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Abstract
Several problems are emerging in the context of communication networks and most

of them must be solved in reduced computing time since they affect to critical tasks.

In this research, the monitor placement problem is tackled. This problem tries to

cover the communications of an entire network by locating a monitor in specific

nodes of the network, in such a way that every link remains surveyed. In case that

a solution cannot be generated in the allowed computing time, a penalty will be

assumed for each link uncovered. The problem is addressed by considering the vari-

able neighborhood search framework, proposing a novel constructive method, an

intelligent local search to optimize the improvement phase, and an intensified shake

to guide the search to more promising solutions. The proposed algorithm is com-

pared with a hybrid search evolutionary algorithm over a set of instances derived

from real-life networks to prove its performance.
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1 INTRODUCTION

Communication networks are, nowadays, an essential part of every activity in both personal and professional points of view.

Among their services we can highlight streaming, security, banking, shopping, and so forth. Originally, the security of those

networks was not a requirement when designing them. However, the increase in the network attacks has made security a key

factor in the network design of every company.

Although a successful attack to the network of a company may result in an important economic crisis, it must be noted that

there are some critical services that must be continuously monitored, such as transport, hospitals, or defense. The failure in

these kinds of services usually results in severe damages to people which may result in humanitarian crisis [1].

The number of attacks is continuously increasing, as well as the privacy on the Internet is becoming more and more relevant

every year. As a result, companies and institutions need to improve the security system of their networks in order to minimize

the possibilities of being attacked, thus increasing the network protection. It is worth mentioning that a fast reaction to an attack

is a key factor in successfully protecting it [14].

One of the most common attacks is denial of service (DoS) and distributed denial of service (DDoS), since a successful

attack can completely disable an Internet provider. The failure become critical if more services directly depend on the services

under attack, which can result in a cascade failure, harming a large number of clients [6].
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2 CASADO ET AL.

The early detection of potential threats such as malware spreading, loss of certain nodes in the network, unauthorized

accesses to the network, among others, has a positive impact not only in the security, but also in the network performance.

Therefore, it is desirable to perform detection of failures in real time to mitigate the negative effect of the attack.

One of the most important stages when increasing network protection consists of guaranteeing the surveillance of the com-

plete network. If the network is correctly monitored, the system will be able to provide a faster reaction to an attack. This

surveillance is commonly performed by deploying a monitor, which is a special hardware, in certain nodes of the network to ana-

lyze all the communications that go through them. This analysis provides the network administrators with real-time information

about possible threats, which may help them to protect specific nodes.

The most simple approach to perform a complete network analysis consists of deploying a monitor in every node of the

network, guaranteeing that all the communications going through the network are captured. Unfortunately, this is not possible

since the cost of deploying a monitor in a node is usually high. Additionally, deploying a monitor implies an overhead in the

network performance since all the traffic must be captured. Therefore, the number of monitors deployed in a network must be

minimized while maintaining the complete network analyzed.

The monitor placement problem (MPP) has been widely studied in the literature, resulting in different variants which con-

sider new aspects of the network surveillance. Although traditional approaches consider static networks, where changes are

not common, in this work we are focused in networks which are in constant evolution, so the deploying of monitors must be

optimized to achieve real-time analysis of the network without negatively affecting to its performance.

This problem can be reduced to a vertex covering problem, which is -complete [13] and, therefore, exact approaches

are not able to solve real-life instances due to their complexity. The problem remains-complete for approximations within

a factor smaller than 1.36 [7].

Therefore, this family of problems has been mainly tackled from a heuristic perspective. First approaches were focused

on evolutionary algorithms for the maximum independent set [2] and the minimum vertex cover [9]. Later, a branch and

bound and different heuristics were proposed for solving the minimum vertex cover when considering random graphs [15,16].

More approaches were then proposed for the same problem: genetic algorithms [12], simulated annealing [11], or a hierar-

chical Bayesian algorithm [22], among others. Milanovic [17] proposed a new genetic algorithm for solving the generalized

vertex cover problem considering networks with weights in both, nodes and links. More recently, Chandu [5] designed

a parallel evolutionary algorithm that leverages the hardware architecture by considering Apache Hadoop for distributing

computation.

Evolutionary algorithms have been widely studied in the field of monitor placement, from a population injection method

[18] to a hybrid evolutionary algorithm devoted to solve a dynamic variant of the problem [19]. As far as we know,

the best algorithm in the literature for the MPP is a hybrid search heuristic [20]. This procedure is an enhancement of

the population injection method originally presented in [18], whose main contribution is the increase in the diversity of

the search.

In this work, we address the MPP with a variable neighborhood search (VNS) algorithm, which consists of a novel con-

structive method, an intelligent local search to optimize the improvement phase, and an intensified shake to guide the search to

more promising solutions. The remaining of the paper is structured as follows. Section 2 formally describes the problem tack-

led in this research, Section 3 presents the algorithmic proposal to solve the MPP, Section 4 shows the experimental analysis

performed to validate the proposal, comparing it with a hybrid search evolutionary algorithm and, finally, Section 5 draws some

conclusions derived from this research.

2 PROBLEM DEFINITION

The objective of the MPP is to monitor a complete network, which is usually modeled as an undirected graph G = (V ,E),
where V , with |V| = n, is the set of nodes in the network, and E, with |E| = m, consists of pairs of nodes (u, v), with u, v ∈ V ,

indicating that there is a connection between nodes u and v.

