
Computers and Operations Research 104 (2019) 295–303

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

GRASP and VNS for solving the p -next center problem

A.D. López-Sánchez

a , ∗, J. Sánchez-Oro

b , A.G. Hernández-Díaz

a

a Pablo de Olavide University, Ctra. de Utrera km 1., Sevilla 41013, Spain
b Rey Juan Carlos University, Tulipán s/n., Móstoles, Madrid 28933, Spain

a r t i c l e i n f o

Article history:

Received 18 December 2017

Revised 17 December 2018

Accepted 18 December 2018

Available online 21 December 2018

Keywords:

Discrete location

p -center problem

p -next center problem

GRASP

VNS

a b s t r a c t

This paper presents two metaheuristic algorithms for the solution of the p -next center problem: a Greedy

Randomized Adaptive Search Procedure and a Variable Neighborhood Search algorithm, that will be sub-

sequently hybridized. The p -next center problem is a variation of the p -center problem, which consists

of locating p out of n centers and assigning them to users in order to minimize the maximum, over all

users, of the distance of each user to its corresponding center plus the distance between this center to

its closest alternative center. This problem emerges from the need to reach a secondary help center in

the case of a natural disaster, when the closest center may become unavailable.

© 2018 Elsevier Ltd. All rights reserved.

1

a

c

i

s

w

(

h

r

m

c

d

h

l

n

t

o

c

c

(

l

a

r

{

r

l

t

a

p

t

c

c

a

a

t

p

l

l

a

s

t

g

e

b

t

E

f

a

h

0

. Introduction

The interest of this paper is motivated by very common situ-

tions in humanitarian logistics in which an unexpected incident

an occur in any of the centers. When a center remains disabled,

t is not able to provide help and all users are forced to be reas-

igned to another center, which is usually the closest center to that

hich has become unavailable.

When a disaster strikes, whatever the nature of the disaster

natural or caused by humans), any person injured or affected

eads towards emergency assistance centers, such as hospitals,

efugee camps, and rescue centers. For instance, in war situations,

ultitudes of people need access to hospitals and may need to es-

ape from their own country to be hosted in refugee camps. Ad-

itionally, in natural disasters, such as earthquakes, tsunamis and

urricanes, rescue centers are set up to serve the affected popu-

ation. In real situations, a person naturally chooses to go to the

earest emergency center, but it could be that the closest cen-

er is no longer available for any of multiple reasons (including

vercrowding and running out of supplies, among others). In this

ase, the best alternative for that person is to find the next closest

enter. This problem, which is a variation of the p -center problem

 p CP), has been named the p -next center problem (p NCP).

The p CP is one of the most frequently studied location prob-

ems and it can be formally stated as follows. Let G = (V, E) be

 complete graph, where V = { 1 , . . . , n } is the set of vertices that
∗ Corresponding author.

E-mail address: adlopsan@upo.es (A.D. López-Sánchez).

b

c

S

n

ttps://doi.org/10.1016/j.cor.2018.12.017

305-0548/© 2018 Elsevier Ltd. All rights reserved.
epresents potential locations to host centers (| V | = n), and E =
 (i, j) : i, j ∈ V, i � = j} is the edge set, where each edge (i, j) rep-

esents a path between vertices i and j . For each pair (i, j) ∈ E ,

et d ij ≥ 0 be the length of the shortest path that connects loca-

ions i and j which must satisfy d ii = 0 , for all i ∈ V, d ij > 0, for

ll i, j ∈ V, i � = j , and d i j ≤ d ik + d k j , i, j, k ∈ V . The objective in the

 CP is to select a subset P ⊂ V of cardinality p that minimizes

he maximum of the distances between users and their closest

enters in P . In other words, the aim is to locate p out of n

enters while minimizing the maximum distance between a user

nd a center. Since each vertex represents a center located in

 certain population, it is assumed that all the users living in

hat population can be represented by that vertex. The first pa-

er on the p CP was published by Hakimi (1964) where the prob-

em was defined and solved using graphical methods. A few years

ater, Minieka (1970) provides an iterative set covering based ex-

ct method to solve the p CP. Since then, a multitude of research

tudies have addressed the p CP that make use of exact or heuris-

ic methods. Daskin (1995) proposes the first mixed integer pro-

ramming formulation for the pCP. The author also provides an

xact algorithm based on the idea of Minieka (1970) integrated

y a bi-section method. Details on the p CP (a formulation and

wo different approaches: exact and heuristic) can be found in

lloumi et al. (2004) , who present an integer linear programming

ormulation with a polynomial number of variables and constraints

nd include the linear programming relaxation to provide a lower

ound; and Mladenovi ́c et al. (2003) who address the p CP heuristi-

ally implementing a Variable Neighborhood Search and two Tabu

earch heuristics. Recently, Calik and Tansel (2013) proposed a

ew integer programming formulation. Davidovic et al. (2011) and

https://doi.org/10.1016/j.cor.2018.12.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.12.017&domain=pdf
mailto:adlopsan@upo.es
https://doi.org/10.1016/j.cor.2018.12.017

296 A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303

Fig. 1. Optimal location for the p -center problem.

Fig. 2. Optimal location for the p -next center problem.

v

3

m

d

t

t

u

c

c

c

t

I

a

f

r

a

c

c

t

p

c

(

i

i

l

l

i

C

o

e

a

t

c

p

s

w

r

h

o

r

a

P

b

t

h

t

o

f

i

s

d

m

n

2

p

s

P

S

b

Irawan et al. (2016) solve the p CP with new methodologies, with

methods based on bee colony and hybrid metaheuristics, respec-

tively. We also refer the reader to Yin et al. (2017) and Martínez-

Merino et al. (2017) since they solve the p CP using two method-

ologies similar to those implemented in this paper.

As introduced above, the p NCP is an extension of the p CP, and

is more realistic in many actual situations. The p NCP consists of

locating p out of n centers in order to minimize the maximum dis-

tance between users and their closest center (referred as the ref-

erence center) plus the distance from this reference center to its

closest center (also known as the backup center). Thus, the p NCP

can be formally defined as follows:

min

P⊂V | P| = p
max

i ∈ V

⎧ ⎪ ⎨

⎪ ⎩

min

j∈ P
{ d i j } + min

k ∈ P
k � = j ′ ∈ arg min

j∈ P
{ d i j }

{ d j ′ k }

⎫ ⎪ ⎬

⎪ ⎭

In order to graphically illustrate the difference between the p CP

and the p NCP, a simple example is included in Figs. 1 and 2 , where

the optimal locations for the p CP and the p NCP are represented, re-

spectively. Consider the problem defined by n = 5 with Euclidean

distances and p = 3 . The optimal solution value for the p CP is 1.41

units and centers are located at nodes 1, 3 and 5. The solution

value, 1.41 units, is calculated as the maximum distance between

a user and the reference center, which, in this case, is the length

from node 2 to node 5. On the other hand, the optimal solution
alue for the p NCP is 5.00 units and centers are located at nodes 1,

, and 4. The solution value, 5.00 units, is calculated as the maxi-

um distance between each user and its reference center plus the

istance of this center to its closest center, which, in this case, is

he length from node 1 to node 1 since it is a reference center plus

he length from node 1 to node 4.

