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a b s t r a c t

The bipartite unconstrained 0-1 quadratic programming problem (BQP) is a difficult combinatorial
problem defined on a complete graph that consists of selecting a subgraph that maximizes the sum of
the weights associated with the chosen vertices and the edges that connect them. The problem has
appeared under several different names in the literature, including maximum weight induced subgraph,
maximum weight biclique, matrix factorization and maximum cut on bipartite graphs. There are
only two unpublished works (technical reports) where heuristic approaches are tested on BQP instances.
Our goal is to combine straightforward search elements to balance diversification and intensification in
both exact (branch and bound) and heuristic (iterated local search) frameworks. We perform a number
of experiments to test individual search components and also to create new benchmarks when
comparing against the state of the art, which the proposed procedure outperforms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The bipartite unconstrained 0-1 quadratic programming pro-
blem (BQP) consists of selecting a subgraph that maximizes the
sum of the weights associated with the chosen vertices and the
edges that connect them. The problem is defined on a complete
bipartite graph G¼ ðV ; EÞ, with I ¼ f1;2;…;mg representing the set
of vertices in the left-hand side of the graph, J ¼ f1;2;…;ng
representing the set of vertices in the right-hand side of the
graph, E representing the set of edges that connect the vertices in I
with the vertices in J, and V ¼ I [ J. There is a weight cv associated
with each vertex vAV . There is also a weight qij that corresponds
to the edge connecting vertices iA I and jA J.1 The problem consists
of selecting SDV such that the following function is maximized

f ðSÞ ¼ ∑
vAS

cvþ ∑
i;jA S

qij

Fig. 1 shows an example with I¼ fa; b; cg, J ¼ fw; x; y; zg and the
table of edge weights. We assume that all vertex weights are zero

(i.e., cv ¼ 0 8 vAV). We point out that weights, either on the
vertices or the edges, can be positive, negative or zero.

Consider a solution S1 ¼ fa;w; x; zg. The objective function value
of this solution is

f ðS1Þ ¼ qða;wÞ þqða;xÞ þqða;zÞ ¼ 8�4þ13¼ 17

A better solution is obtained by making the following vertex
selections: S2 ¼ fb; c;w; y; zg. The objective function value of solu-
tion S2 is

f ðS2Þ ¼ qðb;wÞ þqðb;yÞ þqðb;zÞ þqðc;wÞ þqðc;yÞ þqðc;zÞ

¼ 1�7þ24�15þ8þ20¼ 31

In this case, an increase in the number of vertices from solution
S1 to solution S2 resulted in an increase in the objective function of
14 units (31–17¼14). However, this is not necessarily true in all
cases. For instance, selecting a and c on the left side and y and z on
the right side results in an objective function value of 38. This
solution has four vertices and is better than solution S2 that has
5 vertices.

The BQP has been studied in the literature under different
names: maximum weight induced subgraph [19], maximum
weight biclique [2], matrix factorization [7] or maximum cut
on bipartite graphs [1]. From the point of view of heuristic
optimization, however, the BQP has been somewhat neglected.
In particular, to the best of our knowledge, there exist two arti-
cles – currently available on line – that describe several heuristics
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for this problem [11]. This work develops 24 heuristics that are
grouped into three families: fast-heuristics, slow-heuristics and
row-merge heuristics.

In the reminder of the paper, we first introduce an exact method
in the form of a branch-and-bound search. We describe this
optimization procedure, as well as a lower bound, in Section 2.
We then propose a heuristic procedure based on the iterated local
search (ILS) methodology (Section 3). ILS has strong connections
with the strategic oscillation originally proposed within tabu search
[8]. Specifically, we propose two solution construction procedures
(Section 3.1), two mechanisms to improve solutions via neighbor-
hood searches (Section 3.2), and one perturbation strategy. Section
4 describes the computational experiments performed, and finally
Section 5 presents the associated conclusions.