Before defining the problem under consideration, it is necessary to introduce the concept of vertex cover. Specifically, a

vertex cover Λ of a network is a subset of vertices Λ ⊆ V which satisfies the constraint that, for every edge (u, v) ∈ E, either

u ∈ Λ or v ∈ Λ. Then, the minimal vertex cover is the one with the minimum size. More formally, the minimum vertex cover

problem is defined as follows:

MVCP(G) = min
Λ∈

|Λ|,

where  is the set of all possible vertex covers for the network G. Since a network can have several different minimum vertex

covers (naturally, with the same value of objective function), we refer to the MVCP as the problem of finding one of those

vertex covers.
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CASADO ET AL. 3

The MPP is a particular variant of the MVCP but with direct application in communication networks. In this context, there

are some additional features that must be satisfied in order to solve the MPP. The first one is related to the computing time

required to solve the problem. In real-life networks, the time window available to solve the MPP is considerably smaller than

in the classic MVCP. The rationale behind this consideration is the immediacy with which any anomalous network behavior

must be solved, with the aim of activating or deactivating any node producing the anomaly in the monitored network. In case

that the time feature cannot be satisfied then, the budgeted time should be used for finding a solution which monitors the largest

number of connections in the network. In this case, not all the connections are equally relevant, so it is necessary to prioritize

the links to be monitored [3].

A network is considered to be fully monitored if and only if all the links are covered by, at least, one monitor. The optimal

solution is the one that covers the complete network while minimizing the impact in the performance. Therefore, the MPP looks

for monitoring the complete network but placing the minimum number of monitors in it. For the sake of simplicity, we consider

that a monitor can be placed in any node of the network.

The definition of priority for a link in the network completely depends on its nature. For instance, it can be related to the

traffic flow through the link, its bandwidth, the relevance of the link in the real network, among others. We refer the reader to

[21,25] for a detailed analysis of setting network priorities.

The inclusion of link priorities prevents the MPP to be reformulated as the MVCP. However, as stated in [20], the priorities

can be easily included in the problem model by considering a priority function p ∶ E → N that assigns a penalty to each

uncovered link in a given solution. Therefore, two solutions with the same number of monitors can be compared by computing

the penalty due to the uncovered links.

The objective function for the MPP is then conformed by two different elements: the number of monitors that are

deployed, and the accumulated penalty due to the uncovered links. A solution S (with S ⊆ V) for the MPP con-

tains the nodes in which a monitor should be deployed. Given a solution S, the objective function of the MPP is

evaluated as:

MPP(S) = |S| +
∑

(u,v)∈E′
p(u, v),

where E′ = {(u, v) ∈ E ∶ u ∉ S ∧ v ∉ S}, that is, the set of all edges of the network which are not covered by any

monitor. Then, the objective of the MPP is to find the solution S⋆ with the minimum value of the objective function. More

formally,

S⋆ = arg min

S∈S

MPP(S),

where S represents the solution space of the problem, consisting in all the feasible solutions for the MPP. It is worth men-

tioning that any subset of nodes conforms a feasible solution. In particular, |S| = |V| means that a monitor is deployed in

every single node. Then, the first addend takes on the largest value while the second addend is zero. Similarly, |S| = 0

means that no monitor is deployed. Therefore, the first addend is zero, while the second one acquires its maximum

value.

The objective function balances both features: the number of monitors included in the solution and the penalties associated

with those links which are not covered. Although there are several types of penalties that can be considered for the network,

we follow the same approach as in [20], which considers a static linear distance penalty function (see Section 4 for the penalty

included in the considered instances).

Figure 1 shows a network instance consisting of 5 nodes, V = {1, 2, 3, 4, 5} and 5 edges, E = {(1, 2), (1, 4), (2, 3), (2, 5),
(3, 5)}. The number close to each edge indicates the penalty assumed if this link is not covered. Figure 2 represents three dif-

ferent solutions for Figure 1. In all of them, the nodes where a monitor is deployed are colored, while the links which are

FIGURE 1 Example instance with 5 nodes and 5 edges
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4 CASADO ET AL.

FIGURE 2 Three possible solutions for the instance depicted in Figure 1. (A) Solution S1 = {1, 2, 3}, (B) solution S2 = {2, 4}, and (C) solution S3 = {3, 4, 5}

covered by, at least, one monitor, are represented with a dashed line. Figure 2A depicts solution S1, selecting nodes 1, 2, and

3, which are able to cover the entire network. Therefore, the objective function value is evaluated as MPP(S1) = 3 + 0 = 3,

since there are 3 nodes in the solution and there is no penalty (all links are covered). If we now analyze Figure 2B, there are

two selected nodes (2 and 4) instead of three, but the link (3, 5) is not covered by any deployed monitor. Then, the objec-

tive function value is MPP(S2) = 2 + 9 = 11. Finally, solution S3 deploys a monitor in nodes 3, 4, and 5, but the link

(1,2) is still uncovered, resulting in an objective function value of MPP(S3) = 3 + 2 = 5. Regarding these results, the

best solution is S1, which provides the smallest objective function value. It is interesting to analyze that S3 outperforms S2

even having selected more nodes to deploy a monitor. In the context of MPP, a solution with all the links covered is always

better than a solution with at least one link uncovered but, due to time constraints, it is not always possible to cover all

the nodes.

3 ALGORITHMIC APPROACH

In contrast to most of the previous works, which followed approaches based on evolutionary algorithms, this paper tries a

novel strategy where a trajectory-based metaheuristic is proposed. While population-based metaheuristics, such as evolutionary

algorithms, maintain a population of solutions which are combined to continue improving, trajectory-based metaheuristics work

with a single solution which is iteratively improved following different stages.

Specifically, this work is focused on VNS as metaheuristic framework for solving the MPP. The success of VNS relies on

systematic changes of neighborhoods with the aim of obtaining high quality solutions in small computing times. In the last

decades, VNS has been in continuous evolution, giving rise to a large variety of schemes, which are usually classified depending

on the neighborhood exploration. In particular, the neighborhood proposed can be explored by following three different criteria:

deterministic (variable neighborhood descent), stochastic (reduced VNS), or mixed (basic VNS). Additional variants have also

been presented: General VNS, variable neighborhood decomposition search, variable formulation search, among others. See

[10] for further details.

