
IMA Journal of Management Mathematics (2016) 27, 55–73
doi:10.1093/imaman/dpt026
Advance Access publication on 11 December 2013

Parallel variable neighbourhood search strategies for the cutwidth
minimization problem

Abraham Duarte∗, Juan J. Pantrigo, Eduardo G. Pardo and Jesús Sánchez-Oro

Dept. Ciencias de la Computación, Universidad Rey Juan Carlos, Móstoles, Spain
∗Corresponding author: abraham.duarte@urjc.es juanjose.pantrigo@urjc.es

eduardo.pardo@urjc.es jesus.sanchezoro@urjc.es

[Received on 31 January 2013; accepted on 17 November 2013]

Variable neighbourhood search (VNS) and all its variants have been successfully proved in hard combi-
natorial optimization problems. However, there are only few works concerning parallel VNS algorithms,
compared with the amount of works devoted to sequential VNS design. In this paper, we propose dif-
ferent parallel designs for the VNS schema. We illustrate the performance of these general strategies
by parallelizing a new VNS variant called variable formulation search (VFS). Specifically, we propose
six different variants which differ in the VNS stages to be parallelized as well as in the communication
mechanisms among processes. We group these variants into three different templates. The first one is
oriented to parallelize the whole VNS method. The second one parallelizes the shake and the local search
procedures. Finally, the third one explores in parallel the set of predefined neighbourhoods. We test the
resulting designs on the cutwidth minimization problem (CMP). Experimental results show that the par-
allel implementation of the VFS outperforms previous methods in the state of the art for the CMP. This
fact is also confirmed by non-parametric statistical tests.

Keywords: variable neighbourhood search; variable formulation search; parallel designs; cutwidth
minimization problem.

1. Introduction

Metaheuristics (MHs) are among the most prominent and successful techniques to solve a large amount
of complex and computationally hard combinatorial and numerical optimization problems arising in
human activities, such as economics (e.g. portfolio selection), industry (e.g. scheduling or logistics) or
engineering (e.g. routing), among many others (Gendreau & Potvin, 2010). MHs can be seen as gen-
eral algorithmic frameworks that require relatively few modifications to be adapted to tackle a specific
problem. They constitute a very diverse family of optimization algorithms including methods such as
simulated annealing, tabu search, multi-start methods, iterated local search, variable neighbourhood
search (VNS), greedy randomized adaptive search procedure (GRASP), memetic algorithms, scatter
search, evolutionary algorithms or ant colony optimization.

The VNS and all its variants have proved to be very successful in hard optimization problems.
This MH was originally proposed by Mladenović & Hansen (1997). It is based on the exploration of
a dynamic neighbourhood model. Contrary to other trajectory-based MHs, VNS allows changes of the
neighbourhood structure along the search. In particular, VNS explores increasingly neighbourhoods of
the current best found solution. The basic idea of the VNS is to change the neighbourhood structure
when the local search is trapped on a local optimum.

Considering that VNS is a relatively new MH, it has not yet been investigated much from a paral-
lelization point of view. As per the authors’ knowledge, there are only two relevant papers reported in

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

56 A. DUARTE ET AL.

the literature on the parallelization of VNS. Specifically, García-López et al. (2002) proposed three
new parallel VNS procedures to deal with the p-median problem: synchronous parallel VNS (SP-
VNS), replicated parallel VNS (RP-VNS) and replicated shaking VNS (RS-VNS). The main goal of
the first method, SP-VNS, is to parallelize the local search strategy since, in general, it is the most time-
consuming part. In SP-VNS, the neighbourhood is divided into n subsets, where n indicates the number
of processors. Each subset is assigned to a different processor. Then, each processor returns an improved
neighbour solution in its partition. Finally, the best neighbour is selected as the current solution to con-
tinue the search. The second approach, called RP-VNS, is directly a parallel independent multi-start
method, which executes several independent VNS procedures. Specifically, RP-VNS is a multi-start
procedure where each local search is replaced by a VNS. Each available processor, then, performs a
sequential VNS. The parallel algorithm returns the best solution obtained by the processors. Finally,
in the third parallel algorithm, RS-VNS, the shake and local search procedures are replicated as many
times as the number of available processors. If the best local optimum found by the processors improves
the previous solution (before executing the shake and improve methods), the RS-VNS procedure resorts
to the first neighbourhood and continues the search. Otherwise, RS-VNS explores a larger neighbour-
hood. These three methods were tested on large instances derived from the travelling salesman problem
library (TSPLIB) (Reinelt, 1991). In particular, the authors considered the instance RL1400 (with 1400
points) and derived nine different instances for the p-median problem where p ranges from 20 to 100.
Reported results showed that the multi-start scheme (RP-VNS) obtained the best results.

Crainic et al. (2004) presented a different variant of parallel VNS, called cooperative neighbour-
hood VNS (CN-VNS). In this strategy, each individual VNS process (executed in a different processor)
communicates exclusively with a central process called central memory or master. Therefore, there
are no communications among individual VNS processes. The master is responsible for maintaining,
updating and communicating the current overall best solution. The master also initiates and terminates
the algorithm. Crainic et al. (2004) applied the CN-VNS method to the p-median problem, where each
process (processor) implements the same VNS variant. The local search follows the first improvement
strategy, implements fast interchange and considers kmax = p, where kmax represents the maximum num-
ber of neighbourhoods that will be explored. Each processor, then, executes a ‘normal’ VNS exploration
(shake, improve and neighbourhood change) while improving the current solution. When that solution
is not improved, the corresponding processor communicates it to the master, requesting the best solu-
tion so far. The search is continued starting from the best overall solution in the current neighbourhood.
The authors tested the CN-VNS method over a benchmark of problem instances from TSPLIB, where
the number of customers ranges from 1400 to 11948 and the number of locations ranges from 10 to
1000. Reported results showed that the CN-VNS method reduces the CPU time without deteriorating
the quality (when compared with the sequential VNS version). In addition, when both methods (parallel
and sequential) are executed for the same CPU time, the parallel version finds better solutions.

Moreno et al. (2004) surveyed the aforementioned parallel VNS strategies. The authors analysed
and tested them by considering large instances of the p-median problem. The paper concluded that
cooperative mechanisms obtain, in general, better outcomes.