As previously explained, when all centers are available, then

sers go to their closest reference center (p CP). In Fig. 1 , users from

enter 1, 3 and 5 will stay in these centers since they are reference

enters and users from 2 and 4 will go to center 5 since it is their

losest reference center. However, as mentioned earlier, it could be

hat when users arrive at their reference center, it is not available.

n such a case, users will go to the closest backup center (p NCP)

nd this situation is represented in Fig. 2 . In that example, users

rom centers 1, 3, and 4 will stay in these centers since they are

eference centers but, in the case that one of them is no longer

vailable, they will go to their closest reference center (a backup

enter). The backup center of centers 1, 2, 3 and 5 is reference

enter 4 and the backup center of 4 is center 3. Although these

wo problems are very similar, the optimal solution values for the

 CP and for the p NCP are substantially different since the reference

enters are located on different vertices.

The p NCP was first introduced by Albareda-Sambola et al.

2015) . The authors proved that this discrete optimization problem

s NP-hard. They proposed and compared several different linear

nteger programming formulations of p NCP: a three-index formu-

ation using path variables; a two-index formulation; and a formu-

ation using covering variables. All formulations were implemented

n Xpress Optimizer and the experiments were limited to 2 h of

PU time. Albareda-Sambola et al. (2015) were able to solve a set

f instances of up to 50 nodes with a reasonable computational

ffort. To the best of our knowledge, this was the first and only

ttempt to address the p NCP.

In this paper, a different approach is proposed, and the limi-

ations found in Albareda-Sambola et al. (2015) are taken into ac-

ount. Various metaheuristics are designed specifically to solve the

 NCP. Thus our goal is now to produce optimal or near-optimal

olutions in a reasonable amount of time. It is well-known that

hen the size of the problem increases considerably, exact algo-

ithms can remain unable to find the optimal solution due to their

igh cost in terms of computing time or lack of available mem-

ry. The difficulty of solving certain problems using exact algo-

ithms leads us to using heuristic algorithms. To this end, the first

lgorithm implemented is a Greedy Randomized Adaptive Search

rocedure and the second algorithm designed is a Variable Neigh-

orhood Search methodology. Finally, the methodologies above are

hen hybridized in order to attain even better results. These meta-

euristics are compared among them and against the optimal solu-

ion provided by Albareda-Sambola et al. (2015) when it is known

r, otherwise, against the best-known solution. We prove their use-

ulness in solving the p NCP while ensuring high-quality solutions

n reasonable computational times.

The rest of this paper is organized as follows. Section 2 de-

cribes the metaheuristics implemented to solve the problem un-

er consideration. Section 3 presents the computational experi-

ents performed to test the quality of the proposed methods. Fi-

ally, Section 4 summarizes the paper and discusses future work.

. Algorithms

In this section the algorithms proposed for solving the p NCP are

resented. The first methodology detailed in Section 2.1 is a multi-

tart algorithm known as the Greedy Randomized Adaptive Search

rocedure (GRASP), while the second methodology presented in

ection 2.2 is a trajectory-based algorithm named Variable Neigh-

orhood Search (VNS).

A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303 297

o

e

r

i

s

2

s

F

Q

y

m

i

m

r

t

i

r

f

c

t

p

t

s

r

r

p

t

g

f

o

t

w

A

t

r

b

g

t

l

u

i

(

a

l

c

o

l

p

c

i

t

i

a

m

j

u

a

f

u

R

(

t

n

1

b

r

l

o

s

d

i

c

N

s

f

w

v

o

r

G

o

p

l

r

A

p

t
GRASP uses a set of solutions that are subsequently improved in

rder to obtain high-quality solutions and this algorithm strength-

ns the diversification of the solutions. In contrast, the VNS algo-

ithm starts from a single solution in order to attain a better qual-

ty solution and, in this case, this algorithm encourages the inten-

ification of the solution.

.1. Greedy randomized adaptive search procedure

The GRASP is a methodology originally proposed by Feo and Re-

ende (1989) but it was formally introduced several years later by

eo et al. (1994) . We refer the reader to Feo and Resende (1995) ;

uintana et al. (2016) ; Resende and Ribeiro (2010) for the anal-

sis of recent surveys and successful applications of GRASP. This

ulti-start algorithm consists of a two-phase process: a random-

zed construction phase using a greedy function; and an improve-

ent phase to reach a local optimum. These two stages are then

epeated until a certain termination criterion is met. The most in-

eresting feature of this methodology is the combination of greed-

ness and randomness in the generation of solutions by means of

estricted candidate lists (RCL) of variable sizes that control both

eatures. Note that the greediness/randomness of the method is

ontrolled by a parameter denoted by α. Note that, if α = 0 , then

he method becomes completely greedy (it only considers the most

romising element to be included in the solution under construc-

ion), and if α = 1 , then all elements are included in the RCL , re-

ulting in a totally random method. For comprehensive literature

eviews on GRASP algorithms, Festa and Resende (20 08, 20 09) are

ecommended, where algorithmic aspects were surveyed and ap-

lications were included into a variety of combinatorial optimiza-

ion problems. More specifically, in relation with the p CP, we sug-

est Yin et al. (2017) who included a Path Relinking in a GRASP

ramework. The resulting algorithm is competitive with the state-

f-the-art algorithms in terms of solution quality and computa-

ional efficiency.

Hereinafter, specific details of the proposed GRASP algorithm

ill be described. Algorithm 1 presents the constructive stage of

lgorithm 1 Construct(G = (V, E) , α).

1: P ← ∅
2: { v , u } ← Select (V)

3: P ← P ∪ { v , u }
4: CL ← V \ { v , u }
5: while | P | � = p do

6: g min = min

v ∈ CL
g(P, v)

7: g max = max
v ∈ CL

g(P, v)

8: th ← g min + α(g max − g min)

9: RCL ← { v ∈ CL : g(P, v) ≤ th }
10: v ′ ← SelectRandom (RCL)

11: P ← P ∪ { v ′ }
12: CL ← CL \ { v ′ }
13: end while

14: return P

he GRASP algorithm for solving the p NCP.

It must be borne in mind that any solution for the p NCP is

epresented as a set P of p selected centers to which users will

e assigned. The input for the method is comprised of the input

raph G = (V, E) , and the parameter α. The constructive phase of

he GRASP method proposed in this work starts from an empty so-

ution P (step 1). The method then selects the first two centers { v,

 } to be added to the solution (steps 2 and 3), thereby construct-

ng a list of candidate centers to be added, initially CL = V \ { v , u }
step 4). The first two nodes are selected in two different ways,
nd these are denoted as C1 and C2. The first strategy for the se-

ection of the two first nodes, C1, randomly selects the first two

enters. On the other hand, the second strategy for the selection

f the two first nodes, C2, evaluates all the vertices in G and se-

ects the first vertex v as that which maximizes the following ex-

ression: max
v ∈ N

min

u ∈ N
d v u . The second center selected is therefore the

losest center to v .