This work considers the basic VNS (BVNS) scheme, which combines the intensification of the local improvement

stage with the diversification introduced by the perturbation method. Finding a balance between both, intensification

and diversification, will eventually lead to high quality solutions. Algorithm 1 shows the pseudocode of the proposed

BVNS.

The method requires three input parameters: the initial solution S (see Section 3.2 for more details), the maximum neigh-

borhood to be explored during the search kmax, and the maximum number of iterations performed 𝛿. BVNS is usually executed

either a certain number of iterations or for a fixed computing time. In this case, we fix the number of iterations 𝛿 (steps 1–13).

In each iteration, the algorithm starts with the first neighborhood (step 2). Then, BVNS iterates until reaching the largest

predefined neighborhood kmax (steps 3–12). For each neighborhood, the solution is perturbed following the shake procedure

described in Section 3.4 (step 4). The perturbed solution S′ is then improved using the method described in Section 3.3

to find a local optimum in the current neighborhood (step 5). Finally, BVNS performs the neighborhood change stage. In

particular, if the improved solution S′′ outperforms the best solution found so far (step 6), the method restarts the search

from the first neighborhood (step 7), updating the best solution found (step 8). Otherwise, the algorithm continues with the

next neighborhood (step 10). BVNS ends when performing 𝛿 iterations, returning the best solution found during the search

(step 14).
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CASADO ET AL. 5

Algorithm 1. BVNS(S, kmax, 𝛿)

1: for i ∈ 1… 𝛿 do
2: k ← 1

3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← Improve(S′)
6: if MPP(S′′) <MPP(S) then
7: k ← 1

8: S ← S′′
9: else

10: k ← k + 1

11: end if
12: end while
13: end for
14: return S

3.1 Support and leaf nodes
Before describing in detail each part of the proposed algorithm, we need to introduce the concept of support nodes, which allows

us to reduce the search space. Specifically, there are some nodes that are always in the optimal solution due to the structure of

the graph. We denote these nodes as support nodes.

Given a network G = (V ,E), we denote LN ⊆ V as the set of leaf nodes which are connected to a single node in the graph

(i.e., the degree of the node is equal to 1). The nodes to which the leaf nodes are connected are named as support nodes SN.

Considering the example depicted in Figure 1, LN = {4} and SN = {1}, respectively. Then, if we need to monitor all the links

in a network, there are only two options to cover the link in which a leaf node is involved: deploy a monitor in the leaf node,

or deploy it in its support node. It trivially holds that deploying a monitor in the leaf node always result in an equal or worse

solution, since it only covers the link in which the leaf node is involved. Therefore, one optimal solution will always contain a

monitor in every support node.

3.2 Initial solution
VNS requires an initial solution to start the search. This solution can be generated either at random or using a more elaborated

procedure. Although the basis of VNS indicates that the initial solution is not relevant for the algorithm, it has been experi-

mentally tested that a high quality initial solution usually helps the algorithm to provide better solutions in smaller computing

times [24]. Therefore, in this work, we propose two greedy constructive procedures to provide BVNS a good starting point in

the search space.

The first constructive procedure follows a traditional greedy approach which starts from an empty solution and, iteratively,

adds elements to it until reaching a feasible solution. Algorithm 2 shows the pseudocode of the proposed constructive procedure.

Algorithm 2. GreedyConstructive(G)

1: S ← ∅
2: DeploySupportNodes(S,G)
3: UL ← {(u, v) ∈ E ∶ u ∉ S ∧ v ∉ S}
4: C ← V ⧵ (LN ∪ SN)
5: while UL ≠ ∅ do
6: c ← arg max

u∈C

∑

(u,v)∈E
v∈C

p(u, v)

7: S ← S ∪ {c}
8: C ← C ⧵ {c}
9: UL ← UL ⧵ {(c, x) ∶ ∀x ∈ N(c)}

10: end while
11: return S
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6 CASADO ET AL.

The algorithm starts from an empty solution S (step 1) and deploy a monitor in every support node (step 2). Then, the list

of uncovered links UL is created with every edge in the graph which is not covered by any monitor (step 3). The candidate

nodes to host a monitor are those which are neither a leaf node nor a support node (step 4). The method now iterates until

covering all the links in the network (steps 5–10). In each iteration, the next candidate node is selected as the one which is able

to minimize the penalty that affects to the solution under construction (step 6). In other words, we only consider (by summing

up the corresponding penalty) edges whose both endpoints belong to C.

The selected candidate c is then added to the solution (step 7), updating the set of candidates (step 8), removing from the set

of uncovered links UL all edges in which c is involved (step 9). Notice that N(c) refers to the adjacent nodes to c. The method

ends returning a solution S where all the links are covered (step 11).

The second constructive method, named GreedyDestructive, follows a destructive approach. In particular, if all links

need to be covered in a network, it is expected that a large number of nodes would finally be selected. Therefore, it

would be interesting to start from a solution with a monitor deployed in every node but in the set of leaf nodes LN
and, iteratively, remove a monitor from a node while all the links remain covered. This destructive approach is useful for

those hard optimization problems in which the size of the expected solution consists of selecting the majority of available

elements, since it requires less iterations than considering a traditional constructive procedure. Therefore, it can be eas-

ily adapted to several combinatorial optimization problems where the objective is to select an eventually large subset of

elements.

In each iteration, a monitor can be removed from the node v if and only if it is not a support node (i.e., v ∉ SN) and all its

adjacent nodes have a monitor deployed (i.e., u ∈ S ∀u ∈ N(v)). Among all the monitors that can be removed, we need to select

the most promising one. Specifically, we select the node with the smallest degree. The rationale behind this is that the smaller

the degree, the smaller the number of links covered by a monitor deployed in that node. The method stops when no monitor can

be removed without leaving a link uncovered. For the sake of brevity, we omit the inclusion of the corresponding pseudocode

since it is symmetrical to the one reported in Algorithm 2.