We propose in this paper six different variants of VNS which differ in how each one parallelizes
the VNS stages. We group them into three different templates. The first one is oriented to parallelize
the whole VNS method. The second one parallelizes the shake and the local search procedures. Finally,
the third one explores in parallel the set of predefined neighbourhoods. We illustrate the performance of
these strategies by considering a specific VNS variant, called variable formulation search (VFS) (Pardo
et al., 2013), applied to the cutwidth minimization problem (CMP). It is important to remark that the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 57

proposed methods are general parallelization strategies in the context of VNS, since they do not consider
either the optimization problem or the VNS variant.

The rest of the paper is organized as follows. Section 2 describes the CMP and presents a brief survey
of the main contributions to this problem. The sequential VNS method is briefly described in Section 3.
Section 4 recalls the main parallel technologies, mainly focusing on Java threads. Section 5 presents
the adaptation of the previous parallel VNS strategies as well as the new proposed methods. Section 6
presents and analyses the results of the computational experiments. Conclusions and perspectives are
the subject of Section 7.

2. Cutwidth minimization problem

The CMP is an NP-Hard (Gavril, 1977) min–max layout problem. It consists of finding an ordering of
the vertices of a graph on a line, in such a way that the maximum number of edges between each pair of
consecutive vertices is minimized. The CMP has been formulated in both, combinatorial (Petit, 2003)
and mathematical programming (Luttamaguzi et al., 1977) ways. In this work, we consider the first of
them. Given a graph G= (V , E) with |V | = n, the CMP can be defined as follows. Let s be a labelling
s : V→{1, 2, . . . , n} of G that assigns the integers {1, 2, . . . , n} to the vertices in V , in such a way that
each vertex receives a different label. The cutwidth of a vertex v with respect to s, denoted as CWs(v),
is the number of edges (u, w) ∈ E satisfying s(u) � s(v) < s(w), i.e.

CWs(v)= |{(u, w) ∈ E : s(u) � s(v) < s(w)}|.
The cutwidth of G with respect to s is defined as the maximum value of CWs(v) for all v ∈ V . In
mathematical terms, the objective function of the CMP is defined as

f (s)=max
v∈V

CWs(v).

The optimum cutwidth of G is then defined as the minimum f (s) value over all possible labellings of G.
The CMP has also been referred to in the literature using alternative names such as Minimum Cut

Linear Arrangement (Diaz et al., 1997; Takagi & Takagi, 1999) or Network Migration Scheduling
(Andrade & Resende, 2007a,b). There can be also found a generalization of the CMP for hypergraphs
named Board Permutation Problem (Cohoon & Sahni, 1983, 1987). Several practical applications of
this problem in different areas of Engineering and Computer Science, such as: Circuit Design (Adolph-
son & Hu, 1973; Cohoon & Sahni, 1987; Makedon & Sudborough, 1989), Network Reliability (Karger,
1999), Information Retrieval (Botafogo, 1993), Automatic Graph Drawing (Mutzel, 1995; Shahrokhi
et al., 2001), Protein Engineering or Networks Migration (Resende & Andrade, 2009) have also been
reported. This last application refers to the problem where inter-nodal traffic from an obsolete telecom-
munications network needs to be migrated to a new network. This problem is now happening in phone
traffic, where a migration between 4ESS switch-based networks to IP router-based networks (Resende
& Andrade, 2009) is performed. Nodes are migrated, one at each time period, from the old to the new
network. All traffic originating or terminating at a given node in the old network is moved to a specific
node in the new network.

Let us consider this application in more detail as well as how it is related to the CMP. Suppose
that the traffic from/to a node vold in the old network is migrated to a node vnew in the new network.
Let cold be the capacity of the edge (vold, vnew). The traffic between node vold and node vnew must use a
temporary link (vold, vnew) connecting the two nodes with capacity cold. When a node is migrated, one
or more temporary links may need to be added, since vold may be adjacent to more than one node still

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

58 A. DUARTE ET AL.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. (a)–(g) Node decommissioning process in a Network Migration Scheduling example and (h) the representation of the
whole process as a linear layout.

active in the old network. A temporary link remains active until both nodes connected by the links are
migrated to the new network.

The network is usually modelled as a graph G= (V , E), where V is the vertex set, with |V | = n,
and E is the edge set, with |E| =m. A solution to the Network Migration Scheduling Problem is an
ordering (labelling, permutation, layout, etc.) of the nodes that need to be migrated. The CMP tries

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 59

to find the ordering that minimizes the maximum sum of capacities of the temporary links (edges).
Figure 1(a–g) iteratively show the migration of a network. In particular, in Fig. 1(a) all the vertices
are in the old network. Figure 1(b) shows the migration of the first vertex. In this case, we need to
consider the inclusion of two temporary edges. Figure 1(c) shows the migration of the second vertex,
which increases the maximum number of temporary edges to 4. Figure 1(g) shows the situation where
all vertices have been migrated. Finally, Fig. 1(h) shows a solution of the CMP where the cut between
each pair of edges represents the situation illustrated in Fig. 1(a–h). Note that the solution depicted in
Fig. 1(h) is just a possible solution, but not the optimum one, since it is possible to find a different
ordering (e.g. A, B, C, D, E, F) with a cutwidth value equal to 3.

In the scientific literature, the CMP has been addressed from both exact and heuristic approaches.
Most of the exact approaches present polynomial-time algorithms for particular graphs, such as hyper-
cubes (Harper, 1966), trees (Chung et al., 1982; Yannakakis, 1985; Thilikos et al., 2005) or grids (Rolim
et al., 1995). However, little work has been devoted to devise exact methods for general graphs. As far
as the authors know, there are an Integer Linear Programming formulation (Luttamaguzi et al., 1977)
and two Branch and Bound algorithms (Palubeckis & Rubliauskas, 2012; Martí et al., 2013) proposed
in the literature for the CMP. These approaches can only solve relatively small instances. Therefore,
different heuristic procedures have been proposed to address this problem. The work by Cohoon &
Sahni (1987) was the first one in proposing heuristic algorithms for the generalized version of the prob-
lem. These authors proposed several constructive and local search procedures and embedded them in
a Simulated Annealing MH. Twenty years later, Andrade & Resende (2007a,b) proposed a GRASP
procedure hybridized with a Path Relinking method. Pantrigo et al. (2012) introduced a Scatter Search
algorithm for the problem which outperformed previous results. The most recent approach (Pardo et al.,
2013) presented a new variant of the VNS schema, called VFS. This new algorithm is specially useful
to deal with min–max (or max–min) problems, where it is usual that many solutions of the problem
have associated the same value of the objective function. VFS makes use of alternative formulations
of the problem to determine which solution is more promising when they have the same value of the
objective function in the original formulation. The obtained results in the CMP show that the latter pro-
posal outperforms the state-of-the-art algorithms in terms of quality and computing time. We propose
in this paper six different strategies (three of them are adaptations of previous strategies to the CMP) to
parallelize the VFS. The next section details the strategies to be parallelized in this work.