Once the first two centers have been selected, the method

terates until the number of centers assigned to the solu-

ion under construction is equal to p (steps 5–13). At each

teration of the construction, all the vertices in CL = V \ P
re evaluated with a greedy function defined as: g(P, v) =

ax
i ∈ V

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

min

j∈ P∪{ v } { d i j } + min

k ∈ P∪{ v }
k � = j ′ ∈ arg min

j∈ P∪{ v } { d i j }
{ d j ′ k }

⎫ ⎪ ⎪ ⎬

⎪ ⎪ ⎭

which evaluates the ob-

ective function value when adding the vertex v to the solution

nder construction, and maintains the best and worst values, g min

nd g max , respectively (steps 6 and 7). These values are considered

or the calculation of a threshold, denoted by th (step 8), which is

seful for creating the restricted candidate list, RCL (step 9). The

CL contains the most promising candidate vertices to be added

i.e., those that yield the smallest increase of the objective func-

ion, taking into account the previously computed threshold). Fi-

ally, the method randomly selects a vertex v ′ from the RCL (step

0), and adds it to the solution P (step 11). The CL is then updated

y removing the selected vertex (step 12). The method ends by

eturning the constructed solution when p centers have been se-

ected.

The second stage of the GRASP is designed to obtain a local

ptimum with respect to a predefined neighborhood of the con-

tructed solution. Given a solution P , the neighborhood N 1 (P) is

efined as the set of solutions that can be obtained by exchang-

ng a selected center with any non-selected center. In mathemati-

al terms,

 1 (P) ← { (P \ { u }) ∪ { v } : u ∈ P, v ∈ V \ P }
The proposed local search method follows a first-improvement

trategy. In particular, the method visits all neighbor solutions by

ollowing a random order, and replaces the incumbent solution

ith the first neighbor solution that has a better objective function

alue; the search is subsequently restarted with the neighborhood

f the updated solution. The search stops when a local optimum is

eached (i.e., no better solution can be found in the neighborhood).

The construction and improvement phases are executed in the

RASP methodology until a stopping criterion is met, which is, in

ur case, the number of solutions generated. Specifically, the pro-

osed GRASP is executed 100 times, which means, 100 initial so-

utions are built that are subsequently improved upon. The algo-

ithm returns the best solution generated. Algorithm 2 depicts the

lgorithm 2 GRASP (G = (V, E) , α, nsol).

1: P b ← ∅ , f (P b) ← ∞

2: for i = 1 . . . nsol do

3: P ← Construct (G = (V, E) , α)

4: P ′ ← LocalSearch (P)

5: if f (P ′) < f (P b) then

6: P b ← P ′ ;
7: end if

8: end for

9: return P b

seudo-code for the GRASP algorithm proposed in this work.

This algorithm requires the complete graph G and two parame-

ers: α, which controls the greediness/randomness of the construc-

298 A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303

i

p

b

i

(

n

f

d

a

t

o

t

l

t

1

p

T

a

3

t

t

S

s

t

w

s

fi

s

u

s

v

S

w

c

l

s

c

a

A

p

s

a

m

g

3

G

r

o

t

o

p

o

d

1 http://people.brunel.ac.uk/ ∼mastjjb/jeb/info.html
tive procedure; and nsol , which indicates the number of solutions

generated. For each execution, the algorithm constructs a new so-

lution with the constructive procedure (step 3) and then improves

it with the local search method (step 4). Finally, if the improved

solution P ′ is better than the best solution found so far, P b , then it

is updated. The method stops when nsol solutions have been gen-

erated, and returns the best solution found during the search, P b .

2.2. Variable neighborhood search

VNS algorithms were originally proposed by Mladenovi ́c and

Hansen (1997) . VNS relies on the idea of systematic changes

of neighborhood structures. The adaptability of the method-

ology has resulted in several variants in recent years (see

Hansen et al. (2017) for a recent survey on the methodol-

ogy), which has led to several successful applications for a

variety of difficult optimization problems, such as those in

Duarte et al. (2016) and Sánchez-Oro et al. (2015) . Furthermore,

other location problems have been addressed using VNS method-

ologies: one interesting problem was addressed by Martínez-

Merino et al. (2017) , where the probabilistic p -center problem that

seeks to minimize the expected maximum distance between any

vertex and its center was solved.

In this paper, we focus on the Basic VNS (BVNS) algorithm,

which combines both stochastic and deterministic changes of

neighborhood in order to obtain high-quality solutions. The neigh-

borhoods have been defined in a similar way to the neighborhood

N 1 . Therefore, each neighborhood, N k (with k ≤ p), is defined as the

set of solutions that can be reached by performing k exchanges

between selected and non-selected centers. Note that p different

neighborhoods may be used.

Algorithm 3 presents the pseudo-code of the BVNS algorithm.

Algorithm 3 BVNS(P b , k max).

1: k ← 1

2: repeat

3: P ′ ← Shake (P b , k)

4: P ′′ ← LocalSearch (P ′)
5: if f (P ′′) < f (P b) then

6: k ← 1

7: P b ← P ′′
8: else

9: k ← k + 1

10: end if

11: until k = k max

12: return P b

The method requires two inputs: the initial solution, P b ; and the

maximum neighborhood to be explored during the search, k max .

The initial solution of BVNS is generated by the constructive pro-

cedure described in Section 2.1 . This constructive procedure gener-

ates 100 solutions, and the best solution is then used as the initial

solution for the BVNS algorithm.

The BVNS algorithm starts from the first neighborhood consid-

ered (step 1), and the following steps are executed until the max-

imum predefined neighborhood, k max , is reached (steps 2–12). At

each iteration, the incumbent solution P b is perturbed with the

Shake procedure (step 3). This method randomly selects a solution

in the neighborhood under exploration at the current iteration. The

shake method is designed to increase the diversity of the search

and therefore the centers involved in the exchange are selected at

random at each iteration. Once the perturbed solution P ′ has been

obtained, the local search method described in Section 2.1 is then

applied, and a local optimum P ′ ′ is found in N (P ′) (step 4).
1
Finally, the neighborhood change stage (steps 5–10) is executed

n order to select the subsequent neighborhood to be explored. In

articular, if the improved solution P ′ ′ is better than the incum-

ent solution P b in terms of the objective function value, then P b
s updated and the search starts again from the first neighborhood

steps 6 and 7). Otherwise, the search continues with the next

eighborhood (step 9). The method stops when no improvement is

ound in any neighborhood considered, and the best solution found

uring the search is returned (step 12).

To close this section, it should be mentioned that the previous

lgorithms, GRASP and BVNS, have also been hybridized in order

o analyze the viability of this combination by taking advantages

f their strengths. The hybridization consists of generating solu-

ions using the GRASP constructive procedure, and of replacing the

ocal search method with a complete BVNS algorithm. Specifically,

he GRASP constructive procedure is executed 100 times, that is,

00 initial solutions are built and all of them are subsequently im-

roved including them in a single iteration of a BVNS algorithm.

he following sections present the computational results for three

lgorithms.

. Computational results

This section presents and discusses the results of the compu-

ational testing conducted with the three algorithms proposed in

his paper over the same set of instances considered in Albareda-

ambola et al. (2015) . These instances are available at OR-library 1 ,

ee Beasley (1990) . A total of 132 instances were solved on an In-

el Core 2 Duo E8400 (3 GHz) with 4 GB RAM, and the algorithms

ere implemented using Java 8.