3.3 Improvement method
The local improvement phase in VNS is responsible for finding a local optimum with respect to certain neighbor-

hood. It can be as complex as desired: from a straightforward hill-climbing local search method (see [4]) to a more

elaborated metaheuristic such as tabu search, or VND, among others (see [8,23] for some successful applications of

using complex metaheuristics as improvement). In this research, we propose the use of a simple yet effective local

search heuristic to reach a local optimum with a relatively small computational effort, which is a critical part of the

problem.

The definition of a local search method requires three main elements: the movement used in the local search, the

neighborhood of solutions that can be generated with the movement, and the strategy selected to traverse that neighborhood.

First of all, it is necessary to define the movement considered for this improvement phase. Notice that the goal of this

movement is to reach a solution of better quality than the original one, so we need to guarantee that the movement can produce

an improvement. In the context of MPP, since the objective function value is computed as the number of deployed monitors plus

the penalty, it is desirable to reduce the number of deployed monitors without increasing the penalty. To that end, we propose

a movement named Exchange2x1 which removes two deployed monitors and locate a new one. According with Section 3.1,

support nodes are always in the solution, while leaf nodes are never considered in the solution. Therefore, this move can be

mathematically described as follows:

Exchange2x1(S,u,v,w) ← (S ⧵ {u, v}) ∪ {w},

where u, v ∈ (S ⧵ SN), w ∉ S, and w ∈ (V ⧵ LN). In order to simplify the notation, we denote as S = S ⧵ SN and V = V ⧵ LN.

Having defined the movement used in this phase, the neighborhood of a solution S is conformed with those solutions that

can be reached by performing a single Exchange2x1 move over S. More formally:

N2x1(S)← {S′ ← Exchange2x1(S, u, v,w) ∶ ∀u, v ∈ S ∧ w ∈ (V ⧵ S)}.

With the movement and neighborhood defined, it is now necessary to indicate the strategy used to traverse the neighborhood. We

propose two different strategies, resulting in two independent local search methods: an exhaustive local search and an intelligent

local search. The main difference between both strategies is that the latter only considers those movements that do not leave any

link uncovered.

The exhaustive local search, named ELS, randomly traverses the neighborhood N2x1 by removing each pair of nodes and

inserting a new one to replace them. Then, if the resulting solution outperforms the original one, the best solution found

is updated, resulting in a first improvement strategy. Otherwise, the movement is undone, continuing the search with new
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CASADO ET AL. 7

candidates. As can be expected, this strategy performs a vast number of operations, resulting in a nonefficient improvemen

t phase (see Section 4 for a detailed analysis).

With the aim of providing an efficient strategy to explore the neighborhood, we propose an intelligent local search, named

ILS, that carefully selects both, the two nodes to be removed and the one to be included. The goal of this strategy is to reduce

the number of operations to reach a local optimum.

We first consider a preprocessing strategy in charge of identifying extra monitors whose removal does not leave any link

uncovered and, therefore, they are not necessary in the solution. In general, given a solution S and a node u ∈ S, whose

neighborhood N(u) ⊆ S, then, u can be simply removed from S.

The next step in the ILS strategy consists of selecting the nodes involved in the movement. The goal is to select only nodes

that drive to an improvement in the objective function. In order to do so, the first node to be removed u is selected at random.

Thus, it restricts the other two nodes involved in the movement: v, the other node to be removed; and w, the node which will be

included in the solution.

We first identify those monitors whose removal do not drive to an improvement. Formally, given a solution S and any node

u ∈ S, such that |N(u) ⧵ S| > 1, independently of the election of a node v, it is impossible to find a single node w able to cover

those links previously covered by u and v.

Therefore, given a solution S, a node u ∈ S is a promising candidate to be removed if |N(u) ⧵ S| = 1 (notice that the

situation |N(u) ⧵ S| = 0 was considered in the preprocessing strategy). The candidate to be incorporated in the solution is the

only node w that remains in the set N(u) ⧵ S. Finally, this move is actually an improvement move if we are able to identify a

node v ∈ (S ∩ N(w)) such as N(v) ⧵ S = {w}.
ILS traverses the neighborhood performing just those moves that guarantee an improvement, thus ignoring those move-

ments that lead to nonimproving solutions. This approach is suitable for those optimization problems in which it is possible

to rank the moves evaluated in the local search method. The computational results will show the relevance of perform-

ing this study on which elements are the most promising ones, becoming a strategy to be taken into account in similar

problems.

3.4 Shake
The shaking phase in VNS is intended to allow the algorithm to escape from local optima when the local search gets stuck. This

component introduces diversification in the search by perturbing the incumbent solution, resorting to a different solution in the

neighborhood under exploration. To that end, a parameter k controls the perturbation size. This parameter is responsible for

increasing the perturbation size when no improvement is found with the aim of exploring further regions of the search space.

On the contrary, this method reduces the perturbation size when finding improvements so as to focus on promising regions of

the search space.

The perturbation is performed in two stages, by using two new movements: Drop and Add. The former removes a monitor

deployed at node u in solution S producing a new solution S′. In mathematical terms,

Drop(S, u)← S ⧵ {u}.

On the contrary, the Add movement, denoted as Add(S, u), deploys a monitor in the node u. More formally,

Add(S, u)← S ∪ {u}.

The first stage of the shake procedure randomly selects k nodes where a monitor is deployed and performs the Drop move over

them. Then, in the second stage, monitors are deployed using the Add move until all the links are covered. We propose two

different strategies to perform the second stage, resulting in two shake procedures.

On the one hand, the first strategy, named RandomShake, follows the traditional VNS scheme by randomly selecting k
nodes that are not in S and deploying a monitor in them with the Add movement. Notice that this strategy usually produces

solutions in which there are more monitors than necessary since the candidate nodes to host a monitor are selected completely

at random.

