TOP
https://doi.org/10.1007/511750-025-00695-1

ORIGINAL PAPER

®

Check for
updates

Heuristics for the weighted total domination problem

Alejandra Casado'(® - Jests Sanchez-Oro'® - Anna Martinez-Gavara?

Received: 7 July 2024 / Accepted: 13 January 2025
© The Author(s) 2025

Abstract

The weighted total domination problem (WTDP) belongs to the family of dominat-
ing set problems. Given an edge- and vertex- weighted graph, the WTDP consists in
selecting a total dominating set D, such that the sum of vertices and edges weights of
the subgraph induced by D plus, for each vertex not in D, the minimum weight of its
edge to a vertex in D is minimized. A total dominating set D is a subset of the graph’s
vertices, such that every vertex, including those in D, is at least adjacent to one vertex
in D. This problem arises in many real-life applications closely related to covering
and independent set problems; however, it remains computationally challenging due
to its N"P-hardness. This work presents a variable neighborhood search (VNS) pro-
cedure to tackle the WTDP, and investigates the advantages and disadvantages of a
multi-start strategy within VNS methodology. In addition, we develop a biased greedy
randomized adaptive search procedure (Biased GRASP) that keeps adding elements
once a feasible solution is found to produce high-quality initial solutions. We perform
extensive numerical analysis to look into the influences of the algorithmic components
and to disclose the contribution of the elements and strategies of our method. Finally,
the empirical analysis shows that our proposal outperforms the state-of-art results, and
the statistical analysis confirms the superiority of our proposal to find the best total
dominating sets.

Keywords Weighted total domination problem - Graph domination - Biased grasp -
Variable neighborhood search - Metaheuristics

BJ Anna Martinez-Gavara
gavara@uv.es
https://www.uv.es/gavara/

Alejandra Casado
alejandra.casado @urjc.es
https://alejandracasado.github.io/

Jesus Sanchez-Oro
jesus.sanchezoro@urjc.es
https://jesussanchezoro.github.io/

Department Computer Science and Statistics, Universidad Rey Juan Carlos, C/Tulipan S/N,
28933 Mostoles, Madrid, Spain

Departament d’Estadistica i Investigacié Operativa, Universitat de Valéncia, C/Doctor Moliner, 50,
46100 Burjassot, Valencia, Spain

Published online: 10 February 2025 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-025-00695-1&domain=pdf
http://orcid.org/0000-0003-3417-6859
http://orcid.org/0000-0003-1702-4941
http://orcid.org/0000-0001-9995-010X

A. Casado et al.

Mathematics Subject Classification 68W99 - 90B99

1 Introduction

There are many optimization problems in scientific literature that consist in selecting a
subgraph of a given input graph with a topological relation to the unselected vertices.
Covering, independent, and dominating set problems are representative examples and
constitute a relevant branch within graph theory (Beasley 1987; Beasley and Chu 1996;
Haynes etal. 1998; Caprara et al. 2000; Tutte and Tutte 2001). In particular, domination
in graphs is an important research area in graph optimization. It is difficult to say
when the study of domination in graphs began, but we can say that the publications
of Ore (1962), Berge (1962), and Cockayne and Hedetniemi (1977) are among the
first references. The literature on domination graph theory is vast from both theoretical
and practical perspectives, so we refer the reader to comprehensive surveys and books,
such as Haynes et al. (1998), Henning (2009), Haynes et al. (2021), and Haynes et al.
(2022b) to mention a few.

There are various types of dominating set problems based on the properties being
considered. For instance, concerning the type of connectivity, we can find the indepen-
dent dominating set, the connected dominating set, or the total dominating set (Guha
and Khuller 1998; Goddard and Henning 2013; Cockayne et al. 1980). Neighboring
variants emerge if each node needs to have a neighbor or k-neighbors in the dominating
set (Hwang and Chang 1991; Corcoran and Gagarin 2021). Moreover, if each node has
a limit on the number of neighbors that it has the capacity to dominate, the problem is
then called capacitated dominating set (Li et al. 2018). Weighted variants arise when
the aim is to minimize weight instead of cardinality (Balakrishnan and Ranganathan
2012). These are just some examples of the multiple variants that can be found in the
literature (Haynes et al. 1998; Levin 2020; Haynes et al. 2020). The most relevant
real-life applications such as facility location or social networks are shown in Table 1.

In this research paper, we study the edge- and vertex-weighted version of the total
domination problem proposed by Ma et al. (2019), in which the objective is to find a
total dominating set with a minimum total weight. This problem is called the Weighted
Total Domination Problem (WTDP). This is an extension of the Total Domination
Problem (TDP) introduced by Cockayne et al. (1980). The TDP is an NP-hard (Laskar
etal. 1984) optimization problem that has been widely studied in graph theory (Haynes
et al. 1998, 2002a; Henning 2009). It is easy to see that the WTDP is N'P-hard, since
the TDP is a particular case of WTDP with the edge and vertex weights equal to O
and 1, respectively. Before defining the WTDP in mathematical terms, we introduce
terminology and basic concepts of graph theory.

1.1 Graph theory terminology and basic definitions
Let G = (V, E) be an undirected graph, where V is the set of vertices and E is

the set of edges. Following the same notation as in Haynes et al. (1998), we define
the neighborhood of a vertex v € V, N(v), as the set of vertices adjacent to v, i.e.,

@ Springer

Heuristics for the weighted total domination problem

Table 1 Applications of dominating set and related problems

Context References Description

Chess problems Berge (1962) To find the minimum number of
queens needed to cover or
dominate every square on a chess
board is one of the fundamental
problems in graph theory

School bus routing Sarubbi et al. (2016) Location of the minimum number of
bus stops for transporting children
to and from school

Communication Bai et al. (2020) Construction of virtual backbone in
networks wireless ad hoc networks
Radio stations Haynes et al. (1998) Location of the minimum number of

radio stations, so that messages can
be broadcast to all cities in the

region
Electric power Haynes et al. (2002a) Topology design for a power
network electricity networked system
Monitoring Henning and Jafari Rad (2012) Placement of monitoring devices
systems such as fire alarms or surveillance
cameras
Facility location Corcoran and Gagarin (2021) Location of one or more facilities in

street networks

Social Networks Campan et al. (2015); Wang et al. (2011) ~ Representation of the relationships
between people to ensure a positive
influence on the entire social
network, or in order to
communicate quickly within the
network (e.g., in an emergency
situation)

Nw)={ueV :e=(u,v) € E}. We denote as N[v] := N(v) U {v} the closed
neighborhood of a vertex v. Note that each edge e € E connects two different vertices
u and v from V, equally denoted by ¢ = (u, v) and by e = (v, u). Given a subset
of vertices S, we denote N (S) as the set of neighboring vertices of the set S, i.e.,
N(S) ={v e Nu), Yu € S}, and N[S] = N(S) U S. Furthermore, let E(S) denote
all the edges in E that have both endpoints in S, and let G[S] be the subgraph induced
in G by S. Throughout this paper, we will use vertex and node interchangeably.
Given an undirected graph G, a dominating set (DS) is a subset D of V, where each
vertex in V\ D is adjacent to some vertex from D. Furthermore, a total dominating
set (TDS) of G with no isolated vertex is a subset S C V of the vertices, such that
every vertex is adjacent to a vertex in S, that is, N(S) = V. The existence of a total
dominating set in a graph G requires that all vertices have at least one adjacent vertex,
i.e., there are no isolated vertices. If there is no subset of S that can serve as a total
dominating set of G, except for § itself, then S is considered to be a minimal total
dominating set of G. A total dominating set S differs from a dominating set D in that
its members must have adjacent vertices within S. On the other hand, in an ordinary
dominating set D, its members may either be in the set or have adjacent vertices within

@ Springer

A. Casado et al.

(a) Dominating set {A,E}. (b) Total dominating set {A, B, E}.

Fig. 1 Example of a dominating set and a total dominating set on a graph G

the set. The goal of the total dominating set problem is to find the total dominating set
with minimum cardinality. Figure 1 shows an undirected graph G = (V, E) with 9
vertices and 12 edges. The dominating set represented in Fig. 1a consists of the vertices
with solid background A and E, whereas adding the vertex B a total dominating set is
obtained; see Fig. 1b.

1.2 The weighted total domination problem

Consider an edge- and vertex-weighted graph G = (V, wy, E, wg), where V and
E are the set of vertices and edges, respectively. Let wy : V — R™T be the vertex
weight function that maps all vertices onto the set of positive real numbers. Similarly,
the edge weight function wg : E — R™ assigns a certain weight to each edge e of
G. Specifically, wy (v) and wg (e) are the weights of vertex v € V and edge e € E,
respectively. For simplicity without loss of generality, we will use w instead of wy and
wf whenever there is no ambiguity between them. Then, the weighted total domination
problem (WTDP) consists in finding a total dominating set S in G with minimum total
weight, where the total weight is computed as the following cost function:

JAQ)) :=Za)(u)+ Z w(e) + Z min{w(v,u) :u e Nw)NS}. (1)

ues ecE(S) veV\S

InFig. 2a, we represent a double-weighted graph G by adding weights in the vertices
and edges to the graph of Fig. 1. The label of vertices and their weights are included
inside each node, and the edges weights are indicated besides the edges. The subset
S = {A, B, F, H, I} is the optimal solution of the WTDP of G. In Fig.2b, vertices in
the solution are filled with a solid background. The objective function value is obtained
with the sum of the vertices’ weightsin § (242 + 14 1 + 1), the sum of the edges of

@ Springer

Heuristics for the weighted total domination problem

(a) Original weighted graph. (b) Feasible solution.

Fig.2 Example of a weighted total dominating set on a graph G

the subgraph induced in G by § marked with bold lines (1 + 1 + 1), and the sum of
the minimum edge weight between vertices not in S and vertices in S (1 +2+1+2),
which are marked in bold dashed line. The total cost/weight is 16. Notice that those
edges which are not involved in the objective function evaluation have been made less
visible in the figure.

Most of the applications of the total domination problem or the weighted dom-
inating set problem can be found in the context of the WTDP (Wang et al. 2011,
Henning and Jafari Rad 2012; Zverovich 2021). For instance, the problem of placing
a limited number of devices in a communication network, such that every site in the
system (including the monitoring transmitters themselves) is adjacent to a monitor,
can be modeled by a weighted total domination in graphs. The objective is to ensure
that every site in the network can be directly linked to a site that has a transmitter.
Furthermore, the placement of a device in each location and the rate of flow (transport
service) incur in specific costs. Then, the minimum weight total dominating set prob-
lem aims to identify the smallest-weight dominating set in a double-weighted graph,
without any restrictions on the size of the dominating set, i.e., number of devices. Note
that communication networks usually involve high-operational costs and, therefore,
the optimization problem considered here results significant cost reduction for the
company providing this communication service.

Regarding the example depicted in Fig.2, the graph models a network with six
devices connected with 12 different links. To have a secure network, we need to
locate some transmitters in the network in such a way that every device is directly
connected to a transmitter. The weight of each node represents the cost of deploying a
transmitter in that node and the weight of each link indicates the cost of transmitting
information between the two endpoints of the link. Then, the solution depicted in
Fig.2b represents a network where the traffic flow is guaranteed minimizing the total
cost of both deploying the transmitters and communicating them with the devices.

@ Springer

A. Casado et al.

1.3 Literature review

As far as we know, there are only two research papers that deal with the WTDP.
In 2019, Ma et al. (2019) proposed the WTDP, which is a combination of the TDP
and the minimum weighted dominating set problem, and verify its computational
complexity. Furthermore, the authors proposed three integer linear programming (ILP)
formulations to solve it using an optimization solver like CPLEX. The benchmark set
consists of 9 random graphs generated by the Erdos—Rényi model with different sizes,
|V| = 20, 50, 100 (three instances per size). The three ILP models are able to find
the optimal solution for instances with 20 and 50 vertices within a time limit of 1800
seconds; however, in the same time limit, none of the three models is able to solve the
instances with 100 vertices.

In 2021, Alvarez-Miranda and Sinnl (2021) proposed two new Mixed-Integer Pro-
gramming (MIP) models for the problem including valid inequalities. Moreover, the
authors developed a greedy randomized adaptive search procedure (GRASP) and a
genetic algorithm (GA) to solve up to 125 nodes. The authors generated 180 instances
using the Erdos—Rényi model as in Ma et al. (2019) and considering the following

number of vertices |V| = 20, 50, 75, 100, 125. An extensive computational experi-
ment revealed that both MIP models are able to find almost all the optimal solutions
of instances with |V| = 100 vertices within a time limit of 1800s, and some of the

instances with | V| = 125. Finally, their GRASP and GA are able to find some of the
optimal solutions within a short runtime.

These two previous research papers greatly contributed to the development of linear
programming models that are able to compute optimal solutions in a reasonable time
frame for small size instances. However, they require a significant amount of time
in medium-size instances (up to 125) as it is expected due to the A/P-hardness of
the WTDP. Moreover, the GRASP and GA methods proposed in the previous paper
have difficulties in consistently producing the best solutions, and have not been tested
in large-size instances. Therefore, there is a need for a strategy to overcome these
limitations.