2. Branch-and-bound for the BQP

Branch and bound [13] is the process of systematically and
exhaustively exploring the solution space by means of a search
tree. See Wolsey [20] and Nemhauser and Wolsey [18] for classical
references of this search strategy. Recent successful applications
can be found in Martí et al. [17] and Martí et al. [16]. The search
operates with bounds (lower and upper) on the optimal value of
the objective function, a tree structure and exploration strategy.
We obtain an initial lower bound (LB) with the heuristic proce-
dures described in the following sections. This lower bound might
change in the course of the B&B search and is used alongside an
upper bound calculation in order to eliminate (i.e., prune)
branches from further consideration.

We utilize a binary tree, where each node is associated with a
vertex iA I in the graph. Each branch represents the decision of
whether or not the vertex is included in the solution. Therefore,
there are only two branches originating from each node in the
tree, including the root node. At each node of the tree (except the
root node), there is a set of vertices in I that have been selected,
denoted by I0. We point out that it is not necessary to branch on
vertices in J because given a selection of vertices in I the
corresponding optimal subset of vertices in J can be trivially
determined. This optimal selection of the vertices in J (denoted
by J0) generates a lower bound. In particular, a vertex jA J is
selected if and only if

gðjÞ ¼ cjþ ∑
iA I

0
qij40

The set S¼ I0 [ J0 is a complete solution of the problem
and therefore f ðSÞ can be used to update LB when f ðSÞ4LB.

While a single (the best) lower bound is maintained throughout
the search, an upper bound (UB) is associated with each node.
The upper bound is used to determine whether additional
exploration rooted at the node is warranted. In particular, if
for a given node it is determined that UBrLB, then there is no
hope of finding a better solution by completing the sub-tree
that is rooted at that node. Corresponding to each node of the
tree, there is the set of selected vertices (i.e., I0) and also the set
IU of unexplored vertices. The vertices iA I that belong to
neither I0 nor IU are those that have been excluded from the
solution by previous branching decisions. An upper bound
associated with a node represented by (I0; IU) may be calculated
as follows:

UBðI0; IUÞ ¼ ∑
iA I0

ciþ ∑
iA IU

maxð0; ciÞ

þ∑
jA J

max 0; gðjÞþ ∑
iA IU

maxð0; qijÞþ ∑
iA I0

qij

 !

The upper bound calculation is based on adding all the known
weights (i.e., the weights associated with vertices that have been
selected) and the strictly positive weights of the vertices that have
not been explored. Then, we add the potential weight contribution
of each vertex jA J. Only strictly positive contributions are added to
the upper bound calculation.

There are two standard techniques to explore a B&B tree:
breadth-first and depth-first. Breadth-first generates wide trees
and has demanding memory requirements. In most cases, B&B
searches cannot be solely conducted on the basis of a breadth-
first strategy due to computer memory limits. A depth-first
approach attempts to find a leaf as fast as possible before
moving to a different node. The memory requirements for
depth-first are modest but the effectiveness of the approach is
somewhat limited. The best B&B implementations use a mixed
strategy that combines both approaches. In our mixed approach,
we start with a breadth-first search until memory is exhausted,
at which point, we switch to a depth-first exploration. Regard-
less of the exploring strategy, the direction i=2 I0 is always
explored first.

3. Iterated local search for the BPQ

Iterated local search [14], usually referred to as ILS, is a meta-
heuristic based on a modification of local search or hill climbing
methods for solving discrete optimization problems. Duarte
et al. [3] and Lozano et al. [15] describe successful applications
of this methodology. Algorithm 1 summarizes the ILS frame-
work. An initial solution S0 is generated that is immediately
subjected to an improvement procedure (LocalSearch). The
improved solution Sn becomes the starting point of the main
ILS loop. This iterative loop consists of three main functions:
Perturb, LocalSearch and Accept. Perturb typically employs ran-
dom elements to change the current solution Sn to produce the
perturbed solution S0. LocalSearch then attempts to find an
improved solution S0

n
and Accept implements the criteria by

which the next current solution Sn is chosen. Both Perturb and
Accept may use recorded history of the search to implement
their strategies. For instance, it is possible to use frequency
memory à la tabu search in order to bias perturbation mechan-
isms and acceptance criteria [4,5].