Albareda-Sambola et al. (2015) divided the instances into three

ets: a set of small instances and two sets of larger instances. The

rst set of instances, made up of 40 small-sized problems, and the

econd set of instances, 68 large-sized problems, were generated

sing the instances named pmed1-pmed4 from the OR-library by

electing the first n points of each instance and by varying the p -

alues following the indications in Albareda-Sambola et al. (2015) .

imilarly, the instances of the third set, 24 large-sized problems,

ere generated in the same way as the previous instances ex-

ept that pmed6, pmed7 and pmed8 were used from the OR-

ibrary. See Table 1 , where all the combinations of n and p are

hown and the number of possible feasible solutions are cal-

ulated. Note that the small-sized problems consider 10 ≤ n ≤ 50

nd the range of the large-sized problems is 60 ≤ n ≤ 200 as in

lbareda-Sambola et al. (2015) .

The results are divided into two parts: preliminary and final ex-

eriments. The former are devoted to the selection of the best con-

truction function and the best parameter setting for the GRASP

nd the BVNS algorithms, while the latter compare the perfor-

ance of the final results obtained by the three final proposed al-

orithms.

.1. Preliminary experiments

In order to select the best combination of parameters for the

RASP and the BVNS algorithms without causing any overfitting, a

epresentative subset of a total of 33 instances (25% of the total set

f instances) was randomly selected. Each problem was solved 50

imes to show the robustness of the proposed algorithms. More-

ver, to facilitate the comparison between the algorithms, the same

erformance metrics are reported in Tables 2 and 3 : the average

bjective function value (columns named Average OF); the stan-

ard deviation (Std. Dev.); the average execution time of the algo-

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303 299

Table 1

Number of feasible solutions.

p = 5 p = 10 p = 20 p = 30 p = 50 p = 80

n = 10 252

n = 20 15504 184756

n = 30 142506 30045015

n = 40 658008 8.48 · 10 8 1.38 · 10 11

n = 50 1.03 · 10 10 4.71 · 10 13

n = 60 7.54 · 10 10 4.19 · 10 15 1.18 · 10 17

n = 70 3.97 · 10 11 1.62 · 10 17 5.53 · 10 19

n = 80 1.65 · 10 12 3.54 · 10 18 8.87 · 10 21

n = 90 5.72 · 10 12 5.10 · 10 19 6.73 · 10 23 5.99 · 10 25

n = 100 1.73 · 10 13 5.36 · 10 20 2.94 · 10 25 1.01 · 10 29

n = 150 3.63 · 10 24 3.22 · 10 31 2.01 · 10 40 6.66 · 10 43

n = 200 1.61 · 10 27 4.10 · 10 35 4.54 · 10 47 1.65 · 10 57

Table 2

GRASP methodology.

Method α Average OF Std. Dev. CPU Time #Best

C1 Random 103.29 5.43 13.52 9

0.00 105.27 8.84 11.14 6

0.25 103.53 7.71 18.20 8

0.50 103.26 6.64 16.35 11

0.75 103.11 6.07 17.55 23

C2 Random 102.88 7.24 14.68 23

0.00 123.64 11.64 13.77 3

0.25 103.85 6.89 14.45 11

0.50 103.15 6.40 15.71 14

0.75 103.16 6.56 16.86 15

Random - - - 103.41 6.34 8.96 9

r

t

r

l

t

{

r

d

o

i

c

b

a

n

i

a

i

i

O

t

b

t

t

c

w

b

t
ithm measured in seconds (CPU Time); and, finally, the number of

imes that the algorithm is able to attain the best value (#Best).

Table 2 shows the computational results for the GRASP algo-

ithm, while using each of the two strategies to construct so-

utions: either random (C1) or greedy (C2) selection of the ini-

ial centers. The values for the α parameter considered are α =
 0 , 0 . 25 , 0 . 50 , 0 . 75 } . Furthermore, in order to accelerate the algo-
Table 3

BVNS methodology.

C1

α β Average OF Std. Dev. CPU Time #

Random 0.10 102.95 9.00 13.58 2

0.25 102.45 7.90 16.98 2

0.50 102.28 8.48 21.59 2

0.75 102.14 7.53 31.51 2

0.00 0.10 104.51 9.72 13.83 2

0.25 103.63 11.89 19.57 2

0.50 103.11 10.72 25.98 2

0.75 102.67 9.63 32.64 2

0.25 0.10 103.07 8.86 15.55 2

0.25 102.60 7.17 19.18 2

0.50 102.23 8.02 24.50 2

0.75 102.03 6.47 37.48 2

0.50 0.10 102.85 6.61 14.71 1

0.25 102.47 7.80 18.12 2

0.50 101.98 5.74 23.01 2

0.75 101.73 5.81 30.25 2

0.75 0.10 102.65 7.68 15.64 2

0.25 101.73 7.54 17.19 2

0.50 101.90 5.38 23.34 2

0.75 101.83 5.06 31.86 2

Random

α k max Average OF Std. Dev. CPU Time #

- - - 0.10 102.91 7.73 12.87 1

0.25 102.23 8.22 14.76 2

0.50 102.29 7.05 19.13 2

0.75 102.03 6.54 22.08 2
ithm, instead of considering α = 1 , the solutions have been ran-

omly built since it is unnecessary to evaluate all candidates in

rder to calculate the RCL. All the variants require similar comput-

ng time except, naturally, the random construction, and hence we

an focus on the quality of the solutions for the selection of the

est configuration. The best results are obtained when considering

 different random value for α in the C2 variant in terms of the

umber of the best solutions found and of the average OF.

Similarly, Table 3 presents the results for the preliminary exper-

mentation designed to obtain the best value for the parameters α
nd β in the BVNS algorithm. Table 3 includes the results for var-

ous values of k max . In our case, four different values are chosen

n the shake phase, k max = � p · β� with β = { 0 . 1 , 0 . 25 , 0 . 50 , 0 . 75 } .
n analyzing the β parameter, it appears that the larger the value,

he better the results (the best results are obtained with β = 0 . 75),

ut this is also the most time-consuming one. The rationale behind

his behavior is that in the p NCP, it is more important to diversify

han to intensify the search, thereby allowing the algorithm to es-

ape from the locally optimal value. However, regarding the results

hen considering different α values, no significant differences can

e found between the two methods in the construction of solu-

ions. These results are in line with those of Hansen et al. (2017) ,
C2

Best Average OF Std. Dev. CPU Time #Best

0 102.64 8.98 18.48 22

4 102.22 8.59 22.66 23

6 101.98 7.63 29.17 23

5 101.52 8.65 33.17 30

3 111.12 116.10 17.69 14

1 106.50 30.58 23.17 22

5 104.59 15.96 27.95 23

4 104.00 13.25 33.58 25

3 103.54 8.44 15.71 21

2 102.98 7.76 21.29 23

3 102.34 7.94 32.87 24

7 102.50 9.25 39.11 25

9 102.45 9.61 20.14 24

1 102.31 6.54 22.17 21

7 102.18 9.67 28.44 26

4 102.11 7.48 34.95 23

3 102.37 6.35 21.19 22

3 101.93 7.21 24.68 25

7 101.95 7.67 29.46 26

5 101.56 5.11 36.41 28

Best

9

4

2

6

300 A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303

Table 4

Comparison among GRASP, BVNS, Hybrid algorithms and the optimal solutions in the small-sized instances.

