deterioration of
the other two objective functions (in this case, f2 and f3)
is permitted.
Our improvement method follows the tabu search

methodology (Glover 1989, 1990; Glover and Laguna
1997). Tabu search can be viewed as an ordinary lo-
cal or neighborhood search, proceeding iteratively
from one solution to another until a termination crite-
rion is satisfied. Embedding tabu search within a scat-
ter search framework was first explored by Campos
et al. (2005). Let S be a solution. We define N(S) as
the set of solutions that can be reached by replacing a
facility u∈ S with a facility v∈Vf \S; that is,

N(S)← (u, v) :u ∈ S, v∈Vf \S
{ }

·

Tabu search uses memory structures to escape local
optimality and explore the solution space by dy-
namically modifying the solution neighborhoods.We
use a short-termmemory structure, which is the most
basic form of memory within tabu search. In our
implementation, the memory structure consists of a
list of facilities that have been included in the solu-
tions in the last Tenure iterations, where Tenure is a
search parameter. These facilities are forbidden from
being included in the current solution, unless their
inclusion leads to a solution that is better than the best
solution visited during the current search. The over-
writing of a tabu classification is called aspiration cri-
teria within the tabu search methodology. The mod-
ified neighborhood N*(S) is the result of excluding
fromN(S) all of the facilities that are in the short-term
memory T; that is,

N*(S)← (u, v) : u∈ S, v∈Vf \S∪  T
{ }

·

Our tabu search implements the first-improving strat-
egy and therefore performs the first non-tabu move
(i.e., the exchange of a facility u∈ S with a facility
v∈Vf \S∪  T, where T is the list of tabu facilities) that
leads to an improvement of the current solution or a
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tabu move that reaches the aspiration criterion. If no
suchmove exists, then the tabumove that deteriorates
the objective function the least is selected. After an
exchange (u, v), facility u is added to T for Tenure it-
erations. The method ends when the search performs
k consecutive non-improving moves.

4.3. Subset Generation Method
The SS methodology contemplates various designs
for the generation of subsets of reference solutions.
These designs attempt to balance search diversifica-
tion and intensification. For example, when the best
two reference solutions are chosen to form a subset,
the intention is to intensify the search around elite
solutions. The selection criterion could also be to pair
solutions that are as dissimilar as possible in order to
induce diversification. The cardinality of the subsets
also plays a role in this balancing act.

In our multiobjective design, we have determined
that pairing high-quality reference solutions is ef-
fective when quality is measured by two different
objective functions. Therefore, we generate all pairs
(Si,Sj) of reference solutions for which the reference
sets for Si and Sj are different. Our combination
mechanisms are designed to operate on two solu-
tions and therefore we do not generate subsets of
higher dimensions.

The subset generation, the combination method,
and the improvement methodmust complement each
other to achieve the ultimate goal of building high-
quality Pareto fronts. In the previous section, we
discussed how the improvement method focuses on
each objective function separately. That is, the search
for improved solutions does not consider more than
one objective function at a time, as done in compro-
mise programming and implemented in SSPMO (Molina
et al. 2007, Caballero et al. 2011). A compromise so-
lution seeks a balance among all objective function
values, and the goal of compromise programming is
finding a compromise set with the guidance of a
global criterion that is based on minimizing the
maximum distance to an ideal point.

Our subset selection strategy addresses the multi-
objective nature of the problem by choosing elite solu-
tions from two different sets. As we will see in the next
section, these solutions are combined by a mechanism
that marches from one solution to the other. Our com-
putational experiments show that this design is effective
in populating the archive of nondominated solutions
with compromise points.