Although not explicit in Algorithm 1, the procedure keeps
track of the best solution and returns it upon termination. The
criteria within the Accept function create a balance between
diversification and intensification. The criterion that
encourages the most diversification is the one that always
accepts S0

n
and makes this solution the current solution (i.e.,

Edge  Weight 
+8 
-4 
-3 

+13 
+1 
0 
-7 

+24 
-15 
-10 
+8 

+20 

Fig. 1. BQP example.
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Sn’S0
n
). On the other hand, a low diversification criterion is

such that S0
n
is accepted only if it improves upon the current

solution, i.e., only if f ðS0
n
Þ4 f ðSnÞ. One way of using search

history is by accepting a non-improving solution after a number
of iterations without improving.

Algorithm 1. Iterated local search

Generate initial solution S0
Sn’LocalSearchðS0Þ
do

S0’Perturb Sn;historyð Þ
S0
n
’LocalSearchðS0Þ

Sn’AcceptðSn; S0n;historyÞ
until termination criteria met

Our implementation employs the maximum diversity criterion
of always accepting S0

n
. We now describe the variants that we have

created for constructing initial solutions, perturbing current solu-
tions and locally searching for improved solutions.

3.1. Procedures to generate an initial solution

Our first procedure (C1) to generate an initial solution is based
on a semi-greedy strategy that generates a pre-specified number
of solutions (k) and chooses the best as S0. The procedure uses a
candidate list of vertices that consists of all vertices that have not
been selected (U). Initially, U consists of all vertices in the graph,
i.e., U’V . The current partial construction is given by the set S of
vertices that have been selected. This set is initially empty, i.e.,
S’∅. Decisions to include vertices in the solution are made on the
basis of the “weight potential” of each vertex. The weight potential
for a left-hand-side vertex iAU, denoted by wpðiÞ, is defined as
follows.

wpðiÞ ¼ ciþ ∑
jA S

qijþ ∑
jAU

maxð0; qijÞ

A similar expression can be constructed for a right-hand-side
vertex jAU. The weight potential of a vertex consists of its
weight, the sum of the weights of the edges that connect to
vertices that have been already selected, and the positive
weights of edges that connect to vertices that could be selected
in future steps.

Instead of using the pure-greedy approach of selecting the
vertex with the highest evaluation (i.e., the one with the largest wp

value), we implement the semi-greedy criterion of randomly
selecting a vertex from a restricted list of top candidates. The top
candidates are those whose wp-value is within α% of the maximum
wp value. For instance, if the vertex with the highest potential has
a wp value of 100 and α is set to 10, then only those vertices whose
wp values are at least 90 are allowed to be in the restricted
candidate list. This strategy was originally developed by Hart and
Shogan [10].

Suppose that at a given step a right-hand-side vertex jAU is
selected, then S’S [ fjg and U’U n fjg and the following expres-
sion can be used to update all the weight potentials for the left-
hand-side vertices iAU

wpðiÞ ¼wpðiÞ� maxð0; qijÞþqij

There is an equivalent expression to update right-hand-side
vertices jAU after the selection of a left-hand-side vertex iAU. The
procedure stops when all weight potentials of the unselected
vertices are strictly negative, that is, when wpðvÞo0 for all vAU.
Algorithm 2 summarizes this solution-construction procedure.

Algorithm 2. Construction procedure C1

S’∅ and U’V
wp’WeightPotentialðc; qÞ
do
wmax’max

vAU
wpðvÞ

RCL’fvAU : wpðvÞZwmax � ð1�αÞ%g
u’RandomSelectionðRCLÞ
S’S [ fug and U’U n fug
wp’UpdateWeightPotentialðwp;u; qÞ

until wpðvÞo0 for all vAU

Our second procedure (C2) is purely greedy and produces a
single solution with minimal computational effort. The procedure
is divided into two phases. In the first phase it selects vertices from
the left hand side of the graph and in the second phase it selects
vertices from the right hand side of the graph. The selection of a
vertex iA I in the first phase depends on the weight potential of
the vertex (i.e., wpðiÞ) as defined above. Since no vertices in J have
been selected in this phase of the procedure, the selection function
takes on the same form as the one used at the start of C1 (i.e.,
wpðiÞ ¼ ciþ∑jA Jmaxð0; qijÞ). Only those vertices iA I with wpðiÞ40
are added to the solution S. The first phase finishes when all
vertices iA I have been considered.