GRASP BVNS Hybrid

Instance n p Best OF CPU Time gap OF CPU Time gap OF CPU Time gap

pmed1 10 5 84 84 0.04 0.00% 84 0.02 0.00% 84 0.02 0.00%

pmed1 20 5 120 120 0.02 0.00% 120 0.02 0.00% 120 0.04 0.00%

pmed1 20 10 95 95 0.15 0.00% 95 0.08 0.00% 95 0.12 0.00%

pmed1 30 5 126 126 0.06 0.00% 126 0.03 0.00% 126 0.09 0.00%

pmed1 30 10 95 95 0.13 0.00% 95 0.13 0.00% 95 0.28 0.00%

pmed1 40 5 144 149 0.07 3.47% 149 0.06 3.47% 144 0.24 0.00%

pmed1 40 10 111 113 0.28 1.80% 111 0.21 0.00% 111 0.57 0.00%

pmed1 40 20 89 89 0.66 0.00% 89 0.52 0.00% 89 1.67 0.00%

pmed1 50 10 110 111 0.35 0.91% 111 0.32 0.91% 111 0.94 0.91%

pmed1 50 20 89 91 0.89 2.25% 91 0.94 2.25% 89 3.22 0.00%

pmed2 10 5 121 128 0.00 5.79% 128 0.01 5.79% 128 0.01 5.79%

pmed2 20 5 147 147 0.02 0.00% 147 0.02 0.00% 147 0.05 0.00%

pmed2 20 10 99 99 0.05 0.00% 99 0.09 0.00% 99 0.10 0.00%

pmed2 30 5 169 169 0.03 0.00% 169 0.03 0.00% 169 0.10 0.00%

pmed2 30 10 110 110 0.12 0.00% 110 0.11 0.00% 110 0.36 0.00%

pmed2 40 5 164 164 0.06 0.00% 164 0.06 0.00% 164 0.20 0.00%

pmed2 40 10 112 112 0.20 0.00% 132 0.23 17.86% 112 0.56 0.00%

pmed2 40 20 96 96 0.50 0.00% 96 0.53 0.00% 96 1.68 0.00%

pmed2 50 10 140 140 0.33 0.00% 140 0.33 0.00% 140 0.84 0.00%

pmed2 50 20 99 99 0.82 0.00% 99 0.84 0.00% 99 3.28 0.00%

pmed3 10 5 77 77 0.00 0.00% 77 0.01 0.00% 77 0.01 0.00%

pmed3 20 5 145 145 0.01 0.00% 145 0.06 0.00% 145 0.06 0.00%

pmed3 20 10 77 77 0.06 0.00% 77 0.04 0.00% 77 0.10 0.00%

pmed3 30 5 157 157 0.03 0.00% 157 0.03 0.00% 157 0.10 0.00%

pmed3 30 10 122 122 0.12 0.00% 122 0.15 0.00% 122 0.32 0.00%

pmed3 40 5 157 157 0.07 0.00% 157 0.10 0.00% 157 0.20 0.00%

pmed3 40 10 105 105 0.22 0.00% 105 0.23 0.00% 105 0.56 0.00%

pmed3 40 20 77 77 0.50 0.00% 77 0.67 0.00% 77 1.70 0.00%

pmed3 50 10 125 125 0.00 0.00% 125 0.32 0.00% 125 0.86 0.00%

pmed3 50 20 87 87 0.35 0.00% 87 0.82 0.00% 87 2.77 0.00%

pmed4 10 5 126 126 0.80 0.00% 126 0.01 0.00% 126 0.01 0.00%

pmed4 20 5 139 139 0.02 0.00% 139 0.02 0.00% 139 0.04 0.00%

pmed4 20 10 125 125 0.05 0.00% 125 0.05 0.00% 125 0.11 0.00%

pmed4 30 5 173 173 0.03 0.00% 173 0.03 0.00% 173 0.09 0.00%

pmed4 30 10 122 122 0.10 0.00% 122 0.11 0.00% 122 0.29 0.00%

pmed4 40 5 175 175 0.05 0.00% 175 0.06 0.00% 175 0.19 0.00%

pmed4 40 10 122 122 0.21 0.00% 122 0.20 0.00% 122 0.54 0.00%

pmed4 40 20 85 85 0.47 0.00% 85 0.52 0.00% 85 1.73 0.00%

pmed4 50 10 126 126 0.34 0.00% 126 0.29 0.00% 126 0.93 0.00%

pmed4 50 20 91 92 0.90 1.10% 92 0.83 1.10% 91 3.41 0.00%

118.78 0.23 0.38% 119.23 0.23 0.78% 118.53 0.71 0.17%

B

e

w

o

2

o

s

t

5

G

b

s

c

G

t

a

f

a

c

g

s

3

g
who state that the initial solution generation is not a critical phase

in BVNS. Notice that an increase in the maximum neighborhood

size will result in larger computational times. However, it does not

always lead to better solutions. Therefore, it is helpful to perform

this analysis of the β parameter to fix k max .

Summarizing, the comparison between the GRASP, the BVNS al-

gorithms and their hybridization is performed in the following sec-

tion, whereby the best parameters obtained in the preliminary ex-

periments above are employed. Note that, in several cases, there

are no significant differences between certain parameters, as hap-

pens in the BVNS algorithm where it is of no consequence which

strategy and α parameter are used to construct solutions because

the quality of the solutions only depends on the perturbation pa-

rameter. Hence, the GRASP algorithm uses the second strategy to

construct solutions (C2) and uses a random α parameter. On the

other hand, the BVNS algorithm fixes the perturbation parameter

with β = 0 . 75 and uses the same construction.

3.2. Comparison between GRASP and BVNS versus their hybrid

Once the best parameters for the GRASP and the BVNS algo-

rithms have been chosen, their comparison is performed as previ-

ously mentioned. In order to include a more thorough analysis of

the algorithms, a hybrid algorithm combining the GRASP and the
VNS has been incorporated using the same parameters. To this

nd, all the instances are included in the results.

Tables 4–7 show the results obtained for the 132 instances

here 100 solutions were generated for each instance. Column 1

f these tables includes the name for the instances, and columns

 and 3 contain the combination of n and p . Column 4 shows the

ptimal values obtained by Albareda-Sambola et al. (2015) for the

mall-sized instances in Table 4 and the best-known values ob-

ained by our algorithms for the large-sized instances in Tables

–7 . Columns 5, 6 and 7 show the results obtained using the

RASP algorithm, columns 8, 9 and 10 show the results obtained

y the BVNS algorithm, and columns 11, 12 and 13 show the re-

ults obtained by the hybrid GRASP-BVNS algorithm. Specifically,

olumns 5, 8, and 11 report the value of the solution found by the

RASP, the BVNS and the hybrid GRASP-BVNS algorithms, respec-

ively. Similarly, columns 6, 9, and 12 present the CPU time used,

nd columns 7, 10, and 13 provide the gap calculated as the dif-

erence between the solution obtained and the best solution found

nd this difference is divided by the best solution found (as a per-

entage).

At this point, each set of problems are analyzed separately. Re-

arding the small-sized set of instances (see Table 4), it can be ob-

erved that the GRASP and the BVNS algorithms are able to find

4 out of 40 optimal solutions, while the hybrid GRASP-BVNS al-

orithm is able to find the optimal solutions in 38 out of 40 in-

A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303 301

Table 5

Comparison among GRASP, BVNS, and Hybrid algorithms in the large-sized instances.