On the other hand, we propose a new shake method, named IntensifiedShake, that performs this second stage intelligently,

choosing the most promising nodes to host a monitor. It is necessary to establish a criterion to decide which the next node selected

to host a monitor is. In this work, we propose to use the same criterion as the one used in GreedyConstructive, that is, the selected

nodes are those whose links that are not covered generate the largest penalty (always excluding the leaf nodes). This second

strategy has not been widely explored in the literature, but it is an interesting approach since it is able to find promising regions

of the search space without compromising the diversity of the search, thus leading to more promising solutions. Therefore, it

is a strategy to be considered in those optimization problems where it is possible to consider a greedy criterion in the shake

procedure.
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8 CASADO ET AL.

4 COMPUTATIONAL RESULTS

This section has two main goals. First of all, it is necessary to adjust the input parameters of the proposed algorithm, as well

as the algorithmic strategies that conform the final method. Having configured the best variant of the proposed procedure, the

second objective is to perform a competitive testing considering the state-of-the-art method for the MPP.

All the algorithms have been implemented in Java 11 and the experiments have been conducted in an AMD EPYC 7282

(2.8 GHz) and 72 GB RAM. We have considered the same set of instances as the ones presented in the related literature,

where the best algorithm for the MPP is introduced [20]. From the complete set of instances, we have not been able to consider

delaunay_n19 and delaunay_n20 due to hardware constraints, since our computer does not have enough memory to

store them (although the algorithm would be able to solve them). However, the results obtained with the largest instances will

show how the improvements obtained by the proposed algorithm increase with the size of the instance. The final set of instance

consists of 37 instances. In order to favor future comparisons, we have made publicly available these instances at https://grafo.

etsii.urjc.es/MonitorPlacement.

All the experiments report the following metrics: Avg., the average objective function value obtained by each algorithm

among the considered instances; time (s), the average computing time required by each algorithm to finish, measured in seconds;

Dev (%), the average deviation of the objective function value with respect to the best solution found during the experiment,

evaluated as
|Best−Obj.F.|

Best
for each instance; and # Best, the number of times that the algorithm reaches the best solution of the

algorithm in the experiment. In all the experiments, the best result for each metric is highlighted in bold font.

In order to select the best values for each parameter, some preliminary experiments have been executed. In all of them (from

Tables 1–5), 10 representative instances have been used to configure the proposed algorithm in order to avoid overfitting. Those

instances are: delaunay_n10, delaunay_n11, frb30-15-3, frb35-17-1, frb40-19-2, p2p-Gnutella04,

p2p-Gnutella05, p2p-Gnutella06, tech-routers-rf, tech-WHOIS.

The first preliminary experiment is intended to evaluate the performance of the proposed constructive methods, Greedy-
Constructive and GreedyDestructive. Since they are greedy algorithms, we have constructed a single solution for each instance

using each constructive procedure, as presented in Table 1.

As suggested in Section 3.2, the destructive procedure is considerably faster than the constructive one, since the final solu-

tions contain a monitor deployed in most of the nodes. Therefore, the number of nodes to be removed when considering a monitor

in each node (GreedyDestructive) is rather smaller than the number of nodes to be added when considering an empty initial

solution (GreedyConstructive). However, in terms of quality, the solutions generated with GreedyConstructive are slightly better

than the ones created with GreedyDestructive, as indicated by the small deviation presented by the GreedyDestructive proce-

dure. Analyzing these results, it is not possible to determine which is the best constructive procedure, so in a latter experiment

the performance of the constructive procedures coupled with the local search method will be tested.

TABLE 1 Results obtained when creating a single solution for each instance by each constructive procedure

Algorithm Avg. Time (s) Dev. (%) #Best

GreedyDestructive 1844.90 0.19 0.52 2

GreedyConstructive 1837.80 1.82 0.04 8

TABLE 2 Heat map of the computing times (left) and average deviation (right) when considering different values of 𝛿 and kmax for RandomShake

kmax

𝜹 0.1 0.2 0.3 0.4 0.5

1 0.63 0.93 1.86 2.41 3.92

10 2.17 6.02 11.28 15.02 27.95

20 4.04 12.12 21.56 29.29 54.20

30 6.04 17.84 31.70 42.69 80.46

40 7.67 22.96 85.93 82.07 107.57

kmax

𝜹 0.1 0.2 0.3 0.4 0.5

1 0.23 0.23 0.22 0.22 0.22

10 0.10 0.15 0.07 0.10 0.05

20 0.02 0.10 0.05 0.09 0.05

30 0.02 0.10 0.05 0.04 0.05

40 0.02 0.09 0.05 0.02 0.05
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CASADO ET AL. 9

TABLE 3 Heat map of the computing times (left) and average deviation (right) when considering different values of 𝛿 and kmax for IntensifiedShake

kmax

𝜹 0.1 0.2 0.3 0.4 0.5

1 0.20 0.26 0.57 1.15 2.04

10 0.19 0.99 3.15 6.05 12.74

20 0.20 1.89 5.75 11.79 22.25

30 0.23 2.56 8.50 17.91 33.51

40 0.24 3.22 10.93 27.10 45.64

kmax

𝜹 0.1 0.2 0.3 0.4 0.5

1 0.36 0.34 0.32 0.12 0.12

10 0.36 0.17 0.07 0.11 0.06

20 0.36 0.09 0.03 0.11 0.06

30 0.33 0.09 0.03 0.10 0.06

40 0.33 0.09 0.03 0.10 0.03

TABLE 4 Comparison of both shake strategies for the BVNS algorithm with the corresponding best values for each search parameter

Shake method Avg. Time (s) Dev. (%) #Best

IntensifiedShake 1816.20 1.89 0.01 9
RandomShake 1818.80 4.04 0.22 6

TABLE 5 Comparison of the contribution of each component of the algorithm proposed

Algorithm Avg. Time (s) Dev. (%) #Best

GreedyDestructive 1844.90 0.19 1.89 0

GreedyDestructive+ILS 1819.30 0.21 0.26 4

BVNS 1816.20 1.89 0.00 10

The second experiment evaluates the influence of considering the intelligent local search ILS instead of executing the

exhaustive local search ELS, both described in Section 3.3. Figure 3 shows the comparison of the computing times for executing

the ILS and ELS over the solution generated by the GreedyConstructive procedure to decide if it is worth considering ILS over

ELS.