In the second phase, the right-hand-side vertices jA J are
chosen. Instead of using the potential weight of the vertices, the
actual weights are used as the selection criterion. So, for this
phase, we define wðjÞ as the true weight of vertex jA J

wðjÞ ¼ cjþ ∑
iA S

qij

Here again, only those vertices jA J with wðjÞ40 are added to
the solution. The phase terminates when all vertices have been
considered. In both phases, the list of vertices is scanned in
lexicographical order. There is no need to consider any other order
given that neither wpðiÞ nor wðjÞ changes due to previous selection
decisions within the same phase. Algorithm 3 summarizes this
construction procedure.

Algorithm 3. Construction procedure C2

S’∅
for each (iA I) do
wpðiÞ’ciþ∑

jA J
maxð0; qijÞ

if wpðiÞ40 then S’S [ fig
end for
for each ðjA JÞ do
wðjÞ ¼ cjþ ∑

iA S
qij

if wðjÞ40 then S’S [ fjg
end for

Due to the symmetry of the q values, we have found through
experimentation that it makes no difference in performance to
switch the phases and construct the right hand side first followed
by the left hand side of the graph.

3.2. Improvement and perturbation methods

We developed two solution improvement methods: a local
search and a simple intensification-diversification search. The local
search (LS) consists of looking for improvements by adding or
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deleting a single vertex. To search for a vertex to add or delete,
I and J are scanned in an alternating fashion until no improving
move is found. Let S once again represent the set of vertices that
have been selected and let U ¼ V n S be the set of vertices that have
not been selected. The local search first scans I to identify a vertex
iAU (iAS) that if added to (deleted from) the solution it provides a
strictly positive contribution to the objective function. When all
vertices in I have been evaluated (to be added or deleted) the
search moves to the vertices in J where the same logic is followed.
If any improvement move is performed, the scanning of both sets is
repeated. The search stops when no improvement move is identi-
fied in a single pass through both sets. The method is summarized
in Algorithm 4.

Algorithm 4. Local search (LS)

do
for each iA I do
wðiÞ ¼ ciþ ∑

jAS
qij

if wðiÞ40 and iAU then S’S [ fig
if wðiÞr0 and iAS then S’S n fig

end for
for each jA J do
wðjÞ ¼ cjþ ∑

iAS
qij

if wðjÞ40 and iAU then S’S [ fjg
if wðjÞr0 and iAS then S’S n fjg

end for
until S does not change

Our second improvement method consists of a simple
intensification-diversification search (IDS) that has the goal of
reaching more than one local optimum. This procedure uses
similar strategies as those developed by Kelly et al. [12] and
applied to the quadratic assignment problem. The main idea is
to alternate intensification and diversification phases until no
improvement is achieved for a predetermined number of itera-
tions (maxIter). The search starts from a solution S constructed
with either C1 or C2. The intensification phase is applied first
and consists of identifying all add and delete moves that
improve the objective function value of the current solution.
Move values for vertices iA I are calculated with the following
expression

MoveValueðiÞ ¼

ciþ ∑
jAS

qij if i=2S

� ciþ ∑
jA S

qij

 !
if iAS

8>>>><
>>>>:

An equivalent expression is used for the move values associated
with vertices jA J. Once no improving move is available, the search
switches to a diversification step. All vertices are ordered by their
descending move values. Then, the first d¼ β � jV j moves are
performed, with 0rβr1. The β parameter controls the percen-
tage of vertices that will be involved in the search. Then, if β takes
value close to 0, just a few vertices would be explored. On the
other hand, if β takes values close to 1, most of the vertices would
be explored.

The first d vertices in the ordered list are either removed if
they are in the solution or added if they are not. After this step
is performed, the intensification phase is applied again if no
more than maxIter iterations have been performed without
finding an improved solution. Algorithm 5 summarizes this
search.