1.4 Contribution and outline

Literature review shows that WTDP is a computationally challenging problem that
has been mainly studied from an exact perspective. The practical significance of this
problem and its applicability to large networks make the use of heuristics specially
suited for it. Our main contributions are summarized as follows:

(i) We propose a metaheuristic procedure based on VNS methodology to obtain
high-quality solutions for large-size instances in a reasonable CPU time frame.
(i) We study different strategies for the construction of high-quality initial solu-
tions. We propose two heuristic algorithms with different greedy functions, and
a biased-grasp construction (BGC) algorithm. In the BGC algorithm, the prob-
ability of selecting an element is biased toward those that not only have high
quality but also contribute to the diversity of the solution. In addition, two ver-
sions are considered for each constructive method, the basic (that stops when a

@ Springer

Heuristics for the weighted total domination problem

feasible solution is found) and the extended design, which keeps adding elements
to the solution.

(iii) We study efficient search strategies to reduce complexity and save computational
time in the improvement phase of our proposal. We also study the comparison
between a basic VNS design with a multi-start one.

(iv) We perform with statistical tests numerical experiments that find the best strate-
gies and validate our proposals.

The following sections of this paper are organized as follows: Sect.2 provides a
detailed description of our metaheuristics for the WTDP. Section 3 presents computa-
tional experiments that first, Sect.3.1 reveals the most effective strategies, and then,
Sect.3.2 shows the final results of our experimental study. The paper concludes in
Sect. 4.

2 Algorithmic approach

Asmentionedin Sect. 1.2, the WTDP is an NP-hard problem, which makes exact algo-
rithms not suitable when dealing with large and complex instances. In this research, a
metaheuristic based on Variable Neighborhood Search (VNS) is proposed Brimberg
et al. (2023). VNS requires starting the search from an initial solution, which can be
generated either at random or with a more elaborate procedure. The latter is usually
considered in the literature (Casado et al. 2023b) with the aim of providing VNS with
a promising starting point, thus reducing the computational effort required to reach
high-quality solutions. To that end, we propose three constructive procedures, where
two of them are totally greedy methods, while the third method is based on the Greedy
Randomized Adaptive Search Procedure (GRASP) framework. In particular, it consid-
ers the Biased GRASP version, which assigns a certain probability to each candidate
element. The constructive methods will be thoroughly described in Sect.2.1.

The constructed solutions can be locally improved, since they are not necessarily a
local optimum with respect to any neighborhood. A local search method is described
in Sect.2.2 with the aim of reaching a local optimum with respect to the initially
generated solution.

Finally, Sect.2.3 presents the VNS algorithm which is designed for escaping from
local optima by perturbing the solutions with a shake procedure. In this research, two
different shake approaches are presented to evaluate the impact of diversification and
intensification in the VNS framework.

2.1 Solution generation

This section is devoted to present three different constructive approaches to generating
high-quality initial solutions for the WTDP. The first two approaches are purely greedy
completely focused on quality, while the third approach adds diversity considering the
inclusion of randomization to generate better solutions.

The three approaches follow the classical greedy scheme in which the procedure
starts from an empty solution and iteratively adds elements until it becomes feasible.

@ Springer

A. Casado et al.

(a) Original graph. (b) S, = {B,D} (c) S, = {A,B,C}

Fig.3 Example of a graph with four nodes and two possible solutions for the WTDP

However, regarding the WTDP constraints, it is important to remark that even when
a solution is feasible, it is possible to add new elements and continue improving the
incumbent solution. Analyzing Eq. (1) of the objective function, it can be divided
into three different components: the sum of the weights of the selected nodes, the
sum of the edge weights between every pair of selected nodes, and the sum of edge
weights between a non-selected node and its adjacent selected node with the smallest
edge weight. Including new nodes will increase the value of the two first components,
but it may decrease the value of the third one. Therefore, if the decrease of the third
component is, in absolute value, larger than the sum of the increase in the two first
ones, the objective function will be improved. An example of this behavior can be
seen in Fig. 3.

Figure 3a shows the input graph with 4 nodes. The capital letter and the number
inside each node indicate its label and weight, respectively, and the number close to
each edge denotes the weight of the edge. Solution S| = {B, D}, depicted in Fig. 3b, is
conformed with two nodes, and the objective function value is evaluated as f(S;) =
16 4+ 9 + 11 = 36. If we now analyze solution S = {A, B, C}, presented in Fig.3c,
the result is f(S2) = 6 + 13 4+ 3 = 22. Therefore, solution $; is better than S;, even
with an additional node in it.

Following this reasoning, a second variant of each constructive method is consid-
ered. In this variant, the method continues adding new elements to the solution until all
the elements have been included in it. This strategy returns the best feasible solution
found so far during the construction process. The main steps of the three constructive
methods are described below.

Objective function greedy constructive

The first proposal is a greedy algorithm that selects a node at each iteration based on its
objective function value. We refer to this approach as the Objective Function Greedy
Constructive Method (OGC). The general scheme is presented in Algorithm 1.

The method starts by creating the solution, S, to which nodes will be iteratively
added (step 1). Additionally, solution S}, is created (step 2). This solution is intended to
maintain the best solution found, since S becomes feasible until the stopping criterion
of the greedy procedure is met. Then, the set of unselected nodes U is initialized with
all the nodes in the graph (step 3). The method iteratively selects a node to be included
in the solution (steps 4—11) until reaching a stopping criterion.

@ Springer

Heuristics for the weighted total domination problem

Algorithm 1 Greedy constructive(G = (V, E))
1: S« 0

2:Sp <0

3:U <V

4: while U # ¢ and f(Sp) > ZeeE(S) o)+ Y scs@(s) do

5: ¢ < argmin, g gocc (1)

6: S <« SU{c}

7: U < U\{c}

8: if f(S) < f(Sp) and N(S) = V then
9: Sp < S

10: endif

11: end while
12: return Sj,

In the context of WTDP, there are two main reasons to stop adding more nodes to a
partial solution under construction (step 4). The first one is the simplest: there are no
more candidate to add, i.e., all the nodes have already been included in the incumbent
solution. The second one tries to reduce the computational effort by stopping the search
when it is impossible to add a node without resulting in a solution of worse quality than
the best solution found so far. In particular, if the sum of the weights of the selected
nodes plus the sum of the internal edge weights is larger than or equal to the objective
function value of the best solution found so far, then selecting any unselected node to
be included in the incumbent solution will result in a solution with worse quality than
Sp.

In each iteration, the node with the best value of a certain greedy criterion is selected
(step 5). In this constructive method, the greedy criterion is directly the objective
function value of the incumbent solution if the candidate node were included. More
formally, gogc (1) = f(SU{u}). Once a node is selected, it is included in the solution
under construction (step 6) and removed from the unselected nodes (step 7). At this
point, it is necessary to check if solution S is feasible and better than the best solution
found so far S, (step 8). If so, the best solution found is updated (step 9).

Once the algorithm reaches the stopping criterion, it returns the best solution found
during the search S, (step 12).

Ratio-based greedy constructive

The second constructive procedure, named Ratio-based Greedy Constructive (RGC),
follows the same scheme as OGC but vary the greedy function used in the selection of
the next candidate. The main drawback of OGC is that it only evaluates the objective
function value if the considered candidate is included in the solution. However, it does
not necessarily reflect the actual contribution of the node to the objective function
value. This is mainly because the external edges involved in the solution evaluation
undergo through large variations when adding new nodes, so the selection of the next
node in the next iteration will eventually result in a completely different selection of
external edges, thus affecting to the objective function value. For instance, regarding
solution S depicted in Fig. 3b, the external edge (B, C) with weight w(B, C) = 10 is
considered. However, if the node A were included in the solution, then node C would

@ Springer

A. Casado et al.

be connected to the solution by the external edge (2, C), with weight w (&, C) = 2,
thus replacing the external edge (B, C).

With the aim of overcoming this disadvantage, we propose to calculate a ratio
between the node and edge weights for each candidate to analyze the relevance of
including it in the solution. Notice that, as in OGC, the method will continue adding
nodes until all the candidates are included in the solution. Therefore, there are two dif-
ferent situations to be considered during construction: unfeasible and feasible solution.
The former refers to a solution which requires from additional nodes to be feasible,
while the latter refers to a solution which is already feasible, but there are still more
candidates that can be added. In short, given S the incumbent solution in one iteration
of the construction algorithm, S is an unfeasible solution if N(S) # V, and it is fea-
sible, otherwise. Then, the greedy function grgc(u) is defined differently depending
on the situation.

Given anode u € U = V\S for the first situation, i.e., S is an unfeasible solution,
the ratio evaluates the sum of the weights of the nodes that will be dominated if u were
included in the solution, divided by the weight of u plus the sum of the weights of the
new internal edges if « is included in the solution. More formally

ZveN(u)mNC(S)mU w(v)
@) + 3 pen@yns @, v)’

@

grec () =

where N°(S) represents the complement of the set of nodes adjacent to the solution
S,i.e., N°(S) = VAN(S). Therefore, N (u) NN(S)NU is the set of unassigned nodes,
adjacent to node u, and not dominated by the solution S. Notice that, in this ratio, the
weights of the external edges are ignored, since their evaluation is computationally
demanding and, additionally, the selection of future nodes will drastically modify the
final external edges, as it was aforementioned.

The second situation occurs when the incumbent solution is already feasible. In
that situation, if we use the same ratio, the numerator of the division is always equal
to zero, since the inclusion of a node in a feasible solution will never dominate new
nodes. Therefore, it is necessary to propose a modification of the ratio for feasible
solutions. In this case, the modification maintains the weight of internal edges in the
denominator. Then, the numerator is modified by including the sum over non-selected
nodes adjacent to the candidate node, the weight of minimum edge weight to a selected
node. In mathematical terms

ZveN(u)ﬂSC w (v, S)
W)+ en) @ W, v)’

locu) = 3)

where w (v, S) := min{w (v, s) : s € N(v) N S}.
In both cases, the larger the value, the better the candidate, so step 5 in Algorithm 1
is replaced by ¢ <— arg max,,.;; grac (#). Then, the greedy function grec (1) takes the

value of gi. (1) when the incumbent solution is not feasible, and gch (u), otherwise.

@ Springer

Heuristics for the weighted total domination problem

Biased GRASP constructive

The two previous greedy algorithms lacks of diversity in the construction, since they
select the next candidate following a totally greedy criterion. In this third construc-
tive procedure, diversity becomes more relevant by considering randomization in the
construction phase.

One of the most popular metaheuristics that combines randomization and greed-
iness is the Greedy Randomized Adaptive Search (GRASP) methodology (Feo and
Resende 1989). In the standard implementation of the GRASP construction phase, the
next element to be introduced in the solution is chosen at random from the elements
in the restricted candidate list. However, instead of the random function other prob-
ability distributions can be used to incorporate bias or preference information in the
construction of the initial solutions (Resende and Ribeiro 2016). The bias information
is used during the solution construction phase, with the aim to guide the construction
process toward solutions that are likely to be of higher quality. As it is pointed out in
Resende and Ribeiro (2016), these bias functions can be evaluated for all element in
the candidate list (CL), or alternatively, their evaluation can be limited to the elements
that belong to a restricted candidate list (RCL). There is a vast literature in heuristic
methods that uses bias functions in the construction phase, so we refer interested read-
ers to the following relevant research papers on this topic (Bresina 1996; Juan et al.
2013; Grasas et al. 2017; Buxey 1979; Faulin and Juan 2008). Specifically, we fol-
low the biased randomization GRASP constructive framework formulated in Ferone
et al. (2019), using an empirical non-uniform probability distribution instead of other
well-known skewed (non-symmetric) distributions (e.g., geometric distribution).

Both the standard GRASP method and the bias variants are memoryless techniques.
Generally, using bias functions, a weight is assigned to each candidate element based
on a quality criterion (e.g., ranking, the objective function value) that does not incor-
porate information from previous iterations. There may be benefits to preserving such
information to develop construction methods that make guided selection within the
solution space. We propose adding a frequency memory function that modifies the
evaluations of the greedy function to take into account previously recorded informa-
tion (Resende and Ribeiro 2016; Fleurent and Glover 1999; Napoletano et al. 2019).
To do so, each candidate vertex u has associated a ranking function value ggcg(u)
computed as a combination of quality and diversity as follows:

geecc) =a-D+(1—a)- 0, “)

where D and Q are metrics of diversity and quality, respectively, while @ € [0, 1] is
an input parameter of the algorithm that balances both metrics. On the one hand, the
quality metric used is calculated as the greedy function grgc considered in RGC. On
the other hand, the diversity metric proposed is computed as the number of solutions
in which the node has not been included. This diversity metric tries to prioritize the
inclusion of nodes which have not appeared in a large number of solutions, which will
eventually lead the method to explore a wider region of the search space. Then, the

@ Springer

A. Casado et al.

0.03
0.17
1
0.04 H 0.05
0.03
G
0.10 D
. 0.10
E
0.13
0.15

(a) (b)

Fig.4 Example of roulette selection considering 10 nodes

selection probability of a vertex u is set as

grce(u)
Y vecr 8ecc(v)

The general framework of our biased GRASP constructive (BGC) method is simi-
lar to the RGC method but modifying the selection criterion. In particular, instead of
selecting the most promising node according to the greedy function value, in BGC, the
next candidate is selected from the CL according to the probability distribution. Our
proposal differs from the classical framework in that it does not use a restrictive can-
didate list (RCL) to construct a feasible solution. Instead, our method selects the next
vertex to be included in the current solution using a discrete non-uniform distribution
based on the probabilities specified in Eq. (5) for all elements in the candidate list.
Furthermore, as in the previous greedy constructive methods, BGC continues adding
nodes until reaching the stopping criterion described in OGC.