Notice that the figure is represented using a logarithmic scale due to the vast differences between the computing times of

both local search methods. It is worth mentioning that both local search methods result in solutions of similar quality, so we only

analyze computing times. Regarding these results, we can clearly see the positive impact of considering the intelligent local

search. On average, it is 2500 times faster than ELS, reaching a speedup of 5200 in the most complex instances. In particular,

notice that ILS does not require more than 10 s in any of the considered instances. Furthermore, in the most complex instances,

namely p2p-Gnutella04, p2p-Gnutella05, and p2p-Gnutella06, the ELS has been stopped when reaching 100 000 s, highlighting

the relevance of considering the intelligent local search procedure. Therefore, we consider ILS as the local search method for

the remaining experiments.

The next experiment tries to settle which the most adequate constructive procedure for the MPP is. As stated above, it is not

clear which the best method to generate the initial solution is, so we test the performance of both greedy procedures executed

isolated and when they are coupled with ILS. Figure 4 shows the relation between computing time and average deviation when

considering these four procedures.

The first conclusion that can be extracted from this experiment is that ILS considerably improves the generated solution

without requiring a high computational effort in both greedy procedures. Additionally, we can see how GreedyDestructive+ILS
is able to outperform the results provided by GreedyConstructive+ILS, requiring much less computing time. Therefore, Greedy-
Destructive procedure is used as the method for generating the solution used as starting point for the complete BVNS algorithm.

These results indicates that it is interesting to consider a destructive approach which starts with all elements selected in those

optimization problems in which high-quality solutions have most of the elements selected, since it is able to considerably reduce

computing time without deteriorating the quality of the solution. Additionally, the effect of ILS with respect to ELS suggests

that it is recommended to include information about the structure of the solution in the local search if it is available.
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10 CASADO ET AL.

FIGURE 3 Comparison of the time required by the local search and the efficient variant proposed for each instance in the preliminary set

FIGURE 4 Comparison of the time and the average deviation between both construction strategies isolated and then considering ILS

Having defined the constructive procedure and the local search method, we need to tune the values for the input param-

eters of BVNS. The algorithm requires just two parameters: 𝛿, which is the number of complete VNS iterations, and kmax,

the maximum neighborhood to be explored in each complete iteration. The values tested for the largest neighborhood are

kmax = {0.1, 0.2, 0.3, 0.4, 0.5}, where each value represents a percentage of the number of nodes of the instance to guarantee the

scalability of the proposal. We do not consider larger values of kmax since perturbing more than half of the solution will result

in a completely different one, which is against the philosophy of the VNS framework. Regarding the number of iterations, we

test 𝛿 = {1, 10, 20, 30, 40}.
This work proposes two different shake methods, RandomShake and IntensifiedShake, and the best values for these param-

eters for one shake method are not necessarily the best values for the other shake method. Therefore, we have conducted two

equivalent experiments varying the shake method considered. Since modifying one of the parameters might affect to the other

one, we have decided to show the results obtained in two heat maps where the worst values are colored in red and the best val-

ues in green, interpolating the values between them using a color gradient. Table 2 shows the results obtained by considering

RandomShake.
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CASADO ET AL. 11

Analyzing the heat map of computing times (left), as expected, it grows with the number of iterations and maximum neigh-

borhood explored, being two orders of magnitude slower than the fastest option (kmax = 0.1 and 𝛿 = 1) in some cases. If we

simultaneously analyze the heat map of average deviation (right), we can clearly see that the best values are obtained when

considering small values of kmax, specifically kmax = 0.1, and the number of iterations stagnates when reaching 20. Since the

computing time of kmax = 0.1 and 𝛿 = 20 is also one of the smallest in the experiment, we select these parameter values when

considering RandomShake. Table 3 now shows the same experiment but considering IntensifiedShake.

Analogously to the previous experiment, the computing time also gets increased with the value of kmax and 𝛿, although

the differences are not so remarkable. Regarding the average deviation, the best values are obtained with kmax = 0.3, which

indicates that the intensified shake is able to increase the size of the maximum neighborhood without deteriorating the quality

of the generated solutions. With respect to the number of iterations, it seems that performing more than 20 iterations does not

result in any improvement, so we select kmax = 0.2 and 𝛿 = 20 for IntensifiedShake. The rationale behind this is that, although

considering the next kmax value reduces the deviation from 0.09 to 0.03, we do not believe that it is a significant improvement

for multiplying the computing time by 3.

Having defined the best parameter values for kmax and 𝛿 for both RandomShake and IntensifiedShake, it is necessary to

compare the performance of each shake method in the BVNS algorithm. Table 4 shows the results obtained by both variants.

As it can be seen in the results, IntensifiedShake requires less computing time than RandomShake. This behavior can be par-

tially explained since the solution to which the local search is applied is closer to a local optimum in the case of IntensifiedShake
than in RandomShake, reducing the number of iterations required to reach the local optimum. Additionally, IntensifiedShake is

able to outperform RandomShake in number of best solutions and in average deviation. Notice that IntensifiedShake misses just

one best value, remaining really close to it as derived from a deviation of 0.01%. It is worth mentioning that RandomShake is

rather competitive in this case, but we select IntensifiedShake for being slightly better in all the metrics requiring considerably

less computing time than RandomShake. In this case, the greedy selection of elements in IntensifiedShake is able to reduce

computing time without deteriorating the objective function value, which highlights the relevance of considering this strategy

for optimization problems in which it is possible to define a greedy criterion to select an element to be included in the solution.