Algorithm 5. Intensification-diversification search (IDS)

iter’0
d¼ β � jV j
while iteromaxIter do
vn’ argmax

vAV
MoveValueðvÞ

if MoveValueðvnÞ40 then
if vAU then S’S [ fvg
if vAS then S’S n fvg
iter’0

else
S’diversif yðdÞ
iter’iterþ1

end if
end while

The perturbation method is the final element of our ILS
implementation. A solution is defined by the set of vertices S that
have been selected. Therefore, for each solution, there is a set
U ¼ V n S of vertices that have not been selected. The perturbation
consists of randomly choosing a fraction π of vertices in V and
changing their current status. That is, if the chosen vertex is in S
then it is deleted from the solution and added to U. On the other
hand, if the chosen vertex is not in the solution, then it is added to
S and deleted from U.

4. Computational experiments

All procedures described above were coded in Java SE7 and run
on an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB RAM. The data for
the experiments were taken from the literature. More precisely,
we employ the tested generated by Karapetyan and Punnen [11].
All the details on how the data instances were generated are found
in Section 4 of Karapetyan and Punnen [11]. The testbed2 contains
the following five graph types: random, max biclique, max
induced subgraph, maxcut, and matrix factorization.

For each graph type, we consider 17 instances for a total of 85.
The 17 instances are divided into three groups

� 7 small instances (m ¼ f20; 25; 30; 35; 40; 45; 50g and
n ¼ 50)

� medium instances (m ¼ f200; 400; 600; 800; 1000g and
n ¼ 1000)

� large instances (m ¼ f1000; 2000; 3000; 4000; 5000g and
n ¼ 5000)

In our first experiment we test our B&B implementation on the
35 small instances. The B&B is compared with the application of
Cplex 12.5.1 (with default parameter settings) to the mixed-
integer program formulation of the BQP presented in Section 5
of Karapetyan and Punnen [11]. There is also an exhaustive
enumeration suggested by Karapetyan and Punnen [11] that we
do not include in this comparison because experiments by these
authors have shown that this approach is less effective than
solving the MIP formulation. Table 1 summarizes the outcome of
our experiment. Both procedures were limited to 1800 CPU
seconds. We report, average values for the best bounds, the GAP
(UB=LB�1), and CPU time associated with each procedure. The
CPU time only includes the instances in which the procedures

2 Available at http://www.cs.nott.ac.uk/�dxk/.

A. Duarte et al. / Computers & Operations Research 51 (2014) 123–129126

http://www.cs.nott.ac.uk/~dxk/
http://www.cs.nott.ac.uk/~dxk/


terminate before the time limit. We also report the number of
optimal solutions verified by each approach.

The B&B is capable of verifying more optimal solutions (21)
than Cplex (17) within the time limit. Since the average CPU times
shown in Table 1 correspond to the runs in which the procedures
terminate before the 1800-s time limit, it can be said that, when
compared to the time limit, both procedures find optimal solutions
in approximately the same amount of time; however, our B&B is
able to find more optimal solutions than Cplex. For the problems
for which the optimal solutions could not be verified, we observe
that in general Cplex produces tighter upper bounds but lower
bounds of slightly inferior quality.

We now turn our attention to the heuristic procedures in the ILS
framework. To test these elements, we employ the 25 medium
instances. We start by testing the construction methods, C1(α) and
C2 (see Table 2). Our performance metrics are: average objective
function value (Avg. Obj.), average deviation from the best solution
(Avg. Dev.), number of best solutions (#Best) and average CPU time
in seconds (CPU seconds). The best solution for each instance is the
one identified by all the runs performed within this experiment.
That is, this is not necessarily the best-known solution to the
problem instance.

The minimum average deviation is achieved by C1 with
α¼ 0:75. However, C2 contributes with more “best solutions” than
any of the C1 variants. Upon closer examination of the raw results,
we have been able to determine that the large deviation associated
with C2 is almost entirely due to its poor performance on max
biclique instances. When ignoring those results, it becomes clear
that C2 outperforms all C1 variants. We keep both C1(0.75) and C2
for further experimentation.