From a computational perspective, the next candidate is selected using the roulette
selection method, which effectively reduces computational time. In particular, a prob-
ability of being selected is assigned to each node, which is directly evaluated as the
greedy function gggc normalized in the range [0, 1]. Then, a random number in the
range [0, 1] is generated. The method then traverses the candidate list accumulating the
probability of each node. The selected node will be the first node whose accumulated
probability exceeds the random number generated. Notice that, although this selection
includes a random selection, the most promising nodes have larger probabilities and,
so0, they are more likely to be selected than the least promising nodes. Let us illustrate
this method with a graphical example depicted in Fig.4, considering a social network
with 10 nodes.

Figure 4a shows an example of the probability assigned to each node. As it can be
seen in the figure, the nodes with larger probability are more likely to be selected than
the ones with small probability. Then, a random number in the range [0, 1] is obtained,

P(u) = (&)

@ Springer

Heuristics for the weighted total domination problem

being 0.51 in this particular example. Figure4b then selects the first node whose
accumulated probability is larger than or equal to 0.5 1. In particular, the selected node is
E, since the accumulated probability is evaluated as 0.20+0.2540.284-0.384-0.15 =
0.53.

The inclusion of randomness in this procedure increases diversity, so it is interesting
to generate more than a single solution to assure that a wide portion of the search space
is explored. As it is customary in GRASP (Campos et al. 2014; Ferone et al. 2019),
we perform 100 independent constructions.

2.2 Improvement method

The solution generated by any of the previously described constructive methods is not
necessarily a local optimum. Therefore, it is interesting to apply a local improvement
method to each generated solution.

The local search method proposed in this research is based on the exchange move
operator, which consists of replacing one or more nodes from the solution with another
nodes which are not included in it yet. In the particular case of the WTDP, the single
exchange operator is considered, which removes a single node from the solution S,
replacing it with another one not belonging to the solution (U = V'\ §). More formally,

Exchange(S, s, u) < (S\{s}) U {u}

withs € Sandu € U.

Having defined the move operator, it is now required to indicate the neighborhood
that the local improvement method will explore. In particular, the neighborhood is
conformed with all the solutions that can be reached by performing a single exchange
move. In mathematical terms,

N.(S) = {S’ < Exchange(S,s,u) Vs € S AVu € U}

Finally, it is necessary to define the strategy followed to traverse the proposed
neighborhood. There are two main strategies to explore a neighborhood: best and first
improvement. In both of them, the stopping criterion is usually the same: the method
stops when no improvement is found.

In a best improvement strategy, the neighborhood is completely explored in each
iteration, continuing the search with the best solution found in the neighborhood. This
strategy is usually rather computationally demanding, since it requires to evaluate the
complete neighborhood in each iteration of the local search to select the best neighbor
solution.

On the contrary, first improvement strategy performs the first movement that leads
to a better solution, even if that solution is not the best one of the neighborhood.
This behavior allows the search to reduce the computational effort by avoiding the
evaluation of the complete neighborhood.

Each strategy has different advantages and drawbacks. In the case of best improve-
ment, although it always selects the best solution in the neighborhood, the movement

@ Springer

A. Casado et al.

may quickly fall in a basin of attraction, which will eventually result in the stagnation
in a local optimum. First improvement, in turn, does not select the best solution in the
neighborhood but the first achieving and improve, thus eventually ignoring solutions
that can be better than the selected one. However, if this selection is performed with
certain randomness, the diversity of the search will increase, reducing the opportuni-
ties to fall in a basin of attraction. Additionally, each iteration of first improvement is
usually faster than best improvement, since it does not require to evaluate the complete
neighborhood.

The local search proposed for the WTDP follows the first improvement approach to
reduce the computational effort, since its effectiveness compared with best improve-
ment has been shown in several recent works (Hansen and Mladenovié¢ 2006; Casado
et al. 2023a). In the context of first improvement, the order in which the neighborhood
is explored may affect to the obtained solutions. The proposed local search follows
a random exploration to favor diversity. Algorithm 2 presents the pseudocode of the
local search method.

Algorithm 2 Local search(S)

1: improve <— TRUE
2: while improve do

3: OF < f(S)

4 for s € S do

5 for u € U do

6: S <« Exchange(S, s, u)
7 if f(S) < OF and N(S) = V then
8: improve <— TRUE

9: go to step 2

10: end if

11: S <« Exchange(S, u, s)
12: end for

13: end for

14: improve < FALSE
15: end while

The method receives as input parameter the solution S to be locally improve. Notice
that this solution will be modified during the search and, therefore, the local search
method does not return any value. The local search iterates, while an improvement is
found (steps 2—15). In each iteration, the objective function value of the incumbent
solution is stored (step 3). Then, the exploration of the neighborhood starts by randomly
traversing the neighborhood (steps 4—13). For each pair of selected and unselected
nodes s and u, respectively, the exchange move is performed (step 6). If the resulting
solution is feasible and its objective function value is better than the previously stored
value (step 7), then an improvement has been found (step 8), so the search is restarted
(step 9). Otherwise, it is necessary to undo the exchange move (step 11). If all the
neighborhood has been explored, then no improvement is found (step 14), indicating
that the search must finish.

It is important to remark that this local search, hereinafter denoted as Exhaustive
Local Search (ELS), requires to perform the movement, evaluate its quality and, in

@ Springer

Heuristics for the weighted total domination problem

case of a non-improvement move, undo the exchange movement, resulting in a very
computationally demanding method. To reduce its complexity, we propose two local
search variants which include different optimizations.

The first variant, named Predictive Local Search (PLS), tries to reduce the com-
plexity by computing the objective function value obtained with the exchange move
but without actually performing the exchange move. If the prediction indicates that
the resulting solution would be feasible and better than the incumbent one, then the
exchange move is effectively performed. The aim of this optimization is to reduce the
number of exchange move performed, thus reducing the total computing time required
by the local search method.

The second optimization, named Reduced Local Search (RLS), is designed to
explore only those solutions that are feasible when performing an exchange move.
In particular, when selecting a node s for the exchange move, not all the nodes u € U
can be considered, since only the inclusion of some of them would result in a feasi-
ble solution. In particular, all the nodes adjacent to s which are dominated only by s
must be connected to u to guarantee feasibility. Specifically, this optimization result
in skipping the execution of steps 611 in those nodes that do not satisfy this con-
straint, thus avoiding the most computationally demanding part of the local search
for a considerably large percentage of nodes. The exact reduction in computing time
will be later discussed in Sect.3. Notice that this optimization also includes the one
presented in PLS; specifically, the objective function is evaluated without performing
the exchange move.

2.3 Variable neighborhood search

Variable Neighborhood Search (VNS) is a metaheuristic framework which leverages
systematic changes of neighborhood to escape from local optima. VNS was originally
defined in Mladenovi¢ and Hansen (1997) and it is in constant evolution, leading to a
wide variety of strategies such as Basic VNS, Reduced VNS, Variable Neighborhood
Descent, or Variable Formulation Search, among others. We refer the reader to Hansen
et al. (2019) for a recent survey on VNS methodology and applications.

The main differences among VNS variants rely on how the considered neighbor-
hoods are explored: from a totally random exploration in the case of Reduced VNS to
a completely deterministic search in Variable Neighborhood Descent. In this work, a
Jump VNS (JVNS) is proposed, which combines the deterministic search of the local
search method with the random exploration of the shake procedure, trying to bal-
ance intensification and diversification. Jump VNS (JVNS) was originally presented
in Fleszar and Hindi (2004) as a variant of Basic VNS (BVNS). The main difference
between JVNS and BVNS lies on the neighborhood change. Classical BVNS sequen-
tially explores the neighborhoods from k£ = 1 to kp,x, increasing the neighbor in each
step by one unit. However, in the context of WTDP, such a small neighborhood change
will result in a rather similar solution, thus leading to the same local optimum. With
the aim of increase efficiency by avoiding the exploration of the same solutions, JVNS
modifies the size of the neighborhood change with an additional input parameter kep.

@ Springer

A. Casado et al.

Algorithm 3 shows the pseudocode of the proposed Jump VNS procedure (JVNS) for
the WTDP.

Algorithm 3 JVNS(S, kmax, Kstep, A)

1: Sp < S
2:foriel...Ado
30 k< ksep

4 while k£ < kpax do

5 S" < Shake(Sp, k)
6: S" <« LocalSearch(S")
7 if f(S”) < f(Sp) then
8 Sp < 8"

9: k « kstgp

10: else

11: k <k + kgep

12: end if

13: end while

14: end for

15: return S

The method receives four input parameters: the initial solution, S; the maximum
neighborhood to be explored, kmax; the step performed when changing the neighbor-
hood, kgp; and the number of VNS iterations executed, A. The values for all these
parameters are determined in Sect. 3. The procedure starts initializing the best solution
found with the initial solution S (step 1). Then, the algorithm performs a fixed number
of complete JVNS iterations (step 2—14). Each iteration of JVNS starts initializing
the neighborhood £ to be explored. Then, the method starts the neighborhoods explo-
ration until reaching the maximum considered neighborhood kmax (steps 4—13). The
exploration of a given neighborhood starts with the Shake procedure, which is respon-
sible of the diversification in the VNS methodology (step 5). In this research, two
different shake procedures are proposed, which are detailedly described in Sect.?2.3.
The method generates a solution S’ in the current neighborhood & and, since S’ is not
necessarily a local optimum with respect to any neighborhood, the local search method
described in Sect. 2.2 is applied to further improved S, resulting in S” (step 6). Then,
the neighborhood change method is applied, which decides the next neighborhood
to be explored (steps 7—12). In particular, if the local optimum S” outperforms the
best solution found so far Sp, (step 7), then it is updated (step 8), restarting the search
from the first neighborhood (step 9). Otherwise, the method continues with the next
considered neighborhood (step 11). Once all the iterations are performed, the method
returns the best solution found during the search S, (step 15).

Shake

The Shake procedure proposed in this work follows the classical approach in which
random modifications are performed to the incumbent solution to generate a random
neighbor solution. This modifications are usually performed by a move operator, which
in this case is defined as removing k elements from the solution and then add new

@ Springer

Heuristics for the weighted total domination problem

elements until reaching the same stopping criterion as the one defined in Sect.2.1,
resulting in the best solution explored among the feasible ones. The elements removed
are selected completely at random, and so the newly added nodes.

Multi-start JVNS

In VNS (and therefore, JVNS), the shake procedure introduces random changes to the
current solution, allowing the algorithm to escape local optima and explore different
regions of the solution space. The multi-start version of VNS extends this concept
by incorporating multiple initial solutions. Instead of starting with a single solution,
several diverse solutions are generated and treated as separate initial solutions, and
the VNS procedure is run independently. The motivation behind multi-start VNS is to
overcome the issue of being trapped in local optima by exploring various parts of the
search space.

It is worth noting that a VNS algorithm with an improved perturbation phase can
potentially achieve similar exploration capabilities as multi-start VNS. By designing
a more effective perturbation strategy, the VNS algorithm can enhance its ability to
diversify the search and discover high-quality solutions. For example, the recent study
of Casado et al. (2023b) has proposed an intensified shake strategy with successful
results.

Nonetheless, the choice between the standard VNS method and the multi-start
approach remains a controversial subject. The effectiveness of each algorithm depends
on various factors, including the specific problem, the instances being considered, and
even the quality of the initial solutions generated. As a result, the selection between
VNS and multi-start VNS continues to be debated upon within the optimization
community. In the upcoming Sect.3, we aim to shed light on this debate through
experimental analysis.

3 Computational experiments

This section has two main objectives: select the best configuration of the proposed
algorithm and then compare it with the best algorithm found in the literature for the
WTDP. All the experiments have been performed in an AMD Ryzen 9 5950x (3.4 GHz)
with 128GB RAM using Java 17 as programming language. The testbed of instances
is divided into two different subsets. On the one hand, there are 180 instances directly
derived from the state of the art for the WTDP, with the number of nodes ranging from
20 to 125. This set of instances is divided into two subsets in the literature, named
as MA (45 instances) and NEW (135 instances). On the other hand, we propose a
new set of 135 more challenging instances, named CSM, with size from 200 to 500
nodes to analyze the limits of the compared algorithms. Both the code of the proposed
algorithms and the instances used are publicly available at https://grafo.etsii.urjc.es/
wtdp.