GRASP BVNS Hybrid

Instance n p Best OF CPU Time gap OF CPU Time gap OF CPU Time gap

pmed1 60 10 112 112 0.48 0.00% 115 0.41 2.68% 112 1.26 0.00%

pmed1 60 20 91 91 1.14 0.00% 95 1.18 4.40% 91 5.08 0.00%

pmed1 60 30 89 89 1.94 0.00% 89 2.04 0.00% 89 11.50 0.00%

pmed1 70 10 119 131 0.55 10.08% 131 0.55 10.08% 119 1.84 0.00%

pmed1 70 20 99 99 1.65 0.00% 99 1.65 0.00% 99 7.74 0.00%

pmed1 70 30 73 85 2.92 16.44% 91 3.04 24.66% 73 18.85 0.00%

pmed1 80 10 133 134 0.72 0.75% 133 0.74 0.00% 133 2.44 0.00%

pmed1 80 20 105 112 2.12 6.67% 108 2.32 2.86% 105 11.64 0.00%

pmed1 80 30 91 99 3.82 8.79% 99 4.10 8.79% 91 29.16 0.00%

pmed1 90 10 133 134 0.91 0.75% 133 0.91 0.00% 133 3.34 0.00%

pmed1 90 20 108 110 2.73 1.85% 108 2.86 0.00% 108 15.05 0.00%

pmed1 90 30 91 105 5.03 15.38% 95 5.60 4.40% 91 38.29 0.00%

pmed1 90 50 70 81 10.87 15.71% 71 12.21 1.43% 70 103.71 0.00%

pmed1 100 10 133 137 1.43 3.01% 134 1.34 0.75% 133 4.36 0.00%

pmed1 100 20 108 116 3.63 7.41% 112 3.80 3.70% 108 19.32 0.00%

pmed1 100 30 97 104 6.84 7.22% 103 7.11 6.19% 97 51.51 0.00%

pmed1 100 50 74 82 14.61 10.81% 77 16.37 4.05% 74 143.32 0.00%

pmed2 60 10 140 140 0.41 0.00% 140 0.41 0.00% 140 1.43 0.00%

pmed2 60 20 99 102 1.13 3.03% 102 1.17 3.03% 99 6.10 0.00%

pmed2 60 30 96 96 1.90 0.00% 96 2.04 0.00% 96 13.61 0.00%

pmed2 70 10 138 138 0.53 0.00% 140 0.53 1.45% 138 1.97 0.00%

pmed2 70 20 102 108 1.62 5.88% 102 1.68 0.00% 102 8.83 0.00%

pmed2 70 30 96 97 2.83 1.04% 96 2.99 0.00% 96 20.65 0.00%

pmed2 80 10 138 138 0.68 0.00% 145 0.73 5.07% 138 2.78 0.00%

pmed2 80 20 109 118 2.11 8.26% 118 2.23 8.26% 109 12.40 0.00%

pmed2 80 30 97 100 3.80 3.09% 100 4.25 3.09% 97 30.84 0.00%

pmed2 90 10 140 143 0.88 2.14% 145 0.91 3.57% 140 3.56 0.00%

pmed2 90 20 109 120 2.73 10.09% 118 2.89 8.26% 109 16.52 0.00%

pmed2 90 30 97 102 5.12 5.15% 102 5.51 5.15% 97 41.52 0.00%

pmed2 90 50 96 96 10.99 0.00% 96 12.19 0.00% 96 104.57 0.00%

pmed2 100 10 135 138 1.12 2.22% 135 1.11 0.00% 135 3.97 0.00%

pmed2 100 20 109 118 3.43 8.26% 112 3.67 2.75% 109 18.81 0.00%

pmed2 100 30 96 102 6.49 6.25% 102 7.03 6.25% 96 50.26 0.00%

pmed2 100 50 96 96 14.42 0.00% 96 15.97 0.00% 96 145.13 0.00%

110.97 3.58 4.71% 109.94 3.87 3.56% 106.44 27.98 0.00%

s

g

G

t

c

T

h

g

s

s

B

s

b

o

o

i

B

i

c

h

t

1

g

m

t

t

T

c

4

c

g

a

w

g

s

n

i

a

o

t

t

n

t

e

t

o

e

t

a

u

t

u

r

o

u

tances. Furthermore, the average gap is 0.38% for the GRASP al-

orithm, 0.78% for the BVNS algorithm, and 0.17% for the hybrid

RASP-BVNS algorithm. However, the average CPU time spent by

he hybrid GRASP-BVNS algorithm (0.71 s) is much larger than that

onsumed by the GRASP (0.23 s) or the BVNS algorithm (0.23 s).

herefore, we can conclude that for the small-sized instances the

ybrid algorithm is more than 10 times slower than the GRASP al-

orithm and the BVNS algorithm but it is able to find more optimal

olutions.

On observing the large-sized set of instances (see Tables 5–7),

imilar conclusions can now be highlighted. The hybrid GRASP-

VNS algorithm is able to find the best solution on all the in-

tances, while in contrast the GRASP algorithm is able to find the

est solutions in just 25 out of 92 and the BVNS algorithm in 29

ut of 92 instances. Here, in the large-sized set of instances, the

ptimal solutions remained unavailable, and hence the comparison

s performed against the best solutions obtained by the GRASP, the

VNS and the hybrid algorithms. Again, the average gap consider-

ng the 92 large-sized instances is 5.40% for the GRASP algorithm,

ompared with the 4.90% for the BVNS algorithm and 0% for the

ybrid version. Furthermore, the average CPU time consumed by

he GRASP algorithm is 11.53 s, 12.38 s by the BVNS algorithm and

24.60 s by the hybrid GRASP-BVNS algorithm.

On analyzing these results, we can conclude that the hybrid al-

orithm between the GRASP and the BVNS algorithms performs

uch better than do the GRASP and the BVNS separately. Never-

heless, the hybridization of these two algorithms is much more

ime-consuming than the individual GRASP and BVNS algorithms.

herefore, the decision-maker must assess whether interest is fo-

used on the quality of the solution or on the time consumed.
. Conclusions and future research

This paper solves an interesting problem, known as the p -next

enter problem, which models real situations in humanitarian lo-

istics. For this problem, two metaheuristics are proposed, GRASP

nd BVNS, which are later combined into a hybrid algorithm. A

ide set of instances with different sizes is solved and the al-

orithms are able to obtain optimal or near-optimal solutions in

hort computing times. For the small-sized instances (up to 50

odes), the GRASP and the BVNS algorithms find the optimal value

n the majority of the instances (in all except six instances), on

verage in less than one second. However, the hybrid algorithm

btains the optimal value in nearly all the instances (all except

wo instances), on average in less than one second as well. Fur-

hermore, for the two sets of large-sized instances (up to 200

odes), the hybrid GRASP-BVNS algorithm obtains better solutions

han the GRASP algorithm or the BVNS algorithm separately. How-

ver, the hybrid GRASP-BVNS algorithm consumes more CPU time

han do either of the GRASP and the BNVS algorithms, which

btain very good solutions within a reasonable computational

ffort.