We next test IDS to determine effective values for β andmaxIter.
An experiment using IDS with the a priori default values of β¼ 0:5
and maxIter¼ 20 showed that this procedure dominates LS. There-
fore, we abandoned further consideration of LS and focused on
improving the performance of IDS through parameter tuning. To
avoid confounding the effect of the quality of a starting solution and
the effectiveness of the IDS, we use random starts for this experi-
ment. We test β¼ f0:25; 0:50; 0:75g and maxIter¼ f10; 20; 30g,
and calculate the same performance measures as before. Table 3
summarizes the results of this experiment.

Examining the results in Table 3, it seems reasonable to
conclude that maxIter should be set to 30. The competing alter-
natives for the value of β are 0.25 and 0.75. We use as tiebreaker
the computing time and elect to choose β¼ 0:25 for additional
experimentation.

Now that we have identified the most effective configurations
of the individual elements of the ILS, we put them all together to
calibrate the value of π, that is, the percentage of vertices to peturb
in each iteration. We tried π ¼ f0:10; 0:20; 0:30; 0:40g starting
from C1(0.75) and C2 constructions and applying IDS with
β¼ 0:25. The termination criterion for ILS is set to 100 iterations.
The results are summarized in Table 4.

Clearly, small π values perform better than larger ones regard-
less of the method that is used to construct the initial solution.
The results in Table 4, however, do not allow us to make a final
decision on whether C1(0.75) or C2 is produces better outcomes in
combination with the other search elements. Hence, for our final
set of experiments where we compare ILS with the state of the art,
we keep two variants ILS-C1(0.75) and ILS-C2 with π ¼ 0:10.

Karapetyan and Punnen [11] developed 25 heuristic proce-
dures, grouped in 3 categories: Fast heuristics, Portions-based &
MultiStart heuristics y Row Merge heuristics. We have chosen the
best procedure in each category, namely, Vex

1 ðRÞ, MðVex
1 Þ, and Rm

m=3.
Table 5 shows the results of applying these procedures to the 50
instances in the medium and large sets.

We applied Friedman's test to the raw data obtained in the
previous experiment. This test ranks each method for each
instance in the data set. That is, for each instance, the method
that performs the best is assigned the number 1 ranking followed
by the second best and so on. Then, an average ranking is

Table 1
Summary of results for B&B and Cplex on 35 small instances.

Metric B&B Cplex

LB 14,483.94 14,184.63
UB 23,966.80 17,297.45
GAP 0.79 0.28
CPU seconds 17.50 10.89
No. of optima 21 17

Table 2
Performance measures for construction procedures applied to medium instances.

Method Avg. obj. Dev. (%) No. best CPU seconds

C1(0.25) 1093,578.04 32.32 4 6.35
C1(0. 50) 1315,404.08 11.36 13 5.87
C1(0.75) 1277,685.32 6.98 17 5.36
C2 531,586.96 18.29 20 0.01

Table 3
Summary of results for several IDS parameter values.

β maxIter Avg. obj. Dev. (%) No. best CPU seconds

0.25 10 1307,970.12 8.57 5 0.29
20 1309,651.76 8.41 14 0.57
30 1310,071.60 8.39 15 0.75

0.50 10 957,874.64 11.77 3 0.92
20 960,189.76 11.49 5 1.81
30 960,462.16 11.45 5 2.40

0.75 10 1505,916.48 3.49 4 1.81
20 1506,109.52 3.46 4 2.85
30 1507,039.32 3.34 5 4.85

Table 4
Summary of results for ILS with two different starting solutions.

Construction π Avg. obj. Dev. (%) No. best CPU seconds

C1(0.75) 0.10 1753,657.20 0.72 10 47.01
0.20 1745,306.32 0.71 3 50.43
0.30 1712,148.16 1.34 0 59.60
0.40 1642,497.24 2.66 2 67.95

C2 0.10 1757,667.40 0.27 4 40.75
0.20 1744,390.40 0.66 9 44.56
0.30 1697,604.08 1.62 2 55.30
0.40 1669,465.88 2.20 1 62.61

Table 5
Comparison of two ILS variants with the state-of-the-art.