The experiments are divided into two different stages: preliminary and final exper-
imentation, Sects. 3.1 and 3.2, respectively. The former is intended to select the best
configuration for the proposed algorithms, while the latter is designed to evaluate the

@ Springer

https://grafo.etsii.urjc.es/wtdp
https://grafo.etsii.urjc.es/wtdp

A. Casado et al.

Table2 Comparison of different

values for o parameter in BGC Ave. Time (5) Dev. (%) #Best
0.0 612.84 0.13 0.36 22
0.1 665.28 0.13 7.70 2
0.2 681.24 0.13 10.65 2
0.3 686.68 0.13 12.23 0
0.4 707.16 0.15 15.76 0
0.5 710.08 0.15 16.41 0
0.6 730.76 0.15 19.16 0
0.7 735.04 0.16 19.58 0
0.8 730.60 0.16 20.06 0
0.9 725.24 0.16 19.08 0
RND 677.44 0.15 11.25 0

quality of the proposal when comparing it with the state-of-the-art algorithm for the
WTDP. The following metrics are considered in all the experiments: Avg., the average
objective function value; Time (s), the average computing time required by the algo-
rithm measured in seconds; Dev. (%), the average deviation with respect to the best
solution found in the experiment; and # Best, the number of times that the algorithm
reaches the best solution found in the experiment.

3.1 Preliminary experimentation

This section presents the preliminary experiments performed to select the best configu-
ration for the algorithms proposed in this research. With the aim of avoiding overfitting,
these experiments have been performed over a subset of 25 representative instances
extracted from the original set of 180 instances.

First of all, it is necessary to select the best value for the o parameter for the
Biased GRASP constructive, named as BGC. The values tested are selected from
a = 0.0 to o = 0.9, to evaluate the impact of diversification and intensification in the
construction phase. Additionally, we have included a variant with « = RND, which
randomly selects the value for each construction. This variant has been successfully
tested in traditional GRASP constructive procedures in some recent research Casado
et al. (2022). Table 2 shows the results obtained in this experiment.

As it can be seen in the experiment, when considering the constructive procedure
isolatedly, the quality of the solutions obtained is deteriorated with the increase in the «
value, while maintaining similar computing times. In particular, the best solutions are
found when considering &« = 0.0, with a deviation of 0.36% and 22 best solutions. It is
worth mentioning that increasing the value to o« = 0.1 drastically worsens the quality
of the solutions, obtaining an average deviation of 7.70% and only 2 best solutions. The
results of this experiment suggest that the best option for biased GRASP constructive
is considering that the probability of selecting a node depends on a totally greedy
criterion. Therefore, for the remaining experiments, « = 0.0 is considered.

@ Springer

Heuristics for the weighted total domination problem

Table3 Comparison of the constructive procedure when considering the stopping criterion or the feasibility
constraint

Constructive Avg. Time (s) Dev. (%) #Best
BGC (feasibility constraint) 640.80 0.06 5.09 8
BGC (stopping criterion) 612.84 0.13 1.43 19
Fig.5 Comparison of average 900

L . 800
objective function values (Avg.) 200
obtained by constructive 600
methods executed isolatedly & 500
(blue bars, on the left) and 400

. 300

coupled with a local search 200
method (green bars, on the right) 100

0
RGC+ELS BGC+ELS OGC+ELS

The next experiment is devoted to evaluate the impact of considering the stop-
ping criterion described in Sect. 2.1 when comparing it with stopping the construction
when reaching a feasible solution. To do so, the constructive selected in the previous
experiment is evaluated using the stopping criterion and the feasibility criterion in
Table 3.

As expected, the computing time is slightly larger when considering the stopping
criterion, but it remains negligible. However, when analyzing the quality of the solu-
tions, it can be seen that the constructive method that considers the stopping criterion
is able to reach 19 out of 25 solutions, with a deviation of 1.43%. On the contrary, the
one that stops when reaching a feasible solution achieves a deviation of 5.09% and
only 8 best solutions, being considerably worse. Therefore, we select the constructive
method based on the stopping criterion for the remaining experiments.

The next experiment is designed to analyze the performance of the constructive
methods and then coupling them with a local search. Although the quality of one
of the constructive methods may be better than the other ones when executing them
isolatedly, the best constructive procedure may vary when considering the local search
method. The rationale behind this is that those solutions which are initially worse
but more diverse can eventually lead to better local optimum when applying a local
optimizer. In this experiment, the Exhaustive Local Search (ELS) is considered as
local optimizer for each constructive procedure. Notice that RGC and OGC are totally
greedy procedures, so they only generate a single solution, while the randomization
of BGC allows us to generate 100 independent solutions. Figure5 shows the results
obtained in this experiment. Blue bars (on the left of each algorithm) represent the
results obtained by each constructive method and green bars (on the right) represent
the results when considering the local search method.

Regarding the results provided by the constructive procedures, it can be seen that
both RGC and BGC show similar performance, being RGC slightly better than BGC.
Additionally, OGC seems to be the worst constructive method proposed, which high-
lights the relevance of providing an appropriate greedy function instead of directly
evaluating the objective function value. If we now analyze the impact of the local

@ Springer

A. Casado et al.

25

20

Time (s)

(9]

0 .

PLS ELS RLS

Fig.6 Comparison of the performance of the three proposed local search methods using BGC as constructive
procedure

search in each constructive procedure, it seems that it is not able to perform a relevant
improvement in the OGC. However, with respect to RGC and BGC, the local search
is able to further improve the obtained solutions. Finally, it is worth mentioning that
BGC+ELS provides better quality solutions than RGC+ELS, emerging BGC as the best
constructive procedure. The computing times are not included in the comparison, since
the differences among algorithms are negligible.

In the last experiment, ELS was considered as the improvement procedure, but it
is necessary to evaluate each one of the proposed local search methods: PLS, ELS,
and RLS. This analysis is done by comparing only computing times, since the three
proposed local search methods explore the same neighborhood in the same order, i.e.,
PLS and RLS are designed to increase the efficiency but not the efficacy of ELS.
Figure 6 shows the average computing time required by the proposed local search
when constructing and improving 100 solutions.

The most remarkable aspect of the figure is that PLS requires from more than
twice the computing time required by ELS. This is mainly because the prediction
performed by PLS to select the most promising moves is more time consuming than
performing the move itself and then undo it if it is not an improvement. Therefore, PLS
is discarded for the remaining experiments. If we now analyze RLS, it can be seem that
it requires half of the computing time of ELS, resulting in an more efficient search.
These results indicate that discarding those moves that lead to an unfeasible solution
achieves a considerably improvement with respect to the required computing time. We
then select RLS as the best local search method for the remaining experimentation.

The next experiment is devoted to select the maximum neighborhood to be explored
in JVNS, i.e., the value of kyax parameter. The value of the jump step, kg, is fixed to
0.1, which is 10% of the nodes already in the solution, and the values tested for kmax
are kmax = {0.2, 0.3, 0.4, 0.5}. Larger values are not tested, since it will result in a
large modification of the incumbent solution, which may be equivalent to generate a
completely new solution. Table 4 shows the results obtained in this experiment.

@ Springer

Heuristics for the weighted total domination problem

Table 4 Performance of JVNS

when considering different Kmax Ave. Time (5) Dev. (%) #Best
values for the maximum 02 464.56 19.59 0.22 22
neighborhood kmax
0.3 464.04 30.66 0.16 23
0.4 463.88 32.13 0.02 24
0.5 463.88 46.48 0.02 24
Table 5 Performance of the .
multi-start variant of JVNS Kmax Ave. Time (s) Dev. (%) #Best
when considering different 02 464.08 34.19 031 19
values of kmax
0.3 463.04 4791 0.11 21
0.4 463.04 57.39 0.11 21
0.5 463.20 73.21 0.15 20
Table 6 Comparison of JVNS . -
Algorith Avg. T s Dev. #Best
with the multi-start approach sorrm e ime () ev. (%) °
Multi-start JVNS 463.04 4791 0.12 21
Standard JVNS 463.88 37.32 0.18 23

Before analyzing the results, it is worth mentioning that the initial solution for JVNS
is the best solution found among 100 solutions generated with Biased GRASP (BGC
+ RLS), and then 100 iterations of JVNS are performed, i.e., A = 0.1. As expected,
the computing time increases with the value of kn,x. The quality of the solutions found
stagnates when reaching kpax = 0.4, providing the same results with kpax = 0.5 but
requiring more computing time. For that reason, we select kax = 0.4 as the maximum
neighborhood to be explored.

Having evaluated the results of JVNS, the next experiment evaluates a multi-start
JVNS approach, where a single complete iteration of JVNS is performed for each
solution generated with Biased GRASP. Table 5 shows the results obtained in this
experiment.

In this experiment, the value of kmax is not as relevant as in the previous one,
providing similar results for the different configurations in terms of quality. However,
the computing time drastically increases with the k4« value and, therefore, we select
kmax = 0.3, since it provides a good compromise between quality and computing
time.

Having configured the best variant for JVNS and for the multi-start approach, the
next experiment compares both algorithms. As in the previous experiments, the stan-
dard JVNS performs 100 iterations using as initial solution the best solution found
in 100 iterations of Biased GRASP. On the contrary, the multi-start approach per-
forms a single JVNS iteration for each one of the 100 solutions generated by Biased
GRASP. Table 6 shows the results obtained in this experiment.

The results show that the multi-start approach is not significantly contributing to
the quality of the final solution, providing similar results than the standard JVNS

@ Springer

A. Casado et al.

0.35%
030% *
0.25%
£0.20%
go.ls%
0.10%
0.05% \

0.00% e o e o o
10 20 30 40 50 60 70 80 90 100
A

Fig.7 Profile of the average deviation evolution in steps of 10 iterations for JVNS

Table7 Q)mpanson of Algorithm Avg. Time (s) Dev. (%) #Best

constructive procedure,

constructive procedure couple BGC 612.84 0.13 28.74 0

with local search and complete)

JUNS Biased GRASP 467.00 4.64 0.62 12
JVNS 463.88 24.43 0.00 25

approach. However, it requires considerably more computing time, so we have decided
to maintain the standard JVNS for the remaining experiments.

It is important to analyze the evolution of JVNS with the increase in the number
of iterations, since it may stagnate in a certain value, performing iterations in which
the algorithm will not be able to outperform the quality of the incumbent solution. To
select the best number of JVNS iterations, i.e., the value of parameter A, Fig.7 shows
a profile of the evolution of the average deviation obtained in steps of 10 iterations.

As it can be seen in the figure, the algorithm finds new improvements until reach-
ing 60 iterations, where it is not able to find further improvements. This indicates that
the last 40 iterations are only consuming computing time and, therefore, the maxi-
mum number of iterations can be reduced from 100 to 60. Then, for the remaining
experiments, the value of A is set to 60.

Once the final version of JVNS has been configured, it is important to evaluate the
contribution of each part to the complete algorithm. Table 7 shows the comparison
among the constructive procedure BGC, the constructive procedure coupled with the
local search Biased GRASP and, finally, the complete JVNS algorithm.

Regarding the computing time, the addition of new components to the algorithm
also affects to the computational time, being JVNS the slowest algorithm and BGC the
fastest one. A similar but inverse analysis can be done when considering the quality.
The initial solutions provided by BGC remain at a considerably average deviation
with respect to the best ones found in the experiment, but the inclusion of the local
search drastically reduces the average deviation. However, JVNS is required to reach
the best solutions of the experiment. Notice that, although Biased GRASP has a
small deviation (0.62%), the number of best solutions found is smaller than half of the

@ Springer

Heuristics for the weighted total domination problem

Table 8 Comparison of the

initial solutions of JVNS and Algorithm Ave. Time (s) Dev. (%) #Best
GAL, generated with Biased Biased GRASP 52320 2.89 0.07 123
GRASP and GRASP,

GRASP 53996 2.95 2.69 55

respectively

best solutions found by JVNS. These results highlight that JVNS is a key part of the
proposal.

3.2 Final experimentation

The final set of experiments is devoted to performing a thorough comparison of the
proposed JVNS with the best algorithms found in the state of the art. In particular,
the best method found in the literature for the WTDP is a Genetic Algorithm (GA1)
where the initial population is generated with a traditional GRASP algorithm and each
individual is improved with a local search method Alvarez-Miranda and Sinnl (2021).
In that research, authors also propose an exact approach, but they conclude that GA1
is the best algorithm for the WTDP. Notice that, in this section, the complete set of
instances is used in each experiment. The hardware used in that research is equivalent
or even better than the one considered in this work, resulting in a fair comparison. We
refer the reader to the appendix to see the individual results of each algorithm over
every single instance (Tables 12, 13, 14, 15).

The first experiment is designed to compare the quality of the initial solution in both
JVNS and GA1 approaches. As it was aforementioned, the previous work considers a
GRASP algorithm, while the initial solution for JVNS is generated by the proposed
Biased GRASP method. The results of the previous algorithm have been directly
transcribed from the original manuscript. Table 8 shows the results obtained in this
experiment.

Analyzing the computing time, both algorithms required similar computational
time. In terms of quality, Biased GRASP shows its superiority by reaching 123 out
of 135 instances, with an average deviation of 0.07%. This deviation indicates that,
in those instances in which biased GRASP is not able to reach the best value, it still
remains close to it. It is worth mentioning that the GRASP proposed in the state of
the art also shows a good performance in terms of deviation, but it is not able to reach
more than 55 best solutions. We have performed a non-parametric pairwise Wilcoxon
statistical test to evaluate if there are statistically significant differences between both
results, and the obtained p value smaller than 0.01 confirms this hypothesis.