The last preliminary experiment is designed to evaluate the contribution of each component of the final algorithm to the

quality of the generated solutions. To that end, we compare the constructive method isolated, then coupled with the intelligent

local search and, finally, the complete BVNS algorithm, configured with GreedyDestructive, ILS, IntensifiedShake, kmax = 0.2,

and 𝛿 = 20. Table 5 shows the results obtained in this experiment.

It is worth mentioning that the efficient design of each component leads BVNS to require comparable computing time than

the constructive procedure isolated or coupled with the local search method. Although ILS allows the algorithm to find 4 best

solutions, it is the complete BVNS algorithm the one that is able to reach all the best solutions. However, the small deviation

achieved by the combination of constructive and local search methods result in a simple yet effective algorithm to provide high

quality solutions in negligible computing times. These results show the contribution of each part of the proposed algorithm to

the final version.

At this point, all the components and parameters of the BVNS algorithm have been fixed, so the next experiment is devoted to

evaluate the performance of BVNS when comparing it with a hybrid search evolutionary algorithm (LS+PI) EA, one of the most

widely used algorithms found in the state of the art [20], which consists of an effective hybrid search heuristic that leverages the

combination of the greedy local search method with evolution-based heuristics. The complete set of 37 instances is considered

in this final experiment, grouping them by type. Table 6 shows the results obtained when considering the complete testbed of

instances. Notice that the column Median O.F. reports the median objective function value obtained along 100 executions for

each instance, considering the same experimental methodology described in [20]. It is worth mentioning that the hardware used

to perform the experiments in this research is directly comparable with the one considered in the state of the art. In particular,

the score given in a CPU benchmark to each processor is the same (1.9).
1

Results in Table 6 show how BVNS is able to find 37 best solutions, that is, in each type of instances the algorithm reaches

the best solution for every instance. If we now look at the time required by each algorithm, in the type of instances where the

difference is the largest (frb), BVNS is 445 times faster than (LS+PI) EA. Looking at the average deviation obtained by each

algorithm in each type of instances, it can be seen that BVNS value is always 0.0%, while the state-of-the-art algorithm has an

average deviation of approximately 17.0% taking into account all types of instances, reaching the maximum value in delaunay
(40.47%) and internet-as (33.22%) instances, and the minimum value in frb instances (0.66%). Notice that, in this last

type of instances, the difference in time between the two algorithms is the greatest one. It is worth mentioning that the largest

differences in deviation are obtained in the most complex instances, highlighting the scalability of the proposed algorithm.

Analyzing these results, we can conclude that the proposed BVNS is a competitive algorithm for solving the MPP, requiring a

reduced computational effort even for the most complex instances, we refer the reader to Table A1 to view individual results.

1
https://www.cpubenchmark.net/compare/Intel-Xeon-E5-2690-v4-vs-AMD-EPYC-7282/2780vs3625
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12 CASADO ET AL.

TABLE 6 Comparison of the hybrid search evolutionary algorithm (LS+PI) EA and the proposed BVNS for each instance type

Instance type Algorithm Median O.F. Avg. time (s) Dev. (%) #Best

delaunay BVNS 41 311.72 272.21 0.00 9
(LS+PI) EA 100 602.33 475.78 40.47 0

frb BVNS 584.67 0.56 0.00 15
(LS+PI) EA 588.67 252.56 0.66 0

internet-as BVNS 5701.00 19.95 0.00 1
(LS+PI) EA 7595.00 179.18 33.22 0

NREN BVNS 422.00 0.05 0.00 1
(LS+PI) EA 452.00 2.02 7.11 0

p2p-Gnutella BVNS 6001.67 6.49 0.00 9
(LS+PI) EA 7966.67 71.95 24.58 0

tech BVNS 1540.50 1.98 0.00 2
(LS+PI) EA 1658.50 32.08 7.33 0

FIGURE 5 Box-plots for some representative instances to show the variability of the proposed algorithm

In order to evaluate if there are statistically significant differences between the results obtained by both algorithms, the

pairwise nonparametric Wilcoxon Signed Ranks statistical test is performed. The resulting p-value smaller than 0.001 supports

the hypothesis that both samples belong to different populations.

Finally, to evaluate the effect of the randomness in the proposed algorithm, Figure 5 shows the box-plot obtained for the 100

executions of BVNS. In order to present all the box-plots in the same figure, the reported values are the deviation with respect

to the best value of the 100 executions per instance. The considered instances are the same as the ones presented in the best

previous work [20] to facilitate the comparison. As it can be seen in the figure, most of them present minimum or even zero

variability, supporting the robustness of the proposal. The largest variability is obtained in the most complex instances, where

the objective function value varies in a range of five units, which is negligible when considering the magnitude of the objective

function value. We refer the reader to Table A2 in the Appendix for the individual results on every instance.

5 CONCLUSIONS

This work deals with the MPP, which tries to locate monitors in a network in such a way that all the communications are

surveyed to protect the network from external attacks or failures. Since it is a critical task, it requires a fast response, so the

proposed algorithm must be able to perform the monitoring without requiring large computing times. The problem is addressed

by considering the BVNS framework, proposing an intelligent local search that is able to leverage the identification of promising

regions of the search space to minimize the impact in the computing time without deteriorating the quality of the solutions

provided.

Furthermore, two greedy procedures are proposed to produce a promising initial solution. Both methods follow opposite

directions: on the one hand, the GreedyConstructive starts from scratch and constructs a solution by locating monitors; on the

other hand, a novel approach is followed by GreedyDestructive, which initially considers that a monitor is deployed in every
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CASADO ET AL. 13

node and iteratively removes monitors while maintaining the network covered. Finally, an intensified shake is proposed, which

is able to perform an intelligent selection of the nodes inside the shake procedure of VNS with the aim of guiding the search to

a more promising region of the search space. The experimental results show how every component of the proposed algorithm

has a positive effect in the final results, emerging BVNS as a competitive method for solving the MPP.