3. Variable formulation search

VFS is a new variant of the VNS MH proposed in Pardo et al. (2013). We refer the reader to this
reference for a comprehensive description of the method. VFS tries to avoid getting trapped in a local
optimum by considering different formulations of the optimization problem. This idea was originally
introduced in Mladenović et al. (2005) in the context of the circle packing problem. The method changes
formulations sequentially within the shaking, local search and neighbourhood change steps of the basic
VNS. The aim is to determine whether a given solution is more promising than the other to continue
the search, beyond the value of the original objective function. VFS is especially helpful in tackling
problems which present a flat landscape where many solutions have associated the same value of the
objective function. See Resende et al. (2010) and Duarte et al. (2011) for examples of other problems
which present a flat landscape. The rest of this section is devoted to describing the method to construct
the initial solution, the shake, local search and neighbourhood change procedures.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

60 A. DUARTE ET AL.

3.1 Initial solution

The initial solution is constructed with a GRASP procedure. In particular, this method labels the vertices
sequentially (i.e. from 1 to n). To select the next vertex to be labelled, a candidate list (CL) is formed
with all the unlabelled vertices that are adjacent to one or more vertices already labelled. Note that, in
the first iteration, all vertices are candidates. For each vertex in the CL, an evaluation of its cutwidth is
performed, considering that it is labelled with the next available label. Then, a restricted CL (RCL) is
constructed with the vertices in the CL with a cutwidth value lower than a given threshold. Finally, a
vertex is selected at random from the RCL and assigned the corresponding label. We used this procedure
to construct a predefined number of solutions, selecting the best one as the initial solution for the VFS.

3.2 Shake

The shake strategy consists of performing perturbations in the current solution to diversify the search.
Therefore, the local search (within VFS) starts the search from a new point with a different neigh-
bourhood. The shake procedure receives a solution s and a parameter k representing the size of the
perturbation. In particular, this procedure performs k interchange moves in s. Given a solution s and
two different vertices u, v ∈ V , an interchange move produces a new solution s′ where s′(u)= s(v),
s′(v)= s(u) and s′(w)= s(w) for all w ∈ V not equal to u or v. Finally, the procedure finishes when k
moves are performed, returning the corresponding perturbed solution.

3.3 Local search

The local search procedure allows one to reach a local optimum from the current (perturbed) solution
at each iteration of the VFS. We designed a local search procedure based on insertion moves. Given a
solution s, a vertex v placed in the position s(v) and a position j such that s(v) |= j, an insertion move
consists of removing v from its current position s(v) and inserting it in position j. This operation results
in the ordering s′, as follows:

• Let vj be the vertex in position j in the ordering s. Then, if s(v)= i is larger than j, then v is inserted
just before vj in position j. For example, considering the solution s

s= (. . . , v(j−1), vj, v(j+1), . . . , v(i−1), v, v(i+1), . . .),

we would obtain the solution s′:

s′ = (. . . , v(j−1), v, vj, v(j+1), . . . , v(i−1), v(i+1), . . .).

• If s(v)= i is smaller than j, v is inserted just after vj in position j. Therefore, from the solution s:

s= (. . . , v(i−1), v, v(i+1), . . . , v(j−1), vj, v(j+1), . . .),

we would obtain the solution s′:

s′ = (. . . , v(i−1), v(i+1), . . . , v(j−1), vj, v, v(j+1), . . .).

A naive idea using this kind of moves would be to try the insertion of any vertex in every position of
the ordering. Therefore, the associated neighbourhood of this kind of moves has a relatively large size.
However, taking into account the characteristics of the considered problem, it is possible to identify a set

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 61

of preferred positions for each vertex in the permutation. We refer the reader to Pardo et al. (2013) for
an exhaustive description and formal derivation of these properties. As a consequence, the complexity
of the local search is reduced from O(n2) to O(n).

The resulting local search receives an initial solution, s, as an input parameter. Then, the procedure
identifies the list C of vertices able to produce improvements if they are inserted in a different position of
the ordering. The list C is then sorted according to the cutwidth of each vertex, in such a way that those
vertices with a higher cutwidth value are evaluated earlier. The evaluation for each vertex v in C is then
performed taking into account the aforementioned properties. If the move is accepted, the best solution
found will be updated. Finally, the local search procedure ends when none of the moves performed with
the vertices in the list C is able to produce an improvement, returning the best solution found.

3.4 Neighbourhood change

This procedure examines whether the solution obtained after the local search is better than any other
solution previously found, or not. If so, the best solution found is updated and k (the value that deter-
mines which neighbourhood is explored) is set again to its initial value. Otherwise, k is increased with
a constant value until the parameter kmax is reached, when a whole iteration of the VFS ends. As previ-
ously mentioned, the CMP presents a flat landscape and so, when two solutions have the same objective
function value, it is hard to determine which one is better to carry on the search. For that reason, the
VFS schema uses alternative formulations to compare two solutions, when it is not possible to deter-
mine which is the most promising one. In particular, the method first considers the original formulation
of the problem. When two solutions present the same value of the objective function, the method uses
an alternative formulation. Note that two formulations are equivalent when an optimum solution in one
of them is also optimum in the other, although the value of the alternative objective function may have a
different value. This schema can be repeated as far as new formulations of the problem are available. We
refer the reader to Pardo et al. (2013) for a detailed description of the definition and use of alternative
formulations.

4. Parallel technologies

The traditional Flynn classification of parallel architectures is based on two criteria: the number of
instruction streams and the number of data streams that define four different classes: single instruction
stream, single data stream (SISD); single instruction stream, multiple data streams (SIMD); multiple
instruction streams, single data stream (MISD) and multiple instruction streams, multiple data streams
(MIMD). Among these four models, MIMD is considered the most general model of parallel architec-
tures (Alba & Nebro, 2005). Therefore, we consider MIMD architecture. This model has two kinds of
memory models: shared memory (the whole memory can be accessed by each process) and distributed
memory (each process has its own memory). Shared memory is considered the natural extension of
the sequential programming. In fact, its foundations were established in the late 1960s to early 1970s
(Alba & Nebro, 2005), so they are well known. In addition, common computers with several cores (pro-
cessors) use a shared-memory model. Consequently, the easiest way of dealing with parallelism is the
shared-memory model under the MIMD architecture. In this context, there are several technologies that
can be used to implement parallel algorithms: OpenMP and threads (Pthreads and Java threads).