The best work in the literature proposes four different exact methods for solving
the WTDP, evaluating their performance over the set of MA instances, which are less
challenging than the NEW set for an exact approach. We have tested JVNS over this
set of instances to evaluate how far from the optimal value JVNS is when it is known.
Table 9 shows the results obtained in this experiment.

As it can be derived from the results, the best exact procedure is f2+, which is able
to reach all the optimal values in reasonable computing times when compared with the
other exact approaches. If we analyze the results of JVNS, we can clearly see that the

@ Springer

A. Casado et al.

Table9 Comparison of JVNS

with the exact methods over the Algorithm Ave. Time (s) Dev. (%) #Best
set of MA instances JVNS 95.35 3.48 0.03 44
fl 95.51 449.08 0.11 42
fl+ 95.33 157.28 0.00 45
f2 95.33 151.22 0.00 45
2+ 95.33 51.04 0.00 45

Table 10 Comparison of JVNS and GA1 over the NEW testbed proposed in the original work

Number of nodes Algorithm Avg. Time (s) Dev. (%) #Best
75 JVNS 421.78 443 0.02 43
GAl 423.87 9.91 0.34 39
100 JVNS 525.53 11.14 0.05 42
GAl 526.51 23.13 0.23 36
125 JVNS 611.31 22.83 0.12 39
GAl 611.80 47.76 0.20 37

computing time is an order of magnitude smaller than the best exact method, and two
orders of magnitude smaller than the other exact approaches. Indeed, in only 3's on
average, JVNS is able to reach 44 out of 45 instances with a deviation of 0.03%. This
value indicates that in the only instance in which it is not able to reach the optimal
value, JVNS finds a high-quality local optimum. In this case, the Wilcoxon statistical
test results in a p value of 0.317, indicating that there are not statistically significant
differences between both results, highlighting the performance of JVNS.

The next experiment is devoted to compare JVNS with the best previous heuristic
approach, which is the Genetic Algorithm (GA1) proposed in Alvarez-Miranda and
Sinnl (2021). In this case, the set of more challenging NEW instances is considered,
which was originally proposed by the previous authors with the aim of highlighting
the necessity of a non-exact approach for the WTDP. Table 10 depicts the comparison
between these two algorithms.

The results are divided by the number of nodes of the considered instances to
better analyze the performance of the algorithms. Regarding the computing times,
JVNS is consistently requiring half of the computing time required by GA1. In terms
of quality, JVNS reaches almost all the best solutions in each subset, showing the
smallest deviation with respect to the best solution found, while GA1 also shows a
good performance. The Wilcoxon statistical test results in a p value smaller than 0.01,
confirming the superiority of JVNS.

Since both MA and NEW sets seem to be easily solved by both JVNS and GA1,
mainly due to the small size of the considered instances for a heuristic approach, we
propose a new set of larger and more challenging instances with nodes ranging from
200 to 500, named CSM. With the aim of having a fair comparison, we contacted
the authors for their original source code, but, unfortunately, it was not available.

@ Springer

Heuristics for the weighted total domination problem

Table 11 Comparison of JVNS and GA1 in the set of more challenging instances CSM

Number of nodes Algorithm Avg. Time (s) Dev. (%) #Best
200 JVNS 871.40 100.73 0.00 45
GAl 937.08 962.77 6.72 1
350 JVNS 1332.04 616.34 0.00 45
GAl 1794.06 1824.58 29.79 0
500 JVNS 1776.40 1164.68 0.00 45
GAl 2539.57 1900.48 37.56 0

For that reason, we carefully reimplemented the GA1 algorithm following the detailed
description of the original work. Table 11 shows the results obtained in this comparison.

As it can be seen in the results, JVNS performs better when the instances become
more complex, showing its scalability when comparing it with GA1. It is worth
mentioning the increase in the computing for both approaches, which highlights the
difficulty of solving this new set of instances. In spite of this increase, JVNS is still
requiring, approximately, half of the computing time than GA1. In terms of quality, it
seems that GA1 reaches its limits when solving instances with 200 nodes, since for
larger instances, the average deviation drastically increases and it is not able to reach
any best solution. On the contrary, JVNS emerges as a competitive algorithm for the
WTDP, finding all the best solutions for this new set of challenging instances. Finally,
the p value smaller than 0.01 obtained in the Wilcoxon statistical test indicates that
there are statistically significant differences between JVNS and GA1.

4 Conclusions and future research

In this research paper, we study the A/P-hard Weighted Total Dominating Set Problem
(WTDP), which extends the Total Dominating Set Problem (TDP) by incorporating
weights to the vertices and edges of the graph. This practical problem has applications
in areas, such as facility location, social networks, and communications networks
where the number of required open facilities, users, or devices is often large. To test
our proposed methodology in realistic scenarios, we generated large-size instances.

The merit of our study goes beyond the mere application of a methodology to
a problem, as we delve into deeper analysis and investigation of the methodolo-
gies themselves. As such, the main contributions of this research paper are mainly
methodological. We proposed a metaheuristic procedure based on the Jump Variable
Neighborhood Search (JVNS) methodology to obtain high-quality solutions for large-
size instances within a reasonable CPU time frame. We also studied efficient search
strategies to compare basic JVNS design with a multi-start one.

Additionally, we analyzed different strategies for the construction of high-quality
initial solutions, proposing two heuristic algorithms with different greedy functions
and a biased GRASP construction algorithm. In the latter, two stopping criteria, the
basic design and the extended, were empirically compared to investigate the impact of

@ Springer

A. Casado et al.

both criteria on the constructed solution. Furthermore, three different variants of the
local search procedures based on exchange moves have been studied to obtain a desired
trade-off between solution quality and computation time. Finally, we performed statis-
tical tests and numerical experiments to validate our proposals, which showed that our
proposed methods and strategies outperformed existing state-of-the-art approaches.

To sum up, our research makes significant contributions to the field of metaheuristic
optimization, particularly in the context of the WTDP. Our findings provide a valuable
basis for developing further improvements in this area, with potential applications in
communication and social networks, among others.

As a future work, we propose the investigation of matheuristic approaches to
tackle the WTDP. Matheuristics combine mathematical programming techniques with
heuristic methods, such as metaheuristics, to improve the efficiency and effectiveness
of the optimization process. We believe that the combination of mathematical models
and heuristic search can lead to better solutions for large instances of the WTDP in
a reasonable computational time. This would allow us to find high-quality solutions
that are guaranteed to be near-optimal.

Moreover, in this research paper, we have focused on finding the dominating set
with the smallest weight. As mentioned in the Introduction, this problem arises in
communication networks, where reducing the number of transmitters can also lead to
decreased radiation emission. For future research, we plan to transform the problem
into a multi-criteria minimization problem where the weight assigned to each vertex
in the graph represents a cost or nuisance measurement parameter, like the noise level
at the transmitter site. Then, the aim is to design an efficient metaheuristic to identify
the smallest-size dominating set in a weighted graph that incurs the lowest cost.

Appendix

See Tables 12, 13, 14, and 15.

@ Springer

Heuristics for the weighted total domination problem

Table 12 Individual results obtained by the initial solutions of JVNS and GA1 (generated with biased

GRASP and GRASP, respectively) for each instance in the NEW testbed

Biased GRASP GRASP
Instance Avg. Time(s) Avg. Time(s)
NEW-75-0.2-10-50-1 690 1.88 769 1.00
NEW-75-0.2-10-50-2 784 2.02 871 1.00
NEW-75-0.2-10-50-3 662 1.93 765 1.00
NEW-75-0.2-10-50-4 746 1.79 762 1.00
NEW-75-0.2-10-50-5 766 1.90 857 1.00
NEW-75-0.2-25-25-1 502 1.38 556 1.00
NEW-75-0.2-25-25-2 546 1.55 607 1.00
NEW-75-0.2-25-25-3 518 1.44 603 1.00
NEW-75-0.2-25-25-4 503 1.47 521 1.00
NEW-75-0.2-25-25-5 513 1.45 526 1.00
NEW-75-0.2-50-10-1 340 1.30 340 1.00
NEW-75-0.2-50-10-2 382 1.22 414 1.00
NEW-75-0.2-50-10-3 335 1.18 341 1.00
NEW-75-0.2-50-10-4 333 1.22 338 1.00
NEW-75-0.2-50-10-5 348 1.17 353 1.00
NEW-75-0.5-10-50-1 581 1.52 590 1.00
NEW-75-0.5-10-50-2 602 1.43 641 1.00
NEW-75-0.5-10-50-3 554 1.34 545 1.00
NEW-75-0.5-10-50-4 540 1.30 580 1.00
NEW-75-0.5-10-50-5 530 1.38 551 1.00
NEW-75-0.5-25-25-1 387 1.04 402 1.00
NEW-75-0.5-25-25-2 384 1.23 413 1.00
NEW-75-0.5-25-25-3 362 1.09 380 1.00
NEW-75-0.5-25-25-4 366 1.08 371 1.00
NEW-75-0.5-25-25-5 331 1.19 331 1.00
NEW-75—-0.5-50-10-1 240 0.69 244 1.00
NEW-75-0.5-50-10-2 238 0.63 245 1.00
NEW-75-0.5-50-10-3 215 0.73 215 1.00
NEW-75-0.5-50-10-4 235 0.68 235 1.00
NEW-75-0.5-50-10-5 206 0.57 206 1.00
NEW-75-0.8-10-50-1 571 0.90 613 2.00
NEW-75-0.8-10-50-2 520 0.82 520 2.00
NEW-75-0.8-10-50-3 543 0.86 543 2.00
NEW-75-0.8-10-50-4 571 0.90 571 2.00
NEW-75-0.8-10-50-5 509 0.86 509 2.00
NEW-75-0.8-25-25-1 357 0.77 360 2.00
NEW-75-0.8-25-25-2 338 0.73 356 2.00
NEW-75-0.8-25-25-3 323 0.75 323 2.00

@ Springer

A. Casado et al.

Table 12 continued

Biased GRASP GRASP
Instance Avg. Time(s) Avg. Time(s)
NEW-75-0.8-25-25-4 345 0.82 345 2.00
NEW-75—-0.8-25-25-5 311 0.77 311 2.00
NEW-75-0.8-50-10-1 182 0.43 182 2.00
NEW-75-0.8-50-10-2 188 0.38 188 2.00
NEW-75-0.8-50-10-3 191 0.38 191 2.00
NEW-75-0.8-50-10-4 196 0.46 196 2.00
NEW-75-0.8-50-10-5 192 0.42 192 2.00
NEW-100—-0.2-10-50-1 897 5.10 930 1.00
NEW-100—0.2-10-50-2 961 4.81 983 1.00
NEW-100—-0.2-10-50-3 895 523 905 1.00
NEW-100—-0.2-10-50-4 846 4.85 879 1.00
NEW-100—-0.2-10-50-5 840 5.35 907 1.00
NEW-100—0.2-25-25-1 596 3.04 591 1.00
NEW-100—0.2-25-25-2 657 3.47 687 1.00
NEW-100—0.2-25-25-3 615 3.37 648 1.00
NEW-100—0.2-25-25-4 558 3.63 602 1.00
NEW-100—0.2-25-25-5 619 3.15 646 1.00
NEW-100—-0.2-50-10-1 418 2.30 422 1.00
NEW-100—0.2-50-10-2 447 243 472 1.00
NEW-100—-0.2-50-10-3 420 3.34 427 1.00
NEW-100—-0.2-50-10-4 403 2.70 418 1.00
NEW-100—0.2-50-10-5 378 242 379 1.00
NEW-100—0.5-10-50-1 758 3.23 749 2.00
NEW-100—0.5-10-50-2 700 3.30 705 3.00
NEW-100—0.5-10-50-3 724 3.02 730 3.00
NEW-100—-0.5-10-50-4 754 3.14 775 2.00
NEW-100—-0.5-10-50-5 726 3.28 743 2.00
NEW-100—0.5-25-25-1 461 2.83 461 3.00
NEW-100—0.5-25-25-2 437 2.92 448 2.00
NEW-100—0.5-25-25-3 434 2.35 443 3.00
NEW-100—0.5-25-25-4 489 2.33 489 2.00
NEW-100—0.5-25-25-5 462 2.71 470 3.00
NEW-100—0.5-50-10-1 260 1.45 260 2.00
NEW-100—0.5-50-10-2 271 1.26 271 2.00
NEW-100—-0.5-50-10-3 283 1.33 283 3.00
NEW-100—-0.5-50-10-4 291 1.73 296 2.00
NEW-100—-0.5-50-10-5 269 1.33 269 2.00
NEW-100—-0.8-10-50-1 734 1.88 730 4.00