As future work, it would be interesting to solve an extension of

he p -next center problem, in which all users are assumed to be

ssigned to their reference center. In the case where this center is

navailable, then the users are redirected to the next closest cen-

er to that unavailable reference center (backup center), and in the

nlikely case that this center is also unavailable, then the users are

edirected to the next closest center to the backup center, and so

n. Of course, in the worst-case scenario, all the centers would be

navailable except one.

302 A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303

Table 6

Comparison among the GRASP, BVNS, and Hybrid algorithms in the large-sized instances.

GRASP BVNS Hybrid

Instance n p Best OF CPU Time gap OF CPU Time gap OF CPU Time gap

pmed3 60 10 124 124 0.42 0.00% 125 0.43 0.81% 124 1.47 0.00%

pmed3 60 20 97 97 1.14 0.00% 97 1.18 0.00% 97 5.14 0.00%

pmed3 60 30 73 79 1.91 8.22% 73 2.08 0.00% 73 10.83 0.00%

pmed3 70 10 121 127 0.57 4.96% 127 0.55 4.96% 121 2.15 0.00%

pmed3 70 20 97 98 1.63 1.03% 105 1.65 8.25% 97 8.66 0.00%

pmed3 70 30 82 87 2.86 6.10% 87 3.00 6.10% 82 19.58 0.00%

pmed3 80 10 121 127 0.71 4.96% 124 0.72 2.48% 121 2.89 0.00%

pmed3 80 20 93 106 2.17 13.98% 97 2.24 4.30% 93 12.04 0.00%

pmed3 80 30 86 93 3.79 8.14% 87 4.23 1.16% 86 29.93 0.00%

pmed3 90 10 148 148 0.87 0.00% 148 0.91 0.00% 148 2.82 0.00%

pmed3 90 20 105 111 2.98 5.71% 112 2.91 6.67% 105 12.60 0.00%

pmed3 90 30 93 97 5.02 4.30% 97 5.39 4.30% 93 33.52 0.00%

pmed3 90 50 93 93 10.92 0.00% 93 12.35 0.00% 93 89.92 0.00%

pmed3 100 10 151 152 1.13 0.66% 151 1.10 0.00% 151 3.56 0.00%

pmed3 100 20 113 119 3.35 5.31% 119 3.50 5.31% 113 17.13 0.00%

pmed3 100 30 93 102 6.41 9.68% 97 6.95 4.30% 93 44.94 0.00%

pmed3 100 50 93 93 14.64 0.00% 93 16.95 0.00% 93 124.77 0.00%

pmed4 60 10 135 135 0.41 0.00% 135 0.41 0.00% 135 1.46 0.00%

pmed4 60 20 93 96 1.13 3.23% 93 1.18 0.00% 93 5.43 0.00%

pmed4 60 30 79 84 1.94 6.33% 83 2.04 5.06% 79 13.89 0.00%

pmed4 70 10 146 146 0.58 0.00% 146 0.56 0.00% 146 2.04 0.00%

pmed4 70 20 102 102 1.61 0.00% 111 1.66 8.82% 102 8.43 0.00%

pmed4 70 30 85 85 2.80 0.00% 94 2.99 10.59% 85 19.17 0.00%

pmed4 80 10 146 146 0.70 0.00% 147 0.72 0.68% 146 2.81 0.00%

pmed4 80 20 114 124 2.13 8.77% 119 2.28 4.39% 114 12.05 0.00%

pmed4 80 30 91 101 3.91 10.99% 94 4.17 3.30% 91 29.39 0.00%

pmed4 90 10 147 154 0.91 4.76% 149 0.94 1.36% 147 3.63 0.00%

pmed4 90 20 112 120 2.77 7.14% 123 2.91 9.82% 112 16.47 0.00%

pmed4 90 30 92 98 5.06 6.52% 96 5.43 4.35% 92 43.52 0.00%

pmed4 90 50 82 83 10.98 1.22% 83 12.50 1.22% 82 102.93 0.00%

pmed4 100 10 147 148 1.12 0.68% 147 1.28 0.00% 147 4.71 0.00%

pmed4 100 20 119 120 3.51 0.84% 124 4.10 4.20% 119 21.90 0.00%

pmed4 100 30 96 112 6.51 16.67% 106 7.04 10.42% 96 57.82 0.00%

pmed4 100 50 82 86 14.67 4.88% 84 16.19 2.44% 82 154.18 0.00%

111.56 3.56 4.27% 110.76 3.90 3.39% 107.38 27.11 0.00%

Table 7

Comparison among GRASP, BVNS, and Hybrid algorithms in the large-sized instances.

GRASP BVNS Hybrid

Instance n p Best OF CPU Time gap OF CPU Time gap OF CPU Time gap

pmed6 150 20 79 81 5.21 2.53% 85 4.80 7.59% 79 33.86 0.00%

pmed6 150 30 71 82 8.98 15.49% 80 9.67 12.68% 71 77.19 0.00%

pmed6 150 50 62 68 20.26 9.68% 62 22.35 0.00% 62 200.17 0.00%

pmed6 150 80 56 56 40.81 0.00% 56 47.16 0.00% 56 479.01 0.00%

pmed6 200 20 79 83 8.19 5.06% 81 8.83 2.53% 79 49.78 0.00%

pmed6 200 30 72 81 16.64 12.50% 80 17.93 11.11% 72 150.29 0.00%

pmed6 200 50 68 74 39.64 8.82% 71 43.79 4.41% 68 493.55 0.00%

pmed6 200 80 54 56 83.99 3.70% 55 95.01 1.85% 54 1151.12 0.00%

pmed7 150 20 69 70 4.38 1.45% 69 4.26 0.00% 69 22.90 0.00%

pmed7 150 30 62 71 8.52 14.52% 69 8.43 11.29% 62 66.10 0.00%

pmed7 150 50 59 60 20.06 1.69% 59 20.52 0.00% 59 206.33 0.00%

pmed7 150 80 59 59 41.34 0.00% 59 42.66 0.00% 59 415.03 0.00%

pmed7 200 20 73 84 8.25 15.07% 84 7.62 15.07% 73 44.05 0.00%

pmed7 200 30 68 79 15.83 16.18% 72 15.87 5.88% 68 129.25 0.00%

pmed7 200 50 63 69 38.23 9.52% 66 39.01 4.76% 63 505.03 0.00%

pmed7 200 80 52 59 81.61 13.46% 58 89.28 11.54% 52 1213.66 0.00%

pmed8 150 20 74 83 4.29 12.16% 81 4.21 9.46% 74 23.76 0.00%

pmed8 150 30 61 73 8.39 19.67% 70 8.38 14.75% 61 64.84 0.00%

pmed8 150 50 58 58 20.07 0.00% 60 20.41 3.45% 58 194.59 0.00%

pmed8 150 80 58 58 40.75 0.00% 58 41.51 0.00% 58 430.29 0.00%

pmed8 200 20 84 92 7.82 9.52% 89 7.67 5.95% 84 41.21 0.00%

pmed8 200 30 77 88 15.91 14.29% 86 15.29 11.69% 77 122.14 0.00%

pmed8 200 50 68 72 38.20 5.88% 72 41.74 5.88% 68 394.95 0.00%

pmed8 200 80 68 68 81.95 0.00% 68 88.43 0.00% 68 1140.05 0.00%

71.83 27.47 7.97% 70.42 29.37 5.83% 66.42 318.71 0.00%

A.D. López-Sánchez, J. Sánchez-Oro and A.G. Hernández-Díaz / Computers and Operations Research 104 (2019) 295–303 303

w

c

h

k

r

e

d

t

t

p

m

l

l

t

e

c

w

c

c

m

|

A

“

a

p

P

S

i

R

A

B

C

D
D

D

E

F

F

F

F

F

H

H

I

M

M
M

M

Q

R

S

Y

Additionally, as Albareda-Sambola et al. (2015) point out, it

ould be of major interest to consider capacity constraints in the

enters, since in the real situations associated with this model,

ospitals, refugee camps, and rescue centers can experience this

ind of limitation.