4.4. Solution Combination Method
The solution combination method operates on the
pairs of references solutions generated by the subset
generation method. We employ a form of path
relinking (Glover 1997) as our solution combination

method. Path relinking generates a sequence of neigh-
borhood searches that link an initiating solution to a
guiding solution. We generate paths between the solu-
tion pairs that result from the subset generationmethod.
One is the initiating solution (S′) and the other is the
guiding solution (S′′). Then, the sequence of solutions
between both is produced by removing locations
from S′ that are not in S′′ (the removal set) and
inserting locations in S′ that are in S′′ (the inser-
tion set).
Figure 3 shows an example of how the path relinking

works. Let S′ ! {1,2,3,4,5} and S′′ ! {2,3,6,8,9} be the
initiating and the guiding solution, respectively. The
insertion set is In ! {6,8,9} and the removal set is
Out ! {1,4,5}. The process is a sequence of moves,
where one facility from In is added to the solution and
one facility from Out is removed. After the move, the
chosen facilities are deleted from In and Out. This is
done until In and Out are empty. Figure 3 shows the
result of the relinking process when the selections are
(9,5), (6,1), and (8,4).
Our path relinking design is a departure from the

single-objective SS designs in the literature. In those
designs, the next move is selected by exploring the
neighborhood that results from all the moves in
the direction of the guiding solutions. In a single-
objective facility location problem, this would mean
the selection of the best exchange of a facility from In
and a facility from Out. That is, the best exchange
according to the objective function value is selected
among all those moves that transform the current
solution into another that is closer to the guiding
solution. The notion of best in single-objective prob-
lems is straightforward to implement.
In our path relinking, we evaluate all of the solu-

tions that result from inserting a location from In and
removing a location fromOut. The resulting solutions
are tested for membership in the nondominated set
(i.e., the external archive). If at least one of the moves
results in a nondominated solution, we arbitrarily
choose one of the nondominated solutions to move to
continue the relinking process. An arbitrary move is
chosen from all availablemoves if nomove results in a
nondominated solution.

5. Computational Experiments
We perform experiments on three sets of problem
instances, which we generatedwith the code provided
by Karatas and Yakici (2018). Table 3 summarizes
the parameter values of the three sets of prob-
lem instances.1

Figure 3. Path Relinking Example
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As done in previous studies reported in the liter-
ature, we randomly generate candidate facilities and
demand points in a 100 × 100 area. The weight for the
demandpoints is randomly chosenwithin the interval
[0.75, 1]. We generated 80 random problem instances
of each size for a total of 240 instances. Experiments
were carried out on an Intel Core i7 920 (2.67 GHz)
with 8 GB of RAM, and the algorithms were imple-
mented in Java 8.

The multiobjective optimization literature includes
variousmetrics to compare the quality of the Pareto front
approximations constructed with heuristic procedures.
The number of nondominated solutions found (Solu-
tions). Themore solutions in the approximation of the
Pareto front, the better. The hypervolume (HV) cal-
culates the volume in the objective space covered by
the approximation of the Pareto front. The larger the
volume, the better the approximation. The coverage
metric, C(A,B), calculates the proportion of solutions
of algorithm B that are weakly dominated by the
efficient solutions found by algorithm A. A common
way of assessing performance with this metric is to
computeC(R,B), whereR is the reference Pareto front2

or the optimal front if known. If C(R,B) ! 1, all so-
lutions obtained by procedure B are weakly domi-
nated by the reference Pareto front R. C(R,B) ! 0
means that no solution from B is weakly dominated
by the reference Pareto front R. Therefore, smaller C
values indicate better performance. The epsilon in-
dicator (ε-indicator) measures the smallest distance
needed to transform every point obtained in the
approximation of the Pareto front to a point that is
nondominated by a reference Pareto front or the
optimal front if known. A small ε-indicator value
indicates a better approximation. CPU indicates the
computing time required to obtain the approxima-
tion of the Pareto front. A shorter computational
time is preferable. See Audet et al. (2018) for a com-
prehensive review and detailed description of per-
formance indicators for multiobjective optimization
procedures. We use the jMetal framework to evaluate
these metrics (Durillo and Nebro 2011).