Method Avg. obj. Dev. (%) No. best CPU seconds

Vex
1 ðRÞ 13,369,203.60 3.28 0 1.71

MðVex
1 Þ 13,873,178.39 1.96 1 327.09

Rm
m=3 14,420,402.57 0.65 2 327.09

ILS-C1(0.75) 13,650,410.42 1.29 7 653.71
ILS-C2 14,337,611.18 0.60 13 160.00
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calculated for each method. A small p-value associated with this
test indicates that the averages are indeed significantly different.
We obtained a p-value of 0.000 for the data that we used to
produce Table 5. The ranking is shown in Table 6.

We apply the sign test to compare the ILS variants with the
three best previously proposed procedures. We use a p-value of
0.05 to detect significant statistical difference in this test. Table 7
summarizes the results of this test, where Rþ indicates the
number of times that the ILS variant produced a better outcome
than the procedure being compared, R� represents the number of
times when the benchmark procedure was better than the ILS
variant, and “Difference” indicates whether there is a positive
significant difference (þ), a negative significant difference (�) or
no significant difference (�). A positive significant difference
means that results obtained with the ILS variant are significantly
better than the benchmark procedure. The opposite is true for
negative significant differences.

The results of the sign test are such that in all but one case
there is a significant positive difference in favor of the ILS variants.
Although ILS-C1(0.75) obtains better results than Rm

m=3 in 32 out of
50 instances, the associated p-value for that test is larger than 0.05
and therefore the difference is not considered statistically signifi-
cant. One more instance would have made the difference, as it did
in the case of ILS-C2 vs. Rm

m=3:

In our final experiment, we compare our method ILS-C2 with
the best heuristic in Glover et al. [9] called Hybrid. In particular,
this method combines a tabu search algorithm with a very-large
scale neighborhood search. We thank Professors Punnen and Ye
for providing us with their executable code to perform a fair
comparison between our algorithm and Hybrid. Table 8 shows the
results of applying both procedures to the 50 instances in the
medium and large sets. Both algorithms are executed for 1000 s.

Results in Table 8 clearly show that both methods obtain high
quality solutions; however, it is difficult to disclose which one is
the best. On the one hand, our method exhibits better perfor-
mance when considering the average deviation. In particular,
ILS-C2 achieves a remarkable 0.26% while the Hybrid method
obtains 0.43%. On the other hand, Hybrid matches a significant
larger number of best solutions than ILS-C2 (34 vs. 22). In order to
determine the best procedure, we additionally conduct a sign test
to evaluate whether a procedure outperforms the other or not.
As it is customary, we consider a probability threshold of 0.05 to
detect significant statistical differences in this test. The associated
p-value of 0.10 (considerably larger than 0.05), indicates that
there are not significant differences between both procedures.
Therefore, it is not possible to determine the superiority of one
method over the other one.

5. Conclusions

We have used the BQP as the context to explore some ideas in
both exact and heuristic search. Within the framework of B&B, we
were able to determine that fairly straightforward bounds coupled
with a mixed exploration strategy was sufficient to find optimal
solutions to problem instances for which these solutions were not
available. Heuristically, we select the Iterated Local Search frame-
work to test several configurations resulting from combining
construction and neighborhood search procedures. The resulting
procedure creates new benchmarks and establishes a new state-
of-the-art for BQP. Our experiments show that a carefully balance
neighborhood search that is allowed to move beyond the first local
optimal point is a strategy that is effective regardless of the initial
solution. Our overall goal for this project was to combine search
elements that have been identified as the core contributors to
well-known methods. For instance, the semi-greedy constructions
are at the core of GRASP [6] iterations while diversification-
intensification strategies based on memory information are the
essence of tabu search. Our approach – of identifying and
combining key search components – is in sharp contrast with
the idea of creating procedures by forcing some sort of analogy to
biological of physical systems, something that has sadly become a
popular trend.
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