4.1 OpenMP

OpenMP is a set of compiler directives and library routines that can be used to implement parallel algo-
rithms. The programmer then adds these compiler directives to a sequential program in order to inform

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

62 A. DUARTE ET AL.

the compiler which part of the code must be concurrently executed. It is also possible to establish (if
needed) synchronization points. The main advantage of this technology is the simplicity of its imple-
mentation. In other words, transforming a sequential algorithm to the parallel version can be performed
by including only one compiler directive, without modifying the original sequential code. Therefore,
OpenMP is adequate if the algorithm follows a data parallel model. However, it can be difficult to use
in task parallel applications (i.e. not all the processes execute the same code).

4.2 Threads

In programming languages, a thread is an independent flow of control inside a process. Although it has
always been possible to write parallel programs using processes and other resources provided by the
operating system, multi-threaded processes are themselves concurrent programs that bring a number of
advantages over multiple processes. In particular, they provide faster context switching among threads
and lower resource usage.

Inside this paradigm, Pthreads and Java threads are considered the most representative tools.
Pthreads (POSIX threads) was defined in the mid 1990s as an effort to provide a unified set of C library
routines in order to make multi-threaded programs portable. Java threads are a version of Pthreads for
Java programming language.

Java threads offer the advantages of portability inherent in Java programs. It also provides a multi-
threaded programming model adapted to the object-oriented features of Java. In addition, Java threads
can be easily used to tackle task parallel applications. Therefore, we select this technology to implement
our parallel algorithms.

5. Parallel VNS

The application of the parallelism to an MH can and must allow reducing the computational time
(obtaining similar results to the sequential version) or increasing the exploration in the search space
(obtaining better results than the sequential version). Notwithstanding, designing parallel MHs involves
a considerable complexity since doing it appropriately implies that the researches must have a solid
background in both fields. In general, these two fields are generally populated by distinct and very
specialized groups of people. However, the rapid development of technology in designing processors
(multi-core processors or dedicated architectures) has made use of parallel computing more and more
popular.

According to Crainic et al. (2004), parallel MH strategies may be classified into one of the three
following categories:

• Low-level parallelism: This strategy aims mainly at speeding up computations by executing in par-
allel one or several computing-intensive tasks (for instance, the local search) within one iteration
of the method. It is usually implemented following the master–slave computing model. In particu-
lar, the master process dispatches work to the other processors (the ‘slaves’), recuperates and fuses
the results, and then continues the sequential algorithm. Variants of this approach may be defined
according to the quantity of work assigned to slave processors.

• Domain decomposition: The partitioning reduces the size of the solution space, but the procedure
need to be repeated with different partitions to allow the exploration of the complete solution
space. A master–slave scheme is often chosen as the implementation mechanism. A master pro-
cess performs the decomposition and slave processors concurrently execute the MH on the resulting

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 63

sub-problems. Then, the master collects the partial solutions and builds a complete one. Finally, it
decides on a new partition and the search is restarted.

• Multiple search: Parallelism is obtained from multiple concurrent explorations of the solution space.
Concurrent searches may or may not execute the same heuristic method, and may start from the same
or from different initial solutions. They may communicate during the search or only at the end to
identify the best overall solution. The latter strategies are known as independent search methods,
while the former are often called cooperative multi-search methods. Communications may be per-
formed synchronously or asynchronously and may be event-driven or executed at predetermined or
dynamically decided moments.

In this paper, we adapt three previously proposed VNS parallel strategies for the CMP. We addition-
ally propose three new parallel strategies for this optimization problem. In particular, the six parallel
VNS strategies fall in the ‘Multiple Search’ category. We do not propose low-level parallelism strate-
gies since the shake, neighbourhood change and local search strategies are extremely fast (Pardo et al.,
2013). In the same line, we do not propose a domain decomposition parallel strategy since the shake,
local search and neighbourhood change procedures needs to consider the whole solution (Pardo et al.,
2013). Therefore, the proposed methods are general parallelization strategies in the context of VNS,
since they do not consider either the optimization problem or the VNS variant.

5.1 Replicated parallel VNS

The RP-VNS strategy consists of executing several parallel VNS procedures. We present two different
strategies, RP-VNS1 and RP-VNS2. In particular, considering RP-VNS1, Algorithms 1 and 2 show the
master and slave pseudo-code, respectively. The master process (Algorithm 1) starts by creating a pool
of different threads (step 2). Then, for each thread in the pool, the master process sends the start signal to
each thread (steps 3–5). When a thread finishes its execution, the master process compares the returned
solution with the best overall solution, updating it if necessary (step 6).

Algorithm 1 RP-VNS1: master process
1: function RP-VNS1-Master(kmax, tmax)
2: P=CreateThreadPool(NTHREADS)

3: for all p ∈ P do
4: sp← ExecuteThread(p, kmax, tmax)

5: end for
6: sbest = arg min

p∈P
{f (sp)}

7: return sbest

8: end

Each slave process (Algorithm 2) executes the same VNS variant. Parameters kmax and tmax are set
by the master process. The algorithm constructs an initial solution s in step 3 and sets k to the smallest
neighbourhood. The current solution, s, is then perturbed with the shake procedure (step 6) obtaining a
new solution s′ in the kth neighbourhood. This solution is improved (step 7), resulting in a local optimum
s′′. The neighbourhood change procedure (step 8) determines whether s′′ improves upon s (updating k to
1 and s to s′′) or not (increasing the value of k). These steps are repeated until k reaches kmax. Steps 2–11
are repeated until t reaches tmax. Finally, the procedure returns the best solution found during the search.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

64 A. DUARTE ET AL.

Algorithm 2 RP-VNS1: slave process
1: function RP-VNS1-Slave(p, kmax, tmax)
2: repeat
3: s←CreateInitialSolution()

4: k← 1
5: repeat
6: s′ ← Shake(s, k)

7: s′′ ← LocalSearch(s′)
8: NeighborhoodChange(s, s′′, k)

9: until k = kmax

10: t←CpuTime()
11: until t > tmax

12: return s
13: end

Algorithm 3 RP-VNS2: master process
1: function RP-VNS2-Master(kmax, tmax)
2: P=CreateThreadPool(NTHREADS)

3: sbest←CreateInitialSolution()

4: repeat
5: for all p ∈ P do
6: sp← ExecuteThread(p, sbest, kmax)

7: end for
8: sbest = arg min

p∈P
{f (sp)}

9: until t= tmax

10: return sbest

11: end

The RP-VNS2 considers the cooperation among threads. In particular, each thread receives the best
overall solution to start the corresponding VNS procedure. When a thread finishes, it notifies the master
process the best solution found. Then, the master sends the best overall solution.