The remainder of the section is divided into three
parts: preliminary experiments, competitive testing,
and additional testing. The preliminary experiments
focus on the selection of the best parameter settings
for our scatter search, the competitive testing compares

the performance of our tuned procedure against ITER-
FLOC (Karatas and Yakici 2018), and the addi-
tional testing compares our SS design with one from
the literature.

5.1. Preliminary Experiments
In order to fine-tune our SS implementation, we
select a representative subset of 45 instances, 15 from
each set (see Table 3 above). This training set repre-
sents 18.75% of the total number of instances. A full
factorial experimental design for thefine-tuning of the
search parameters is impractical in terms of computing
time. As stated in (Sánchez-Oro et al. 2016), a se-
quential process to determine parameter values has
been shown to be effective. We have four parameters
to adjust: α, β, Tenure, and k.
The scatter search literature includes numerous

experimental studies with the goal of identifying
effective values for the size of the reference set.
The value of 10 is often used when tackling single-
objective optimization problems. Since our design
includes three reference sets, the standard value of 10
would result in 30 reference solutions and in toomany
solution pairs to combine (namely, 300). In order to
balance computing effort with early convergence
(i.e., the stage of the searchwhen no new solutions are
admitted to any of the reference sets), we chose the
value of β ! 6. This results in 108 pairs (when all
reference solutions are new), which is in line with the
amount of effort that SS implementations devote to
this element of the solution process.
With the value of β set to 6, we tune the value of α, a

parameter used for constructing solutions within
the diversification generation method. We test α !
{0.25, 0.50, 0.75} and α selected at random in each
construction. Table 4 shows no significant performance
differences among the α values, when considering the
various metrics. Since no single α value seems to

Table 3. Characteristics of Problem Instances

Parameter Set 1 (small size) Set 2 (medium size) Set 3 (large size)

m 20 50 200
n 50 100 400
p 5 10 15
r 20 15 10

Table 4. Summary of Results for the Tested α Values

α Solutions HV C(R, SS) ε-indicator CPU

Random 25.8235 0.5464 0.2097 0.0553 57.49
0.25 24.6471 0.5460 0.2355 0.0450 55.39
0.50 25.8824 0.5450 0.2555 0.0520 56.24
0.75 25.1765 0.5454 0.2372 0.0451 60.12
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dominate all others in terms of our metrics, we chose
the random selection of α in each construction.

With α chosen at random, we calibrate the tabu
list size (i.e., the value of Tenure). We make this
value dependent on the number facilities and test
Tenure ! 0.10 · p, 0.20 · p, and 0.30 · p The results in
Table 5 show a similar situation as Table 4, in the sense
that no single value of the parameter (Tenure) dom-
inates the others in terms of all performance met-
rics. We choose 0.1 following the principle that the
smallest tabu tenure that avoids cycling is prefera-
ble in terms of adding search flexibility.

With α, β, and Tenure set to their best values, we
determine the best value for the number of iterations
without improvement, k. The value of this parameter
is also made dependent of the number of candidate
facility locations—specifically, we test k ! 0.10 ·m,
0.50 ·m, and 0.90 ·m, as shown in Table 6.

As expected, Table 6 shows that the larger the value
of k, the better the outcomes. However, the trade-off
of an increased solution time must be taken into
consideration. We compromise and choose an inter-
mediate value, opting for 0.5 instead of 0.9, which
achieves the best values for the metrics associated
with solution quality.

5.2. Competitive Testing
This competitive testing consists of comparing the
performance of our SS implementation with the per-
formance of ITER-FLOC (Karatas and Yakici 2018).
ITER-FLOC hybridizes two methodologies: branch-
and-bound and iterative goal programming. Branch-
and-bound is used to solve each single-objective prob-
lem iteratively, generating lower and upper bounds for
each objective function as is customary in this process.
Based on a user-controlled parameter, the procedure
adds constraints to each single-objective model in order
to force the solution method to find new optimal solu-
tions for that model without deteriorating the values of
the other two objective functions. ITER-FLOC requires
the setting of a number of parameters, as specified in the
article. Karatas and Yakici kindly shared their code with
us, and our comparison uses the default configuration
that they describe in their work and to which the code
was set when we received it.