@ Springer

Heuristics for the weighted total domination problem

Table 12 continued

Biased GRASP GRASP
Instance Avg. Time(s) Avg. Time(s)
NEW-100—0.8-10-50-2 688 1.75 688 4.00
NEW-100—-0.8-10-50-3 718 1.94 718 4.00
NEW-100—0.8-10-50-4 712 2.09 709 4.00
NEW-100—0.8-10-50-5 703 1.85 710 4.00
NEW-100—0.8-25-25-1 442 1.64 452 5.00
NEW-100—0.8-25-25-2 430 1.69 430 4.00
NEW-100—0.8-25-25-3 426 1.79 426 4.00
NEW-100—0.8-25-25-4 428 1.63 428 4.00
NEW-100—0.8-25-25-5 432 1.64 432 4.00
NEW-100—-0.8-50-10-1 259 0.83 259 4.00
NEW-100—0.8-50-10-2 246 0.95 246 4.00
NEW-100—-0.8-50-10-3 238 0.90 238 4.00
NEW-100—0.8-50-10-4 253 0.96 258 4.00
NEW-100—0.8-50-10-5 248 0.85 250 5.00
NEW-125-0.2-10-50-1 1031 10.39 1112 2.00
NEW-125-0.2-10-50-2 1070 10.20 1069 2.00
NEW-125-0.2-10-50-3 958 10.72 1124 2.00
NEW-125-0.2-10-50-4 1072 9.74 1121 2.00
NEW-125-0.2-10-50-5 979 10.93 1112 2.00
NEW-125-0.2-25-25-1 735 7.24 803 2.00
NEW-125-0.2-25-25-2 751 8.19 768 2.00
NEW-125-0.2-25-25-3 733 7.22 752 2.00
NEW-125-0.2-25-25-4 707 7.25 726 2.00
NEW-125-0.2-25-25-5 692 7.57 747 2.00
NEW-125-0.2-50-10-1 455 4.80 457 2.00
NEW-125-0.2-50-10-2 481 5.38 493 2.00
NEW-125-0.2-50-10-3 490 5.12 501 2.00
NEW-125-0.2-50-10-4 468 5.13 504 2.00
NEW-125-0.2-50-10-5 457 4.84 468 2.00
NEW-125—-0.5-10-50-1 817 6.58 817 4.00
NEW-125-0.5-10-50-2 821 6.11 827 5.00
NEW-125-0.5-10-50-3 878 5.64 880 4.00
NEW-125-0.5-10-50-4 867 6.31 914 4.00
NEW-125-0.5-10-50-5 871 6.27 906 5.00
NEW-125-0.5-25-25-1 573 5.06 566 5.00
NEW-125-0.5-25-25-2 533 5.36 561 5.00

@ Springer

A. Casado et al.

Table 12 continued

Biased GRASP GRASP
Instance Avg. Time(s) Avg. Time(s)
NEW-125-0.5-25-25-3 538 4.81 567 5.00
NEW-125-0.5-25-25-4 557 4.65 565 4.00
NEW-125-0.5-25-25-5 548 4.96 548 5.00
NEW-125—-0.5-50-10-1 336 2.68 336 4.00
NEW-125-0.5-50-10-2 330 2.59 330 4.00
NEW-125-0.5-50-10-3 315 2.74 315 5.00
NEW-125-0.5-50-10-4 316 2.41 316 5.00
NEW-125-0.5-50-10-5 313 2.59 311 4.00
NEW-125-0.8-10-50-1 793 3.85 793 9.00
NEW-125-0.8-10-50-2 860 3.51 854 8.00
NEW-125-0.8-10-50-3 787 3.81 829 9.00
NEW-125-0.8-10-50-4 777 3.96 829 9.00
NEW-125-0.8-10-50-5 836 3.56 827 8.00
NEW-125-0.8-25-25-1 508 3.44 521 9.00
NEW-125-0.8-25-25-2 498 3.27 499 9.00
NEW-125-0.8-25-25-3 523 3.04 523 9.00
NEW-125-0.8-25-25-4 495 3.45 506 8.00
NEW-125-0.8-25-25-5 512 2.81 519 8.00
NEW-125-0.8-50-10-1 309 1.67 307 8.00
NEW-125-0.8-50-10-2 296 2.05 296 8.00
NEW-125-0.8-50-10-3 297 1.80 294 8.00
NEW-125-0.8-50-10-4 270 2.01 270 9.00
NEW-125-0.8-50-10-5 278 1.87 278 9.00

@ Springer

Heuristics for the weighted total domination problem

00C 8 00'€ 8 00°€ 8 00'¥ 8 780 8 [-6-6-'0—0S-VIN
00'1 801 00'9 801 00T 801 00°€T 801 LET 801 6-6-6-T0—0S-VIN
00'1 101 00t 101 00T 101 00'¥ 101 vE'T 101 #-6-6-T'0—0S-VIN
00T 11 00 11 00T 11 00'8 11 Se'l 11 €-6-6-T0—0S-VIN
00T 901 00°¢ 901 00T 901 00°€ 901 (4! 901 T-$-S-T0—0S-VIN
00'T 11 00 11 00'T 11 00T 11 €1 11 1-6-6-T0—0S-VIN
00T e 00T e 001 e 001 e ¥0°0 e 6-6-6-8'0—0C-VIN
001 e 001 e 001 e 001 e €0°0 e #-6-6-8'0—0C-VIN
001 o 001 o 001 o 001 o 700 or €-6-6-8'0—0C-VIN
00T Se 00T Se 001 Se 00°€ S 700 Se 7-6-6-8'0—0C-VIN
00T LE 00T LE 00T LE 00T LE 700 LE 1-6-6-8'0—0C-VIA
00'1 8% 00T 8% 00T 8% 00T 8% ¥0°0 8% 6-6-6-S'0—0C-VIN
00'1 or 00'1 ov 00T o 00T o ¥0°0 o #-6-6-6'0—0T-VIN
00T 9 00T 9 00T 9% 00T 9% ¥0°0 9 €-6-6-S'0—0C-VIN
00T Ly 00T Ly 00'T Ly 00'T Ly ¥0°0 Ly 7-6-6-S'0—0T-VIN
00T % 00T % 001 4% 001 % ¥0°0 4% [-6-6-6'0—0C-VIN
001 S 001 SS 001 SS 001 SS 700 SS 6-6-6-T0—0C-VIN
001 IS 001 IS 001 IS 001 IS 900 IS #-6-6-T'0—0T-VIN
00T 8¢ 00T 8¢ 001 8¢ 00°€ 8¢ S0°0 8¢ €-6-6-T0—0C-VIN
00'1 8¢ 00'1 8¢ 00T 8¢ 00T 8¢ 700 8¢ T-$-S-T0—0T-VIN
00'1 €9 00'1 €9 00T €9 00T €9 90°0 €9 1-6-6-T0—0C-VIA
(s)outy, 40 (s)ouy, 40 (s)ouy, 40 (s)outy, 40 (s)outy, 40 douesu]
+U d +1J I SNAL

P9q1sA) YA Y3 UT 20UB)SUT [ora J0J SNAL wiyprioS[e pasodoid oy) pue +gJ ‘gJ “+1J ‘1J SPOYIAW $108X?) AQ PauTLIqoO S)NSAI [eNPIAIPU] €1 d|qel

pringer

as

A. Casado et al.

00°091 al 00'T€T il 00'60S il 00°066 il LTs Tl $-5-6-8'0—001-VIN
00°S6¥ 1 00'v€€ 1 00'2$91 vl 00°0081 1 a3 1 $-6-6-8'0—001-VIN
00°STE Tt 00'9€T fal 00'2€01 Tt 00°TITI fal 1€°¢ fal €-6-6-8'0—001-VIN
00°6¥C orl 00°€8T orl 00768 vl 00°65L al v6'C orl T-6-6-8'0—001-VIN
00°L6 9€1 00°TLI 9€1 00°9%¢ 9¢1 00°5591 9€1 se'e o€l 1-6-6-8'0—001-VIN
00°sS1 6¢€1 00°THT 651 00'99% 6€1 00°0081 6€1 WL 651 $-$-6-'0—001-VIN
00'71¢T ! 00°68C 9v1 00°STL 9p1 00°0081 61 €L ! #6-6-5"0—001-VIA
00821 bl 00981 vl 00'10% il 00566 i1 99 ¥l €-6-6-5'0—001-VIA
00'1S 24! 00°2S1 ad! 00851 a4l 00°L0L el 959 el T-6-5-S'0—001-VIN
00801 i1l 00262 Lyl 00'v0€ Lv1 00°0081 LpT 1L LiT 1-6-6-5'0—001-VIN
00"Ly L91 00°€LYT L91 00°L6 L91 00°0081 L1 TeLT 191 $-$-6-70—001-VIN
00°LE 691 00295 691 00'18 691 00°0081 691 18°L1 691 ¥-6-6-T0—001-VIN
00'121 LLT 00'¥EP1 LLT 00'6£C LLT 00°0081 8L 9¢'61 LLT €-6-6-70—001-VIN
00Tl vLI 009LT LI 0071 LI 00'15T YL Y061 LI T-6-ST0—001-VIN
00°0S SL 00995 SL1 0026 SL 00868 SL 0L'81 SL1 1-6-6-T:0—001-VIN
00'L 6L 00'L 6L 00'ST 6L 00°€l 6L 9¢°0 6L $-6-6-8°0—0S-VIN
00°¢ 9L 007 9L 00'S 9L 00'9 9L 60 9L #-6-6-8'0—0S-VIN
00T L 00 L 00°¢ L 00°€ L 60 L €-6-6-8"0—0S-VIN
00T w 00°¢ (7 00°€ w 00°€ w P70 w T-6-5-8'0—0S-VIN
007 LL 00'S LL 00°L LL 00'9 LL 8€°0 LL 1-6-6-8'0—0S-VIN
00T 8 00'% 8 00"y 8 00°ST 8 L0 8 6-6-6-S'0—0S-VIN
00T 8 00'% 8 00'¢ 8 00°91 8 901 8 #-6-5-6'0—0S-VIN
00T 8 00'% 8 00'¢ 8 00'CC 8 SLO S €-6-6-6'0—0S-VIN
00T <8 00°¢ S8 00T <8 00'S S8 €L°0 S8 T6-6-S0—0S-VIN
(s)ouny, d0 (s)ouy, d0 (s)ouny, J0 (s)ouy, d0 (s)ouny, d0 aouejsuy
+7J U +1J 1 SNALD

ponunuod g 3jqel

pringer

as

Heuristics for the weighted total domination problem

Table 14 Individual results obtained by JVNS and GA1 for each instance in the NEW testbed

JVNS GAl

Instance OF Time(s) OF Time(s)
NEW-75-0.2-10-50-1 686 9.08 686 5.00
NEW-75-0.2-10-50-2 770 10.36 794 6.00
NEW-75-0.2-10-50-3 661 9.81 661 6.00
NEW-75-0.2-10-50-4 705 9.35 740 7.00
NEW-75-0.2-10-50-5 758 9.64 779 6.00
NEW-75-0.2-25-25-1 498 6.73 504 6.00
NEW-75-0.2-25-25-2 546 5.48 546 6.00
NEW-75-0.2-25-25-3 518 6.02 518 5.00
NEW-75-0.2-25-25-4 500 8.85 498 6.00
NEW-75-0.2-25-25-5 513 9.12 513 6.00
NEW-75-0.2-50-10-1 339 6.74 339 6.00
NEW-75-0.2-50-10-2 382 7.21 382 5.00
NEW-75-0.2-50-10-3 335 6.23 341 5.00
NEW-75-0.2-50-10-4 333 7.37 333 6.00
NEW-75-0.2-50-10-5 348 6.40 347 6.00
NEW-75-0.5-10-50-1 581 4.25 581 13.00
NEW-75-0.5-10-50-2 602 4.17 602 11.00
NEW-75-0.5-10-50-3 545 4.36 545 10.00
NEW-75-0.5-10-50-4 540 4.53 540 10.00
NEW-75-0.5-10-50-5 519 4.63 519 10.00
NEW-75-0.5-25-25-1 387 4.04 387 10.00
NEW-75-0.5-25-25-2 384 3.81 384 10.00
NEW-75-0.5-25-25-3 362 4.02 362 10.00
NEW-75-0.5-25-25-4 366 3.60 371 9.00
NEW-75-0.5-25-25-5 331 3.84 331 10.00
NEW-75-0.5-50-10-1 240 2.00 240 9.00
NEW-75-0.5-50-10-2 238 2.40 238 9.00
NEW-75-0.5-50-10-3 215 2.68 215 9.00
NEW-75-0.5-50-10-4 235 3.36 235 9.00
NEW-75-0.5-50-10-5 206 3.18 206 8.00
NEW-75—-0.8-10-50-1 571 2.19 571 16.00
NEW-75-0.8-10-50-2 520 2.12 520 15.00
NEW-75-0.8-10-50-3 543 2.39 543 15.00
NEW-75-0.8-10-50-4 571 2.28 571 15.00
NEW-75-0.8-10-50-5 509 2.12 509 17.00
NEW-75-0.8-25-25-1 357 1.87 357 15.00
NEW-75-0.8-25-25-2 338 1.80 338 15.00
NEW-75-0.8-25-25-3 323 2.07 323 13.00