Algorithm 3 shows the master process pseudo-code. In this case, the master process constructs
the initial solution (step 3) and controls the allowed execution time (steps 4–9). Additionally, it sends
the best solution to each slave process (step 6). Algorithm 4 shows the slave pseudo-code. Now, this
process does not construct a solution (which is received as an input argument), and it finishes when k
reaches kmax.

5.2 Replicated shake VNS

The RS-VNS strategy consists of parallelizing the shake and local search procedures. We consider two
different strategies, RS-VNS1 and RS-VNS2. Algorithm 5 reports the pseudo-code of the RS-VNS1
master process. The algorithm begins by creating the pool of threads and an initial solution (steps 2
and 3). As usual, the VNS search is started in the smallest neighbourhood (step 5). Then, the master
process delegates the execution of the shake and local search procedures to each thread. When a thread

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 65

Algorithm 4 RP-VNS2: slave process
1: function RP-VNS1-Slave(p, s, kmax)
2: s←CreateInitialSolution()

3: k← 1
4: repeat
5: s′ ← Shake(s, k)

6: s′′ ← LocalSearch(s′)
7: NeighborhoodChange(s, s′′, k)

8: until k = kmax

9: return s
10: end

Algorithm 5 RS-VNS1: master process
1: function RS-VNS1-Master(kmax, tmax)
2: P=CreateThreadPool(NTHREADS)

3: sbest←CreateInitialSolution()

4: repeat
5: k← 1
6: repeat
7: for all p ∈ P do
8: sp← ExecuteThread(p, sbest, kmax)

9: end for
10: slocal = arg min

p∈P
{f (sp)}

11: NeighborhoodChange(sbest, slocal, k)

12: until k = kmax

13: until t= tmax

14: return sbest

15: end

finishes, it returns the best found solution (step 8). Once all threads have finished, the master process
gathers the best solution found by the threads (step 10). The neighbourhood change procedure (step 11)
determines whether s′′ improves upon s (updating k to 1 and s to s′′) or not (increasing the value of
k). These steps are repeated until k reaches kmax. Steps 4–13 are repeated until t reaches tmax. Finally,
the master process returns the best solution found during the search. For the sake of brevity, we do not
include a pseudo-code of the slave process since it only consists of two instructions (shake and local
search functions).

This strategy is equivalent to a best improvement method in the sense that the search waits until
all threads finish, performing the best available move. RS-VNS2 considers an alternative strategy. In
particular, it performs the first move which improves the current best found solution (first improvement),
instead of waiting for all threads. Specifically, the pseudo-code of RS-VNS2 is similar to RS-VNS1. For
that reason, we do not include the associated pseudo-code. The only difference between them is which
solution is used in the neighbourhood change procedure. In RS-VNS2, we compare the solution returned
by each thread with the best found solution so far. In case of improvement, we update the corresponding

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

66 A. DUARTE ET AL.

best solution and stop the execution of the remaining threads. Note that in RS-VNS2, step 10 must also
be removed, since it is not required to find the best solution among all the treads.

5.3 Cooperative neighbourhood VNS

The CN-VNS strategy considers the cooperative exploration of different neighbourhoods by different
threads. We present two different strategies: CN-VNS1 and CN-VNS2. In both, the master process is
responsible for maintaining, updating and communicating the current overall best solution. It also initi-
ates and terminates the algorithm executed in each thread. The logic of the master process is similar to
the one presented in Algorithm 5. The main difference resides in the management of the neighbourhood.
In particular, both strategies (CN-VNS1 and CN-VNS2) delegate this task to each thread. Therefore, the
pseudo-code of these two strategies are equivalent to RS-VNS, but removing the instruction in step 11
(neighbourhood change procedure) and the input argument k in step 8 (since this value is set in the slave
process).

In CN-VNS1, the slave process explores the kmax available neighbourhoods at random, while in
CN-VNS2, the exploration is performed systematically. Pseudo-codes of CN-VNS1 and CN-VNS2 are
shown in Algorithms 6 and 7, respectively. In particular, the random exploration of neighbourhoods
starts by selecting at random a value of k, between 1 and kmax (step 3). Considering the solution s,
the procedure performs the corresponding shake (step 5), obtaining a perturbed solution s′ in the kth
neighbourhood. This solution is then improved with the local search method (step 6), obtaining s′′.
Then, it is decided whether the slave process performs another iteration or not. Specifically, the shake
and local search procedures are repeated while s′′ is better than s (see steps 7–11); otherwise, the thread
communicates the best solution found to the master process. Therefore, the corresponding thread waits
until the master process sends again the best overall solution.

In CN-VNS2, slave processes explore systematically the kmax available neighbourhoods. In order
to do so, the thread p performs the search in the [kp

first, kp
last] sub-ranges. For example, the first thread

explores neighbourhoods from 1 to �kmax/|P|	, the second thread explores the neighbourhoods from
�kmax/|P|	 + 1 to �2 ∗ kmax/|P|	 and so on. Then, starting from solution s, the algorithm perturbs it
(step 7), obtaining a new solution s′ in the kth neighbourhood, with kp

first � k � kp
last. This solution is then

Algorithm 6 CN-VNS1: slave process
1: function CN-VNS1-Slave(p, s, kmax)
2: improved← TRUE
3: k← Random(1, kmax)

4: while improved = TRUE do
5: s′ ← Shake(s, k)

6: s′′ ← LocalSearch(s′)
7: if f (s′′) > f (s) then
8: improved← FALSE
9: else

10: s← s′′

11: end if
12: end while
13: return s
14: end

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 67

Algorithm 7 CN-VNS2: slave process
1: function CN-VNS2-Slave(p, s, kmax)
2: improved← TRUE
3: kfirst = �(p− 1) ∗ kmax/|P|	 + 1
4: klast = �p ∗ kmax/|P|	
5: k← kfirst

6: repeat
7: s′ ← Shake(s, k)

8: s′′ ← LocalSearch(s′)
9: if f (s′′) < f (s) then

10: s← s′′

11: k← kfirst

12: else
13: k← k + 1
14: end if
15: until k = klast

16: return s
17: end

improved with the local search method (step 8), obtaining s′′. Then, it is decided whether s′′ improves
upon s (resetting k to kfirst and assigning s′′ to s) or not (increasing the value of k). The thread finishes
the search when k reaches klast, communicating the best solution found to the master process. Then, it
waits until the master process again sends it the best overall solution.