Table 7 summarizes the results of this experiment.3

For eachmetric and problem size, the table shows two
rows for each method. The first row is the average

value of the metric. The second row consists of the
percentage of instances in which the corresponding
method obtains a better result than the competing
method. Note that because of the instances when
both methods obtain the same value, the sum of the
fractions for a particular metric does not have to be
equal to one. For example, ITER-FLOC obtains an av-
erage HV value of 0.227 for the medium-sized instances
while our SSobtains 0.195.Under thismetric statistic and
for these instances, ITER-FLOC performs better than SS.
However, although the average HV favors ITER-FLOC,
SS obtains better individual HV values in more instance
(47.5%) than ITER-FLOC (35%). This indicates that in
17.5% of the instances, both methods obtained the same
HV value.
The metrics show that ITER-FLOC performs gen-

erally better than SS in the small instances. A similar
conclusion can be drawn regarding the medium-
sized problems. However, as we move to the large
instances, the advantage of the heuristic search tech-
niques within SS emerge. The results in the last section
of Table 7 show that SS clearly dominates ITER-FLOC
when tackling the large instances in our test set. SS
generates two orders of magnitude more solutions
than ITER-FLOC.All average values favor SS, in some
cases by an order of magnitude (e.g., HV and the
ε-indicator). Individual results also favor SS, with
ITER-FLOC only able to produce one instance in
which the coverage value is better than SS.
In terms of computational effort, ITER-FLOC em-

ploys two termination criteria. The procedure stops

Table 6. Summary of Results for the Tested k Values

k Solutions HV C(R, SS) ε-indicator CPU

0.1 26.7647 0.5332 0.3119 0.0698 61.71
0.5 30.3529 0.5395 0.2070 0.0381 313.58
0.9 30.6471 0.5411 0.1648 0.0371 501.08

Table 5. Summary of Results for the Tested Tenure Values

Tenure Solutions HV C(R,SS) ε-indicator CPU

0.1 25.9412 0.5567 0.1890 0.0434 56.36
0.2 25.7647 0.5552 0.2010 0.0274 55.83
0.3 23.7059 0.5516 0.3013 0.0609 48.65

Table 7. Summary of Results for ITER-FLOC and SS

Method Solutions C(R,B) HV ε-indicator CPU

Small
ITER-FLOC 4.040 0.064 0.124 0.658 17.8

24.0% 54.7% 36.0% 52.0% 0.0%
SS 6.613 0.250 0.147 0.729 0.1

65.3% 10.7% 52.0% 36.0% 100.0%
Medium
ITER-FLOC 8.038 0.063 0.227 0.607 22.6

22.5% 30.0% 35.0% 55.0% 26.3%
SS 14.913 0.094 0.195 0.692 8.5

70.0% 15.0% 47.5% 30.0% 73.8%
Large
ITER-FLOC 3.225 0.425 0.233 0.640 3969.3

0.00% 1.25% 0.00% 0.00% 3.75%
SS 137.025 0.014 0.700 0.046 2169.2

100.0% 78.8% 96.3% 96.3% 96.3%
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when any of the single-objective models become in-
feasible due to the addition of the constraints that
prevent the deterioration of the objective functions
that are not part of that model. The procedure also
stops when the compromise solution is not able to
improve by at least a user-specified epsilon value.
This solution is such that “all of the three models
have approximately the same performance for each
objective.” In contrast, SS stops when no solutions
are included in the Pareto front after a complete
SS iteration. In addition, our SS implementation
takes advantage of the multicore computer systems
by parallelizing the construction, local search, and
combination phase of SS. In particular, each con-
struction, improvement, and combination is executed
in an independent thread,which enables the scalability
of the proposal.