Furthermore, another problem similar to the p NCP that is very

ealistic appears when the users know beforehand that their clos-

st center has become unavailable. In that case, the users must go

irectly to their second-closest center. This problem is known as

he 2-neighbor p -center problem, whose objective is to minimize

he distance to the second-closest center. The generalization of this

roblem is the α-neighbor p -center problem whose objective is to

inimize the distance to the α-closest center. Yet another simi-

ar problem could be considered, called the p -second center prob-

em (pSCP), which consists of locating p out of n centers in order

o minimize the maximum distance between users and their clos-

st center and also the distance from these users to their second-

losest center. Here, users are not certain until the last moment

hether they will go to the closest center or the second-closest

enter as in the 2-neighbor p -center problem. Therefore, the p SCP

an be formally defined as follows:

in

P⊂V
 P| = p

max
i ∈ V

{

min

j∈ P
d i j + min

k ∈ P
k � = j

d ik

}

cknowledgments

J. Sánchez-Oro is supported by the Spanish Ministry of

Economía y Competitividad”, Grant Refs. TIN2015-65460-C2-2-P

nd TIN2014-54806-R.

A.D. López-Sánchez and A.G. Hernández-Díaz acknowledge sup-

ort from the Spanish Ministry of Science and Innovation through

rojects ECO2013-47129-C4-1-R and ECO2016-76567-C4-1-R.

The authors wish to express their gratitude to M. Albareda-

ambola, Y. Hinojosa, A. Marín and J. Puerto for their collaboration

n the provision of all the instances and previous results.

eferences

lbareda-Sambola, M. , Hinojosa, Y. , Marín, A. , Puerto, J. , 2015. When centers can fail:
a close second opportunity. Comput. Operat. Res. 62 (Supplement C), 145–156 .
easley, J.E. , 1990. OR-Library: distributing test problems by electronic mail. J. Op-
erat. Res. Soc. 41 (11), 1069–1072 .

alik, H. , Tansel, B.C. , 2013. Double bound method for solving the p -center location
problem. Comput. Operat. Res. 40 (12), 2991–2999 .

askin, M.S. , 1995. Network and Discrete Location. John Wiley & Sons, Inc. .
avidovic, T. , Ramljak, D. , Selmic, M. , Teodorovic, D. , 2011. Bee colony optimization

for the p -center problem. Comput. Operat. Res. 38 (10), 1367–1376 .
uarte, A. , Pantrigo, J. , Pardo, E. , Sánchez-Oro, J. , 2016. Parallel variable neighbour-

hood search strategies for the cutwidth minimization problem. IMA J. Manag.

Math. 27 (1), 55 .
lloumi, S. , Labbé, M. , Pochet, Y. , 2004. A new formulation and resolution method

for the p -center problem. INFORMS J. Comput. 16 (1), 84–94 .
eo, T.A. , Resende, M.G.C. , 1989. A probabilistic heuristic for a computationally dif-

ficult set covering problem. Operat. Res. Lett. 8 (2), 67–71 .
eo, T.A. , Resende, M.G.C. , 1995. Greedy randomized adaptive search procedures. J.

Glob. Optim. 6 (2), 109–133 .

eo, T.A. , Resende, M.G.C. , Smith, S.H. , 1994. A greedy randomized adaptive search
procedure for maximum independent set. Operat. Res. 42 (5), 860–878 .

esta, P. , Resende, M.G.C. , 2008. An annotated bibliography of GRASPâpart i: algo-
rithms. Int. Trans. Operat. Research 16 (1), 1–24 .

esta, P. , Resende, M.G.C. , 2009. An annotated bibliography of GRASPâpart II: appli-
cations. Int. Trans. Operat. Res. 16 (2), 131–172 .

akimi, S.L. , 1964. Optimum locations of switching centers and the absolute centers

and medians of a graph. Operat. Res. 12 (3), 450–459 .
ansen, P. , Mladenovi ́c, N. , Todosijevi ́c, R. , Hanafi, S. , 2017. Variable neighborhood

search: basics and variants. EURO J. Comput. Optim. 5 (3), 423–454 .
rawan, C.A. , Salhi, S. , Drezner, Z. , 2016. Hybrid meta-heuristics with VNS and ex-

act methods: application to large unconditional and conditional vertex p -centre
problems. J. Heurist. 22 (4), 507–537 .

artínez-Merino, L.I. , Albareda-Sambola, M. , RodrÃguez-Chía, A.M. , 2017. The prob-

abilistic p -center problem: planning service for potential customers. Eur. J. Op-
erat. Res. 262 (2), 509–520 .

inieka, E. , 1970. The m-center problem. SIAM Rev. 12 (1), 138–139 .
ladenovi ́c, N. , Hansen, P. , 1997. Variable neighborhood search. Comput. Operat.

Res. 24 (11), 1097–1100 .
ladenovi ́c, N. , Labbé, M. , Hansen, P. , 2003. Solving the p -center problem with tabu

search and variable neighborhood search. Networks 42 (1), 48–64 .

uintana, J. , Sánchez-Oro, J. , Duarte, A. , 2016. Efficient greedy randomized adaptive
search procedure for the generalized regenerator location problem. Int. J. Com-

put. Intell. Syst. 9 (6), 1016–1027 .
esende, M.G. , Ribeiro, C.C. , 2010. Greedy Randomized Adaptive Search Proce-

dures: Advances, Hybridizations, and Applications. Springer US, Boston, MA,
pp. 283–319 .

ánchez-Oro, J. , Sevaux, M. , Rossi, A. , Martí, R. , Duarte, A. , 2015. Solving dynamic

memory allocation problems in embedded systems with parallel variable neigh-
borhood search strategies. Electron. Notes Discrete Math. 47, 85–92 .

in, A.-H. , Zhou, T. , Ding, J. , Zhao, Q.-J. , Lv, Z.-P. , 2017. Greedy randomized adaptive
search procedure with path-relinking for the vertex p -center problem. J. Com-

put. Sci. Technol. 32 (6), 1319–1334 .

http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30329-0/sbref0023

	GRASP and VNS for solving the p-next center problem
	1 Introduction
	2 Algorithms
	2.1 Greedy randomized adaptive search procedure
	2.2 Variable neighborhood search

	3 Computational results
	3.1 Preliminary experiments
	3.2 Comparison between GRASP and BVNS versus their hybrid

	4 Conclusions and future research
	Acknowledgments
	References