6. Computational experiments

This section reports and analyses the computational experiments that we have performed for testing
the efficiency of the six proposed parallel VNS variants for solving the CMP. All the algorithms were
implemented in Java SE 7 and the experiments were conducted on an Intel Core i7 2600 CPU (3.4 GHz)
and 4 GB RAM. We derived 101 instances from the Harwell-Boeing Sparse Matrix Collection. This
collection consists of a set of standard test matrices M =Muv arising from problems in linear systems,
least squares and eigenvalue calculations from a wide variety of scientific and engineering disciplines.
The graphs are derived from these matrices by considering an edge (u, v) for every element Muv = 0.
From the original set, we have selected the 101 graphs with n � 3025. The number of vertices and edges
ranges from 30 to 3025 and from 103 to 8904, respectively.

We have divided our experimentation in two different parts: preliminary experimentation and final
experimentation. In the preliminary experimentation, we study the effect of the number of threads in
each algorithm. We consider a representative subset of 14 instances to conduct the preliminary exper-
imentation. Then, in the final experimentation, we compare the best variants with the state-of-the-art
algorithm.

According to Crainic & Toulouse (2003), the classical performance measure (i.e. speedup described
by Barr & Hickman, 1993) is not adequate to evaluate the performance of parallel MHs since
asynchronous interactions between threads generally induce significant differences in search behaviour,
not only for the global parallel method, but also for each search process participating in the coopera-
tion. Therefore, the sequential and parallel methods may then be viewed as different MHs, requiring
a redefinition of speedup and other performance measures. This situation is further aggravated by the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

68 A. DUARTE ET AL.

Table 1 Performance of RP-VNS

RP-VNS1 RP-VNS2

Threads 2 4 8 16 2 4 8 16

Avg. 105.29 105.29 106.14 106.50 107.64 107.07 106.14 106.79
Dev (%) 2.03 2.03 3.48 4.41 7.77 6.93 7.11 7.44
#Best 9 9 8 8 7 7 8 7

randomness embedded in the VNS methods considered in this paper. However, it is important to remark
that a parallelization strategy should speed up the search or produce better results than the sequential
method. Consequently, we compare the quality of the solutions obtained by the sequential and parallel
VNS methods to evaluate the quality of the parallel design strategy.

To have an illustrative comparison, each parallel variant is executed for the same CPU time than the
best method identified in the literature, i.e. the VFS introduced by Pardo et al. (2013). In particular, we
execute VFS (considering the parameters suggested by the authors) over the set of 14 instances used
in the preliminary experimentation. The average CPU time of VFS is 840 s. Therefore, we execute all
parallel VNS variants for this computing time.

In our first experiment, we compare the performance of RP-VNS1 and RP-VNS2 (described in
Section 5.1) considering different number of threads: 2, 4, 8 and 16. Table 1 reports the average qual-
ity over all instances (Avg.), the average percent deviation with respect to the best known solutions
(Dev (%)) and number of times that each method matches the best known solutions (#Best). Let s
be a heuristic solution whose objective function value is f (s) and let s� be the best-known solution
(with objective function value f (s�)). The deviation is then computed as Dev= (f (s)− f (s�))/f (s�). We
consider these three performance metrics for the rest of the experiments since they complement each
other.

Table 1 shows that RP-VNS1 clearly outperforms RP-VNS2 in all the considered statistics. This
results can be partially explained by the fact that the diversification of RP-VNS1 is larger than PR-VNS2
(i.e. it explores a larger number of different regions of the search space), since the last method starts
the search from the best-known solution found so far. As it is well documented in the literature, the
CMP presents a flat landscape. As a consequence, most of the moves performed by the search proce-
dure have associated a null value. Therefore, it is more interesting to start the search from other point
of the solution space (RP-VNS1) rather than continuing the search from the same point (RP-VNS2).
We observe that better outcomes are obtained with a lower number of threads. As a result, RP-VNS1
with four threads is selected as the best variant of RP-VNS. We will use this algorithm in the final
experimentation.

In the second experiment, we compare the performance of RS-VNS1 and RS-VNS2 (described in
Section 5.2). As in the previous experiment, we consider that the number of threads ranges from 2 to
16. Table 2 reports that differences between both variants are smaller than in the first experiment. In
particular, RS-VNS1 with 4 threads presents an average percentage deviation of 1.38%, and it matches
11 times the best-known solutions (out of 14). The best RS-VNS2 method uses 16 threads and finds
the same number of best values. However, it presents a slightly larger deviation (1.45%). Therefore, we
select RS-VNS1 with four threads as RS-VNS variant for the final experimentation.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 69

Table 2 Performance of RS-VNS

RS-VNS1 RS-VNS2

Threads 2 4 8 16 2 4 8 16

Avg. 106.50 105.14 105.43 105.36 105.79 105.36 105.07 105.07
Dev (%) 3.29 1.38 2.37 2.15 3.50 2.35 1.45 1.45
#Best 7 11 8 10 8 8 10 11

Table 3 Performance of CN-VNS

CN-VNS1 CN-VNS2

Threads 2 4 8 16 2 4 8 16

Avg. 110.29 108.64 108.64 108.50 107.64 108.43 107.57 107.50
Dev (%) 10.25 9.59 9.56 8.82 7.53 7.83 7.51 7.24
#Best 8 7 7 7 7 7 7 7

Fig. 2. Performance of each thread in RS_VNS1 on lshp3025 instance.

In the next preliminary experiment, we compare the performance of two CN-VNS (i.e. CN-VNS1
and CN-VNS2, both described in Section 5.3). Table 3 reports the results obtained by both parallel algo-
rithms, considering the same number of threads than in the previous experiments. The performance of
all these variants seems to be really poor compared with the previous methods. In particular, CN-VNS2
with 16 threads is the best variant with a deviation of 7.24% and matches the best known solution 7
times (out of 14). It seems that the larger the number of threads, the better is the performance of the
method. Then this strategy could be more competitive if we would consider a larger number of threads.
However, due to our hardware limitation, we are not able to test this hypothesis. Specifically, if we
increase the number of threads, the required time to manage them deteriorates the performance of the
method. It is interesting to compare the best CN-VNS variant with the state-of-the-art method.