@ Springer

A. Casado et al.

Table 14 continued

JVNS GAl
Instance OF Time(s) OF Time(s)
NEW-75-0.8-25-25-4 345 2.16 345 13.00
NEW-75—-0.8-25-25-5 311 2.00 311 15.00
NEW-75-0.8-50-10-1 182 1.10 182 14.00
NEW-75-0.8-50-10-2 188 0.94 188 11.00
NEW-75-0.8-50-10-3 191 0.96 191 11.00
NEW-75-0.8-50-10-4 196 1.04 196 12.00
NEW-75-0.8-50-10-5 192 0.98 192 15.00
NEW-100—0.2-10-50-1 873 20.45 873 12.00
NEW-100—0.2-10-50-2 944 25.17 944 13.00
NEW-100—-0.2-10-50-3 878 22.57 878 11.00
NEW-100—-0.2-10-50-4 837 22.34 837 11.00
NEW-100—-0.2-10-50-5 840 24.68 870 12.00
NEW-100—0.2-25-25-1 591 24.36 591 12.00
NEW-100—0.2-25-25-2 653 22.61 655 11.00
NEW-100—-0.2-25-25-3 615 22.84 616 12.00
NEW-100—0.2-25-25-4 552 22.47 552 11.00
NEW-100—0.2-25-25-5 613 22.97 607 12.00
NEW-100—-0.2-50-10-1 418 16.64 420 12.00
NEW-100—-0.2-50-10-2 447 16.74 456 11.00
NEW-100—-0.2-50-10-3 420 17.85 419 11.00
NEW-100—0.2-50-10-4 403 14.97 410 12.00
NEW-100—0.2-50-10-5 375 18.17 379 13.00
NEW-100—0.5-10-50-1 758 8.41 749 26.00
NEW-100—0.5-10-50-2 700 10.29 700 25.00
NEW-100—-0.5-10-50-3 718 8.19 718 24.00
NEW-100—0.5-10-50-4 726 8.82 726 26.00
NEW-100—-0.5-10-50-5 702 8.65 702 25.00
NEW-100—-0.5-25-25-1 461 9.02 461 25.00
NEW-100—0.5-25-25-2 437 9.21 437 19.00
NEW-100—0.5-25-25-3 434 9.52 434 22.00
NEW-100—0.5-25-25-4 482 9.19 482 25.00
NEW-100—0.5-25-25-5 456 9.12 457 23.00
NEW-100—-0.5-50-10-1 260 7.57 260 22.00
NEW-100—0.5-50-10-2 271 4.81 271 21.00
NEW-100—0.5-50-10-3 283 7.88 283 21.00
NEW-100—-0.5-50-10-4 291 6.00 291 22.00

@ Springer

Heuristics for the weighted total domination problem

Table 14 continued

JVNS GAl

Instance OF Time(s) OF Time(s)
NEW-100—-0.5-50-10-5 269 7.48 269 21.00
NEW-100—0.8-10-50-1 730 6.03 730 39.00
NEW-100—0.8-10-50-2 683 5.76 683 37.00
NEW-100—0.8-10-50-3 718 4.62 718 37.00
NEW-100—0.8-10-50-4 709 5.84 709 41.00
NEW-100—0.8-10-50-5 700 5.18 704 39.00
NEW-100—0.8-25-25-1 442 4.16 442 40.00
NEW-100—0.8-25-25-2 430 4.04 430 32.00
NEW-100—0.8-25-25-3 426 4.11 426 36.00
NEW-100—0.8-25-25-4 428 4.05 428 35.00
NEW-100—0.8-25-25-5 432 4.16 432 42.00
NEW-100—0.8-50-10-1 259 2.72 259 32.00
NEW-100—0.8-50-10-2 246 2.87 246 9.00
NEW-100—0.8-50-10-3 238 2.72 238 34.00
NEW-100—-0.8-50-10-4 253 3.09 253 34.00
NEW-100—0.8-50-10-5 248 2.76 248 31.00
NEW-125-0.2-10-50-1 1031 43.17 1026 24.00
NEW-125-0.2-10-50-2 1046 58.66 1038 22.00
NEW-125-0.2-10-50-3 935 59.19 947 23.00
NEW-125-0.2-10-50-4 1068 41.43 1051 21.00
NEW-125-0.2-10-50-5 974 62.42 975 25.00
NEW-125-0.2-25-25-1 720 47.17 720 26.00
NEW-125-0.2-25-25-2 751 46.71 748 24.00
NEW-125-0.2-25-25-3 715 38.54 717 21.00
NEW-125-0.2-25-25-4 701 51.23 705 22.00
NEW-125-0.2-25-25-5 685 41.35 697 23.00
NEW-125-0.2-50-10-1 455 28.84 455 21.00
NEW-125-0.2-50-10-2 477 34.22 477 23.00
NEW-125-0.2-50-10-3 490 48.71 490 21.00
NEW-125-0.2-50-10-4 467 30.64 467 23.00
NEW-125-0.2-50-10-5 457 42.30 459 24.00
NEW-125-0.5-10-50-1 817 18.41 817 41.00
NEW-125-0.5-10-50-2 815 18.83 815 45.00
NEW-125-0.5-10-50-3 836 18.40 872 45.00
NEW-125-0.5-10-50-4 867 15.69 867 55.00
NEW-125-0.5-10-50-5 867 17.30 867 55.00
NEW-125-0.5-25-25-1 566 17.01 566 48.00

@ Springer

A. Casado et al.

Table 14 continued

JVNS GAl
Instance OF Time(s) OF Time(s)
NEW-125-0.5-25-25-2 533 15.43 533 48.00
NEW-125-0.5-25-25-3 538 14.25 538 49.00
NEW-125-0.5-25-25-4 552 15.44 552 53.00
NEW-125—-0.5-25-25-5 548 14.35 548 48.00
NEW-125-0.5-50-10-1 334 12.43 334 40.00
NEW-125-0.5-50-10-2 330 12.02 330 38.00
NEW-125-0.5-50-10-3 315 11.15 315 49.00
NEW-125-0.5-50-10-4 316 13.56 316 51.00
NEW-125-0.5-50-10-5 311 13.86 311 40.00
NEW-125-0.8-10-50-1 793 10.99 793 78.00
NEW-125-0.8-10-50-2 845 10.82 845 72.00
NEW-125-0.8-10-50-3 787 11.36 787 74.00
NEW-125-0.8-10-50-4 777 11.80 777 83.00
NEW-125-0.8-10-50-5 827 10.61 813 77.00
NEW-125-0.8-25-25-1 508 7.91 510 69.00
NEW-125-0.8-25-25-2 498 7.75 498 65.00
NEW-125-0.8-25-25-3 513 7.95 513 77.00
NEW-125-0.8-25-25-4 495 8.13 493 75.00
NEW-125-0.8-25-25-5 504 9.07 504 76.00
NEW-125-0.8-50-10-1 307 5.30 307 64.00
NEW-125-0.8-50-10-2 296 6.18 296 57.00
NEW-125-0.8-50-10-3 294 5.72 294 71.00
NEW-125-0.8-50-10-4 270 5.56 270 86.00
NEW-125-0.8-50-10-5 278 5.58 278 77.00

@ Springer

Heuristics for the weighted total domination problem

Table 15 Individual results obtained by JVNS and GA1 for each instance in the CSM testbed

JVNS GAl
Instance OF Time(s) OF Time(s)
CSM_200_0.2_10_50_0 600 144.80 654 770.15
CSM_200_0.2_10_50_1 602 161.99 692 744.12
CSM_200_0.2_10_50_2 600 182.17 675 692.04
CSM_200_0.2_10_50_3 616 131.27 684 766.95
CSM_200_0.2_10_50_4 569 139.64 658 778.11
CSM_200_0.2_25_25_0 981 217.21 1161 970.28
CSM_200_0.2_25_25_1 976 240.23 1110 1005.88
CSM_200_0.2_25_25 2 960 209.94 1107 1070.22
CSM_200_0.2_25_25_3 961 212.59 1044 1088.88
CSM_200_0.2_25_25 4 986 223.07 1154 947.46
CSM_200_0.2_50_10_0 1448 222.21 1692 1369.55
CSM_200_0.2_50_10_1 1469 261.30 1766 1219.78
CSM_200_0.2_50_10_2 1474 251.46 1681 1204.24
CSM_200_0.2_50_10_3 1388 256.15 1610 1292.35
CSM_200_0.2_50_10_4 1395 250.85 1650 1098.83
CSM_200_0.5_10_50_0 452 43.83 468 901.42
CSM_200_0.5_10_50_1 459 42.29 475 925.97
CSM_200_0.5_10_50_2 468 42.78 469 877.50
CSM_200_0.5_10_50_3 485 47.17 495 876.27
CSM_200_0.5_10_50_4 473 39.85 503 855.06
CSM_200_0.5_25_25_0 777 57.11 809 977.23
CSM_200_0.5_25_25_1 789 56.17 813 941.31
CSM_200_0.5_25_25_2 762 57.52 782 1021.13
CSM_200_0.5_25_25_3 795 60.33 808 1008.91
CSM_200_0.5_25_25_4 810 62.45 814 1045.16
CSM_200_0.5_50_10_0 1260 73.20 1278 1046.46
CSM_200_0.5_50_10_1 1219 70.46 1294 1108.63
CSM_200_0.5_50_10_2 1212 95.07 1231 1058.00
CSM_200_0.5_50_10_3 1192 71.99 1267 1005.29
CSM_200_0.5_50_10_4 1199 71.46 1274 1007.62
CSM_200_0.8_10_50_0 415 28.51 419 892.54
CSM_200_0.8_10_50_1 438 26.81 451 867.71
CSM_200_0.8_10_50_2 421 26.61 429 891.12
CSM_200_0.8_10_50_3 437 28.02 450 906.00
CSM_200_0.8_10_50_4 413 29.21 425 883.29
CSM_200_0.8_25_25_0 734 36.57 748 929.82
CSM_200_0.8_25_25_1 714 40.10 744 913.50

@ Springer

A. Casado et al.

Table 15 continued

JVNS GAl

Instance OF Time(s) OF Time(s)
CSM_200_0.8_25_25_2 717 36.53 729 902.35

CSM_200_0.8_25_25_3 738 37.17 773 916.45

CSM_200_0.8_25_25_4 761 40.67 786 920.69

CSM_200_0.8_50_10_0 1208 40.26 1229 927.94

CSM_200_0.8_50_10_1 1230 39.92 1246 929.90

CSM_200_0.8_50_10_2 1216 40.61 1226 923.72

CSM_200_0.8_50_10_3 1197 43.95 1197 922.46

CSM_200_0.8_50_10_4 1197 41.54 1199 922.77

CSM_350_0.2_10_50_0 927 1014.89 1073 1803.19
CSM_350_0.2_10_50_1 862 858.24 1058 1804.19
CSM_350_0.2_10_50_2 895 1090.68 1070 1818.24
CSM_350_0.2_10_50_3 896 960.16 1051 1804.46
CSM_350_0.2_10_50_4 887 1023.91 1068 1817.50
CSM_350_0.2_25_25_0 1440 1269.64 1934 1805.28
CSM_350_0.2_25_25_1 1459 1262.89 2010 1806.73
CSM_350_0.2_25_25 2 1412 1288.04 1910 1808.76
CSM_350_0.2_25_25 3 1394 1322.82 1956 1804.63
CSM_350_0.2_25_25 4 1438 142421 1980 1813.41
CSM_350_0.2_50_10_0 2279 1741.24 3433 1819.43
CSM_350_0.2_50_10_1 2156 1554.72 3494 1812.11
CSM_350_0.2_50_10_2 2215 1483.53 3320 1820.55
CSM_350_0.2_50_10_3 2214 1530.55 3556 1803.45
CSM_350_0.2_50_10_4 2157 1551.85 3471 1805.70
CSM_350_0.5_10_50_0 700 244.40 860 1839.04
CSM_350_0.5_10_50_1 713 228.98 858 1827.00
CSM_350_0.5_10_50_2 676 250.13 869 1848.07
CSM_350_0.5_10_50_3 696 230.46 850 1831.88
CSM_350_0.5_10_50_4 725 201.95 878 1818.23
CSM_350_0.5_25_25_0 1171 457.92 1807 1842.03
CSM_350_0.5_25_25_1 1227 452.56 1837 1827.81
CSM_350_0.5_25_25_2 1179 433.61 1611 1841.12
CSM_350_0.5_25_25_3 1177 416.77 1749 1833.80
CSM_350_0.5_25_25_4 1193 431.12 1697 1838.18
CSM_350_0.5_50_10_0 1900 477.80 3212 1837.24
CSM_350_0.5_50_10_1 1933 549.72 3066 1840.80
CSM_350_0.5_50_10_2 1959 490.02 3328 1837.95
CSM_350_0.5_50_10_3 1963 537.02 2900 1831.29