When taking into consideration both the quality of
the Pareto fronts (as measured by the metrics in Ta-
ble 7) and the required computational effort, it seems
clear that the proposed SS becomes the preferred
method as the problem size increases. We attribute
the difference in performance to the following char-
acteristics of our SS implementation:

• The balance between intensification and di-
versification in both the construction and the im-
provement methods results in dense Pareto front
approximations.

• The combination complementary designs of the
combination and improvement methods are largely
responsible for improving the quality of the solutions
in the approximation of the Pareto front.

5.3. Additional Testing
The computational results in the previous section
show that our approach is highly competitive when
compared with a specialized procedure for the mul-
tiobjective facility problem described in Section 3.

What those experiments are not able to show is
whether our proposed SS design improves uponwhat
has already appeared in the scatter search literature.
Our literature review revealed that there is no “stan-
dard” scatter search for multiobjective optimization.
However, from the adaptations described in Sec-
tion 2, we believe that AbYSS (Nebro et al. 2008) is
the one that provides the best contrast to our pro-
posal. AbYSS was originally developed for nonlin-
ear optimization, but we adapted to our context in
order to produce a meaningful comparison. We used
the same set of test problems and report a summary
of the results in Table 8.
The results in Table 8 show that the two SS imple-

mentations perform at a similar level when dealing with
the small problems. This similar performance quickly
ends when moving to the medium-sized problems and
then to the large instances. For the large instances, our
proposed SS produces average results that are at least
one order of magnitude better than those produced by
AbYSS. To give AbYSS an opportunity to find improved
approximations of the Pareto front, we ran a final test
where we executed AbYSS for up to four times longer
than our procedure.We observed no significant changes
in the results reported in Table 8.

6. Conclusions
Our motivation for this project was twofold: ex-
ploring new ideas for the adaptation of scatter search
in the context of multiobjective combinatorial opti-
mization and developing a state-of-the-art solution
method for the multiobjective facility location prob-
lem (mo-FLP). In terms of advancing the state of the
art for the mo-FLP, the computational results in-
cluded here indicate that our scatter search is able
to produce approximations of the Pareto front that
existing procedures are not able to deliver. As the
problem size increases, the quality of these approx-
imations surpasses the approximations found by the
current best procedure in the literature (ITER-FLOC).
Quality is measured with various indicators, all of
which favor our SS adaptation in the test with the
largest problem instances.
The main algorithmic design ideas include a unique

structure and management of the reference sets, mul-
tidirectional searches in the improvementmethod, anda
path relinking mechanism to combine solutions. These
ideas and the structure of our SS implementation are a
departure from most of what has been tried before in
terms of applying scatter search to multiobjective op-
timization. We firmly believe that the proposed design
is generalizable and that the effectiveness that we ob-
served when we applied it to the mo-FLP can be ex-
pected when tackling other multiobjective optimiza-
tion problems.

Table 8. Summary of Results for AbYSS and SS

Method Solutions C(R,B) HV ε-indicator CPU

Small
AbYSS 6.387 0.277 0.135 0.753 2384.868

10.7% 46.7% 33.3% 5.3% 0.0%
SS 6.613 0.250 0.147 0.729 0.110

22.7% 28.0% 46.7% 14.7% 100.0%
Medium
AbYSS 8.938 0.780 0.137 0.771 2405.795

7.5% 5.0% 0.0% 0.0% 0.0%
SS 14.913 0.094 0.195 0.692 8.485

77.5% 93.8% 80.0% 50.0% 100.0%
Large
AbYSS 13.825 0.978 0.095 2.260 2625.632

2.50% 0.00% 0.00% 0.00% 12.50%
SS 137.025 0.014 0.700 0.046 2169.195

96.3% 100.0% 96.3% 100.0% 87.5%
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Endnotes
1All data sets can be foundhere: https://github.com/jesussanchezoro/
ProblemInstances.
2The reference Pareto front, denoted by R, is constructed with all of
the solutions found during the testing of all procedures. That is, R
represents the best-known approximation of the Pareto front.
3The values obtained for each metric by each procedure on each
instance can be found in the online supplement associated with
this article.
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