In the last two preliminary experiments, we study the time spent in the parallelization management
of the algorithms. First, in Fig. 2, we illustrate the behaviour of the different threads within an algorithm.
In order to do that, we have selected RS-VNS1 with four threads and we have depicted its behaviour over
a representative instance (lshp3025) during four iterations. For each iteration and thread, we depict the
time that the thread is working (straight lines) and the time that the thread is waiting for synchronization
(dashed lines). As shown in the figure, an iteration ends when all threads have finished working. After
that, the parallel algorithm synchronizes the information among the threads (represented in the figure as

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

70 A. DUARTE ET AL.

Table 4 Comparison of the synchronization time spent by each algorithm

RP-VNS1 (4) (%) RS-VNS1 (4) (%) CN-VNS2 (16) (%)

Avg. waiting time 9.43 1.44 0.04
Max. waiting time 11.25 4.13 0.07

vertical black lines at the end of each iteration). Obviously, there is at least one thread that is working
until the end of the iteration.

The total computing time of the previous example is 342 ms, which includes the working time, the
waiting time and the synchronization time of each thread. In all our experiments, the synchronization
time is negligible; therefore, we do not consider further analysis of this time in the performance of the
parallel strategies.

In the example shown in Fig. 2, we can observe that the thread that waits longer (Th.#2) spends
approximately 31% of the time waiting, while Th.#3 is the one with the minimum waiting time (approx-
imately 15% of the time). On average, the threads are waiting 23% of the time.

Once the behaviour of the threads has been described, we conduct an additional experiment over the
set of instances used in the preliminary experimentation. In Table 4, we present the best variants of the
three proposed parallel algorithms (where the number of threads are depicted in parenthesis). For each
method, we report the average CPU time spent by all threads waiting for synchronization (Avg. waiting
time) and also the maximum CPU time that a single thread within the method needs to wait (Max.
waiting time). Both results are presented in percentage over the total CPU time spent. As expected,
RP-VNS1 presents the largest average and maximum waiting time, since each thread in this strategy
performs a completely independent iteration. In other words, if the constructed solution has a relatively
high quality, the VNS strategy will reach a local optimum faster. Therefore, the waiting time of that
thread will be longer, since it will need the other threads (starting from a worse solution) to finish. On
the other hand, the CN-VNS2 strategy presents the shortest average and maximum waiting time. This
behaviour can be explained by considering that, in this strategy, all the threads start the search from
the same initial solution (the best one found in the iteration). Therefore, the iterations performed by
the parallel VNS are quite similar. Finally, the RS-VNS1 strategy meets a balance among the strategies
of the other two methods. Particularly, at each iteration it starts from the best solution found (similar
to CN-VNS2) but it applies an independent shake and local search procedures to that solution in each
thread (similar to RP-VNS1).

Finally, we compare the previous best variants with the state-of-the-art method (VFS). In this exper-
iment, we consider the whole set of 101 instances. Table 5 clearly shows the superiority of the RS-VNS
strategy over the other competitors. In particular, it presents a deviation of 0.28% which compares
favourably to the RP-VNS (0.64%), the state-of-the-art method (0.89%) and the CN-VNS (1.52%).
Considering the number of best solutions found, the analysis is similar. It is important to remark that,
although CN-VNS2 (16) obtains the worst deviation, it only finds one less better solution than the state-
of-the-art method. Even more, when considering the average quality, the CN-VNS2 (16) ranks second
(284.87), improving the RP-VNS1 (4) with an average quality of 285.01 and VFS (285.46).

To confirm these conclusions, we conduct the non-parametric Friedman test (Friedman, 1940) for
multiple correlated samples to the best solutions obtained by VFS, RP-VNS1, RS-VNS1 and CN-VNS2.
This test computes, for each instance, the rank value of each method according to the solution quality
(where rank 1 is assigned to the best method and rank 4 to the worst one). Then it calculates the average
rank values of each method across all the instances solved. If the averages differ greatly, the associated

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 71

Table 5 Comparison of the parallel VNS variants with the state of the art

VFS RP-VNS1(4) RS-VNS1(4) CN-VNS2(16)

Avg. 285.46 285.01 284.64 284.87
Dev (%) 0.89 0.64 0.28 1.52
#Best 84 86 92 83

p-value or significance will be small. The resulting p-value of 0.028 (considering a level of significance
of 0.05) obtained in this experiment clearly indicates that there are statistically significant differences
among the four methods tested. Specifically, the rank values produced by this test are 2.20 (RS-VNS1),
2.45 (RP-VNS1), 2.47 (VFS) and 2.88 (CN-VNS2). This experiment confirms again the superiority of
two parallel VNS procedures over the state of the art.

We conduct a test of Wilcoxon to further analyse the differences between our best method RS-
VNS1 and the state-of-the-art algorithm (VFS). In particular, this experiment has a p-value of 0.024.
Then, considering a level of significance of 0.05, this experiment indicates that there are statistically
significant differences between both methods, confirming again that the parallel version improves the
sequential one.

7. Conclusion

We proposed in this paper six different general parallel designs for the VNS schema. We group these
variants into three different templates. The first one is oriented to parallelize the whole VNS method
(RP-VNS1 and RP-VNS2). The second one parallelizes the shake and the local search procedures (RS-
VNS1 and RS-VNS2). Finally, the third one explores in parallel the set of predefined neighbourhoods
(CN-VNS1 and CN-VNS2). These general strategies are then applied to parallelize a recently intro-
duced VNS algorithm, called VFS. We conducted an experimental comparison among these variants
on the CMP. A preliminary experimentation allows us to identify the best variant from each template,
resulting in the selection of RP-VNS1, RS-VNS1 and CN-VNS2, respectively. Then we compared the
selected three methods with the sequential VFS, which is the best algorithm in the state of the art for
the CMP. Experimental results showed that two of the three proposed parallel methods (RS-VNS1 and
RP-VNS1) outperform previous best methods in the state of the art of the CMP in terms of quality.
We also conducted statistical tests to confirm the significance of the obtained results with RS-VNS1
emerging as the best algorithm.

Funding

This research was partially supported by the Spanish Ministry of ‘Economía y Competitividad’, grants
ref. TIN2009-07516, TIN2011-28151 and TIN2012-35632, and the Government of the Community of
Madrid, grant ref. S2009/TIC-1542.

References

Adolphson, D. & Hu, T. C. (1973) Optimal linear ordering. SIAM J. Appl. Math., 25, 403–423.
Alba, E. & Nebro, A. J. (2005) New technologies in parallelism. Parallel Metaheuristics. A New Class of

Algorithms, vol. 2. Wiley-Interscience.
Andrade, D. V. & Resende, M. G. C. (2007a) GRASP with path-relinking for Network Migration Scheduling.