@ Springer

Heuristics for the weighted total domination problem

Table 15 continued

JVNS GAl
Instance OF Time(s) OF Time(s)
CSM_350_0.5_50_10_4 1959 464.76 2970 1807.96
CSM_350_0.8_10_50_0 650 131.58 682 1843.37
CSM_350_0.8_10_50_1 632 135.53 679 1846.13
CSM_350_0.8_10_50_2 641 141.96 684 1812.22
CSM_350_0.8_10_50_3 631 139.10 688 1826.25
CSM_350_0.8_10_50_4 644 135.21 669 1841.98
CSM_350_0.8_25_25 0 1133 157.19 1214 1833.01
CSM_350_0.8_25_25_1 1111 174.04 1208 1847.53
CSM_350_0.8_25_25 2 1091 186.70 1247 1850.23
CSM_350_0.8_25_25_3 1125 169.01 1230 1807.24
CSM_350_0.8_25_25_4 1092 166.26 1182 1867.19
CSM_350_0.8_50_10_0 1858 196.68 2110 1826.85
CSM_350_0.8_50_10_1 1883 192.70 2011 1820.90
CSM_350_0.8_50_10_2 1876 181.90 2074 1810.52
CSM_350_0.8_50_10_3 1889 177.40 2093 1808.97
CSM_350_0.8_50_10_4 1884 205.55 2086 1814.04
CSM_500_0.2_10_50_0 1135 1830.06 1392 1819.39
CSM_500_0.2_10_50_1 1141 1813.15 1376 1802.85
CSM_500_0.2_10_50_2 1170 1806.12 1452 1832.91
CSM_500_0.2_10_50_3 1136 1819.35 1483 1812.93
CSM_500_0.2_10_50_4 1139 1803.09 1449 1831.61
CSM_500_0.2_25_25_0 1932 1819.89 2843 1893.62
CSM_500_0.2_25_25_1 1854 1835.34 2785 1891.55
CSM_500_0.2_25_25 2 1886 1829.45 2786 1808.43
CSM_500_0.2_25_25_3 1879 1853.40 2516 1803.62
CSM_500_0.2_25_25 4 1946 1831.72 2761 1818.01
CSM_500_0.2_50_10_0 3108 1848.74 4769 1893.00
CSM_500_0.2_50_10_1 2967 1835.35 5013 1800.93
CSM_500_0.2_50_10_2 3011 1811.88 5227 1824.67
CSM_500_0.2_50_10_3 2989 1800.92 4905 1894.16
CSM_500_0.2_50_10_4 2931 1814.70 5037 1826.73
CSM_500_0.5_10_50_0 957 851.29 1322 1866.73
CSM_500_0.5_10_50_1 902 1020.22 1236 1854.97
CSM_500_0.5_10_50_2 927 900.02 1274 1859.99
CSM_500_0.5_10_50_3 938 889.09 1227 1871.50
CSM_500_0.5_10_50_4 949 688.51 1309 1854.16

@ Springer

A. Casado et al.

Table 15 continued

JVNS GAl
Instance OF Time(s) OF Time(s)
CSM_500_0.5_25_25_0 1586 1357.61 2360 1853.90
CSM_500_0.5_25_25_1 1565 1328.90 2720 1852.22
CSM_500_0.5_25_25_2 1550 1310.22 2465 1859.24
CSM_500_0.5_25_25_3 1590 1234.01 2769 1864.02
CSM_500_0.5_25_25_4 1569 1192.46 2600 1872.73
CSM_500_0.5_50_10_0 2587 1404.38 4557 1829.10
CSM_500_0.5_50_10_1 2659 1338.04 4580 1831.23
CSM_500_0.5_50_10_2 2634 1410.40 4357 1823.80
CSM_500_0.5_50_10_3 2553 1446.41 4235 1843.98
CSM_500_0.5_50_10_4 2631 1427.80 4609 1834.04
CSM_500_0.8_10_50_0 864 394.51 949 2002.55
CSM_500_0.8_10_50_1 876 373.37 917 2023.97
CSM_500_0.8_10_50_2 891 357.42 963 2013.56
CSM_500_0.8_10_50_3 855 363.48 914 1998.57
CSM_500_0.8_10_50_4 860 358.12 919 2039.70
CSM_500_0.8_25_25_0 1475 562.28 1665 1978.82
CSM_500_0.8_25_25_1 1487 503.48 1563 2042.10
CSM_500_0.8_25_25_2 1464 514.17 1681 2035.73
CSM_500_0.8_25_25_3 1478 510.39 1606 2033.05
CSM_500_0.8_25_25_4 1486 522.88 1604 2007.98
CSM_500_0.8_50_10_0 2493 557.17 2868 2025.01
CSM_500_0.8_50_10_1 2458 582.73 2840 2003.86
CSM_500_0.8_50_10_2 2442 543.08 2830 1994.57
CSM_500_0.8_50_10_3 2514 555.86 2842 1998.85
CSM_500_0.8_50_10_4 2474 559.22 2706 1997.36

Acknowledgements This research has been partially supported by the Ministerio de Ciencia e Innovacién
of Spain (Grant Ref. PID2021-1257090B-C21 and PID2021-1257090A-C22) funded by MCIN/AEI
/10.13039/501100011033 / FEDER, UE. It has been also supported by the Generalitat Valenciana
(CIAICO/2021/224).

Author Contributions Alejandra Casado: algorithm design, algorithm implementation, and writing. Jesis
Sanchez-Oro: methodology, algorithm design, and writing—original draft preparation. Anna Martinez-
Gavara: methodology, algorithm design, and writing.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability All the data, including instances, results, and source code, are publicly available at https://
grafo.etsii.urjc.es/wtdp.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

@ Springer

https://grafo.etsii.urjc.es/wtdp
https://grafo.etsii.urjc.es/wtdp

Heuristics for the weighted total domination problem

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alvarez-Miranda E, Sinnl M (2021) Exact and heuristic algorithms for the weighted total domination
problem. Comput Oper Res 127:105157

Bai X, Zhao D, Bai S, Wang Q, Li W, Mu D (2020) Minimum connected dominating sets in heterogeneous
3d wireless ad hoc networks. Ad Hoc Netw 97:102023

Balakrishnan R, Ranganathan K (2012) A textbook of graph theory. Springer, Berlin

Beasley JE (1987) An algorithm for set covering problem. Eur J Oper Res 31:85-93

Beasley JE, Chu PC (1996) A genetic algorithm for the set covering problem. Eur J Oper Res 94:392-404

Berge C (1962) The theory of graphs and its applications. Methuen & co. Ltd, London

Bresina JL (1996) Heuristic-biased stochastic sampling. AAAI/IAAI 1:271-278

Brimberg J, Salhi S, Todosijevi¢ R, UroSevi¢ D (2023) Variable neighborhood search: the power of change
and simplicity. Comput Oper Res 155:106221

Buxey G (1979) The vehicle scheduling problem and monte carlo simulation. J Oper Res Soc 30:563-573

Campos V, Marti R, Sdnchez-Oro J, Duarte A (2014) Grasp with path relinking for the orienteering problem.
J Oper Res Soc 65:1800-1813

Campan A, Truta TM, Beckerich M (2015) Fast dominating set algorithms for social networks. In: Midwest
Artificial Intelligence and Cognitive Science Conference, pp. 55-62

Caprara A, Toth P, Fischetti M (2000) Algorithms for the set covering problem. Ann Oper Res 98:353-371

Casado A, Pérez-Peld S, Sdanchez-Oro J, Duarte A (2022) A grasp algorithm with tabu search improvement
for solving the maximum intersection of k-subsets problem. J Heuris 28:121-146

Casado A, Bermudo S, Lopez-Sanchez A, Sinchez-Oro J (2023) An iterated greedy algorithm for finding
the minimum dominating set in graphs. Math Comput Simul 207:41-58

Casado A, Mladenovi¢ N, Sanchez-Oro J, Duarte A (2023) Variable neighborhood search approach with
intensified shake for monitor placement. Networks 81:319-333

Cockayne EJ, Hedetniemi ST (1977) Towards a theory of domination in graphs. Networks 7:247-261

Cockayne EJ, Dawes R, Hedetniemi ST (1980) Total domination in graphs. Networks 10:211-219

Corcoran P, Gagarin A (2021) Heuristics for k-domination models of facility location problems in street
networks. Comput Oper Res 133:105368

Faulin J, Juan AA (2008) The algacea-1 method for the capacitated vehicle routing problem. Int Trans Oper
Res 15:599-621

Feo TA, Resende MG (1989) A probabilistic heuristic for a computationally difficult set covering problem.
Oper Res Lett 8:67-71

Ferone D, Gruler A, Festa P, Juan AA (2019) Enhancing and extending the classical grasp framework with
biased randomisation and simulation. J Oper Res Soc 70:1362-1375

Fleszar K, Hindi KS (2004) Solving the resource-constrained project scheduling problem by a variable
neighbourhood search. Eur J Oper Res 155: 402—413. (Financial Risk in Open Economies)

Fleurent C, Glover F (1999) Improved constructive multistart strategies for the quadratic assignment problem
using adaptive memory. INFORMS J Comput 11:198-204

Goddard W, Henning MA (2013) Independent domination in graphs: a survey and recent results. Disc Math
313:839-854

Grasas A, Juan AA, Faulin J, De Armas J, Ramalhinho H (2017) Biased randomization of heuristics using
skewed probability distributions: a survey and some applications. Comput Ind Eng 110:216-228

Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 20:374—
387

Hansen P, Mladenovi¢ N, Brimberg J, Pérez JAM (2019) Variable neighborhood search. Springer, Berlin

Hansen P, Mladenovi¢ N (2006) First vs. best improvement: An empirical study. Discrete Appl Math 154:
802-817. (IV ALIO/EURO Workshop on Applied Combinatorial Optimization)

Haynes TW, Hedetniemi S, Slater P (1998) Fundamentals of domination in graphs. CRC Press, Boca Raton

@ Springer

http://creativecommons.org/licenses/by/4.0/

A. Casado et al.

Haynes TW, Hedetniemi ST, Henning MA (2020) Topics in domination in graphs, vol 64. Springer, Berlin

Haynes TW, Hedetniemi ST, Henning MA et al (2021) Structures of domination in graphs, vol 66. Springer,
Berlin

Haynes TW, Hedetniemi SM, Hedetniemi ST, Henning MA (2002) Domination in graphs applied to electric
power networks. SIAM J Disc Math 15:519-529

Haynes TW, Hedetniemi ST, Henning MA (2022) Domination in graphs: core concepts. Manuscript.
Springer, New York

Henning MA (2009) A survey of selected recent results on total domination in graphs. Disc Math 309:32-63

Henning MA, Jafari Rad N (2012) Locating-total domination in graphs. Disc Appl Math 160:1986-1993

Hwang SF, Chang GJ (1991) The k-neighbor domination problem. Eur J Oper Res 52:373-377

Juan AA, Faulin J, Ferrer A, Lourengo HR, Barrios B (2013) Mirha: multi-start biased randomization of
heuristics with adaptive local search for solving non-smooth routing problems. Top 21:109-132

Laskar R, Pfaff J, Hedetniemi S, Hedetniemi S (1984) On the algorithmic complexity of total domination.
SIAM J Algeb Disc Methods 5:420-425

Levin MS (2020) On combinatorial optimization for dominating sets (literature survey, new models). arXiv
preprint arXiv:2009.09288

Li R, Hu S, Zhao P, Zhou Y, Yin M (2018) A novel local search algorithm for the minimum capacitated
dominating set. J Oper Res Soc 69:849-863

MaY, Cai Q, Yao S (2019) Integer linear programming models for the weighted total domination problem.
Appl Math Comput 358:146-150

Mladenovi¢ N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097-1100

Napoletano A, Martinez-Gavara A, Festa P, Pastore T, Marti R (2019) Heuristics for the constrained incre-
mental graph drawing problem. Eur J Oper Res 274:710-729

Ore O (1962) Theory of graphs. In: Colloquium Publications. American Mathematical Society

Resende MG, Ribeiro CC (2016) Optimization by GRASP—greedy randomized adaptive search procedures.
Springer, Berlin

Sarubbi JF, Mesquita CM, Wanner EF, Santos VF, Silva CM (2016) A strategy for clustering students
minimizing the number of bus stops for solving the school bus routing problem. In: NOMS 2016-2016
IEEE/IFIP network operations and management symposium, IEEE. pp. 1175-1180

Tutte WT, Tutte WT (2001) Graph theory, vol 21. Cambridge university press, Cambridge

Wang F, Du H, Camacho E, Xu K, Lee W, Shi Y, Shan S (2011) On positive influence dominating sets in
social networks. Theor Comput Sci 412:265-269

Zverovich V (2021) Modern applications of graph theory. Oxford University Press, Oxford

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/2009.09288

	Heuristics for the weighted total domination problem
	Abstract
	1 Introduction
	1.1 Graph theory terminology and basic definitions
	1.2 The weighted total domination problem
	1.3 Literature review
	1.4 Contribution and outline

	2 Algorithmic approach
	2.1 Solution generation
	Objective function greedy constructive
	Ratio-based greedy constructive
	Biased GRASP constructive

	2.2 Improvement method
	2.3 Variable neighborhood search
	Shake
	Multi-start JVNS

	3 Computational experiments
	3.1 Preliminary experimentation
	3.2 Final experimentation

	4 Conclusions and future research
	Appendix
	Acknowledgements
	References