Proceedings of International Network Optimization Conference (INOC).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

72 A. DUARTE ET AL.

Andrade, D. V. & Resende, M. G. C. (2007b) GRASP with evolutionary path-relinking. Proceedings of Seventh
Metaheuristics International Conference (MIC).

Barr, R. S. & Hickman, B. L. (1993) Reporting computational experiments with parallel algorithms: issues,
measures, and experts opinions. ORSA J. Comput., 5, 2–18.

Botafogo, R. A. (1993) Cluster analysis for hypertext systems. 16th Annual International ACM-SIGIR Conference
on Research and Development in Information Retrieval, pp. 116–125.

Chung, M. J., Makedon, F., Sudborough, I. H. & Turner, J. (1982) Polynomial time algorithms for the MIN
CUT problem on degree restricted trees. SFCS ’82: Proceedings of the 23rd Annual Symposium on Founda-
tions of Computer Science, pp. 262–271.

Crainic, T. G., Gendreau, M., Hansen, P. & Mladenović, N. (2004) Cooperative parallel variable neighborhood
search for the p-median. J. Heuristics, 10, 293–314.

Crainic, T. G. & Toulouse, M. (2003) Parallel strategies for meta-heuristics. State-of-the-Art Handbook in Meta-
heuristics, pp. 475–513.

Cohoon, J. & Sahni, S. (1983) Exact algorithms for special cases of the Board Permutation Problem. Proceedings
of the Allerton Conference on Communication, Control and Computing, pp. 246–255.

Cohoon, J. & Sahni, S. (1987) Heuristics for backplane ordering. J. VLSI Comput. Syst., 2, 37–61.
Díaz, J., Gibbons, A., Pantziou, G. E., Serna, M. J., Spirakis, P. G. & Toran, J. (1997) Parallel algo-

rithms for the minimum cut and the minimum length tree layout problems. Theor. Comput. Sci., 181,
267–287.

Duarte, A., Martí, R., Resende, M. G. C. & Silva, R. M. A. (2011) GRASP with path relinking heuristics for
the antibandwidth problem. Networks, 58, 171–189.

Friedman, M. (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann. Math.
Statist., 11, 86–92.

García-López, F., Melián-Batista, B., Moreno-Pérez, J. A. & Moreno-Vega, J. M. (2002) The parallel vari-
able neighborhood search for the p-median problem. J. Heuristics, 8, 375–388.

Gavril, F. (1977) Some NP-complete problems on graphs. Proceedings of the Eleventh Conference on Information
Sciences and Systems, pp. 91–95.

Gendreau, M. & Potvin, J. Y. (1977) Handbook of Metaheuristics. Berlin: Springer Publishing Company, Incor-
porated.

Harper, L. H. (1966) Optimal numberings and isoperimetric problems on graphs. J. Combin. Theory, 1, 385–393.
Karger, D. R. (1999) A randomized fully Polynomial Time Approximation Scheme for the all-terminal network

reliability problem. SIAM J. Comput., 29, 492–514.
Luttamaguzi, J., Pelsmajer, M., Shen, Z. & Yang, B. (2005) Integer programming solutions for several opti-

mization problems in graph theory. Technical Report, Center for Discrete Mathematics and Theoretical Com-
puter Science, DIMACS.

Makedon, F. & Sudborough, I. H. (1989) On minimizing width in linear layouts. Discrete Appl. Math., 23,
243–265.

Martí, R., Pantrigo, J. J., Duarte A. & Pardo, E. G. (2013) Branch and bound for the cutwidth minimization
problem. Comput. Oper. Res., 40, 137–149.

Mladenović, N. & Hansen, P. (1997) Variable neighborhood search. Comput. Oper. Res., 24, 1097–1100.
Mladenović, N., Plastria, F. & Urosevic, D. (2005) Reformulation descent applied to circle packing problems.

Comput. Oper. Res., 32, 2419–2434.
Moreno, J. A., Moreno, J. M. & Verdegay, J. L. (2004) Parallel Variable neighborhood search. The p-median

problem: a survey of metaheuristic approaches. Les Cahiers du GERAD, 92, 1–22.
Mutzel, P. (1995) A polyhedral approach to planar augmentation and related problems. ESA’95: Proceedings of

the Third Annual European Symposium on Algorithms, pp. 494–507.
Palubeckis, G. & Rubliauskas, D. (2012) A branch-and-bound algorithm for the minimum cut linear arrange-

ment problem. J. Combin. Optim., 24, 540–563.
Pantrigo, J. J., Martí, R., Duarte, A. & Pardo, E. G. (2012) Scatter search for the cutwidth minimization

problem. Ann. Oper. Res., 199, 285–304.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

PARALLEL VNS STRATEGIES FOR THE CMP 73

Pardo, E. G., Mladenovic, N., Pantrigo, J. J. & Duarte, A. (2013) Variable formulation search for the cutwidth
minimization problem. Appl. Soft Comput., 13, 2242–2252.

Petit, J. (2003) Experiments on the minimum linear arrangement problem. ACM J. Exp. Algorithmics, 8,
1084–6654.

Reinelt, G. (1991) TSPLIB—a traveling salesman problem library. INFORMS J. Comput., 3, 376–384.
Resende, M. G. C. & Andrade, D. V. (2009) Method and System for Network Migration Scheduling. Atlanta,

Georgia: United States Patent Application Publication, US2009/0168665.
Resende, M. G. C., Martí, R., Gallego, M. & Duarte, A. (2010) GRASP and path relinking for the max-min

diversity problem. Comput. Oper. Res., 37, 498–508.
Rolim, J., Skora, O. & Vrt’o, I. (1995) Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes.

Graph-Theoretic Concepts in Computer Science, vol. 1017, pp. 252–264.
Shahrokhi, F., Skora, O., Szkely, L. A. & Vrt’o, I. (2001) On bipartite drawings and the linear arrangement

problem. SIAM J. Comput., 30, 1773–1789.
Takagi, K. & Takagi, N. (1999) Minimum Cut Linear Arrangement of p-q dags for VLSI layout of adder trees.

IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E82-A, 767–774.
Thilikos, D. M., Serna, M. J. & Bodlaender, H. L. (2005) Cutwidth II: algorithms for partial w-trees of bounded

degree. J. Algorithms, 56, 25–49.
Yannakakis, M. (1985) A polynomial algorithm for the Min-Cut linear arrangement of trees. J. ACM, 32, 950–988.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/27/1/55/2357052 by U

N
IVER

SID
AD

 D
E VALEN

C
IA user on 09 Septem

ber 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 175
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 /ENN ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