Future lines of research comprehend the study of the strategies presented in this work when applying it to problems related

to the monitor placement but with additional constraints, such as weighted nodes, fault tolerance, and so forth, to evaluate the

adaptation of the proposed algorithm.

ACKNOWLEDGMENTS

Alejandra Casado, Jesús Sánchez-Oro, and Abraham Duarte research was funded by “Ministerio de Ciencia, Innovación y

Universidades” under grant ref. PGC2018-095322-B-C22, “Comunidad de Madrid” and “Fondos Estructurales” of European

Union with grant refs. S2018/TCS-4566 and Y2018/EMT-5062. Nenad Mladenović has been partially supported by the Science
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[10] P. Hansen, N. Mladenović, R. Todosijević, and Sa𝚤 ̈ d Hanafi, Variable neighborhood search: Basics and variants, EURO J. Comput. Optim. 5
(2017), no. 3, 423–454.

[11] N. Hatano and M. Suzuki, Quantum annealing and other optimization methods. arXiv preprint math-ph/0506007, 2005.

[12] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial
intelligence, MIT Press, Massachussetts, 1992.

[13] R. M. Karp, “Reducibility among combinatorial problems,” Complexity of computer computations, Springer, New York, 1972, pp. 85–103.

[14] S. Lagraa and J. François, Knowledge discovery of port scans from darknet, Proc. 2017 IFIP/IEEE Symp. Integr. Netw. Serv Manag. (IM). IEEE,

2017, pp. 935–940.

[15] E. L. Lawler and D. E. Wood, Branch-and-bound methods: A survey, Oper. Res. 14 (1966), no. 4, 699–719.

[16] R Luling and B. Monien, Load balancing for distributed branch & bound algorithms, Proc. 6th Int. Parallel Process. Symp., IEEE, 1992,

pp. 543–548.

[17] M. Milanovic, Solving the generalized vertex cover problem by genetic algorithm, Comput. Inform. 29 (2010), no. 6, 1251–1265.

[18] R. Mueller-Bady, R. Gad, M. Kappes, and I. Medina-Bulo, Using genetic algorithms for deadline-constrained monitor selection in dynamic
computer networks, Proc. Comp. Publ. 2015 Annu. Conf. Genet. Evol. Comput, 2015, pp. 867–874.

[19] R. Mueller-Bady, M. Kappes, I. Medina-Bulo, and F. Palomo-Lozano, Optimization of monitoring in dynamic communication networks using
a hybrid evolutionary algorithm, Proc. Genet. Evol. Comput. Conf., 2017, pp. 1200–1207.

[20] R. Mueller-Bady, M. Kappes, I. Medina-Bulo, and F. Palomo-Lozano, An evolutionary hybrid search heuristic for monitor placement in
communication networks, J. Heurist. 25 (2019), no. 6, 861–899.

[21] M. E. J. Newman, A measure of betweenness centrality based on random walks, Soc. Netw. 27 (2005), no. 1, 39–54.

[22] M. Pelikan and D. E. Goldberg, “Hierarchical bayesian optimization algorithm,” Scalable optimization via probabilistic modeling, Springer,

New York, 2006, pp. 63–90.

[23] S. Pérez-Peló, J. Sánchez-Oro, A. Gonzalez-Pardo, and A. Duarte, A fast variable neighborhood search approach for multi-objective community
detection, Appl. Soft Comput. 112 (2021), 107838.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22134 by U

niversidad R
ey Juan C

arlos C
/T

ulipan S/N
 E

dificio, W
iley O

nline L
ibrary on [12/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://grafo.etsii.urjc.es/MonitorPlacement
https://grafo.etsii.urjc.es/MonitorPlacement
https://grafo.etsii.urjc.es/MonitorPlacement
https://orcid.org/0000-0003-3417-6859
https://orcid.org/0000-0003-3417-6859
https://orcid.org/0000-0001-6655-0409
https://orcid.org/0000-0001-6655-0409
https://orcid.org/0000-0003-1702-4941
https://orcid.org/0000-0003-1702-4941
https://orcid.org/0000-0002-4532-3124
https://orcid.org/0000-0002-4532-3124


14 CASADO ET AL.

[24] J. Sánchez-Oro, J. J. Pantrigo, and A. Duarte, Combining intensification and diversification strategies in vns. an application to the vertex
separation problem, Comput. Oper. Res. 52 (2014), 209–219.

[25] D. Zhang, E. K. Cetinkaya, and J. P. G. Sterbenz, Robustness of mobile ad hoc networks under centrality-based attacks, Proc. 2013 5th Int.

Congr. Ultra Modern Telecommun. Control Syst. Worksh. (ICUMT)., IEEE, 2013, pp. 229–235.
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APPENDIX

TABLE A1 Comparison of (LS+PI) EA [20] and BVNS for each instance, considering the median objective function value obtained along 100 executions,

as well as the average computing time

BVNS (LS+PI) EA

Instance Time (s) Median O.F. Time (s) Median O.F.

delaunay_n10 0.20 717.50 3.33 755

delaunay_n11 0.42 1422.00 6.79 1514

delaunay_n12 2.16 2863.00 13.46 3046

delaunay_n13 9.63 5700.50 25.11 6120

delaunay_n14 37.75 11 415.50 54.10 12 304

delaunay_n15 174.57 22 821.50 178.13 24 848

delaunay_n16 484.26 45 687.50 472.69 51 058

delaunay_n17 262.56 91 917.00 1106.82 151 210

delaunay_n18 1478.32 189 261.00 2421.55 654 566

frb30-15-1 0.22 435.00 63.30 438

frb30-15-2 0.21 435.00 72.85 437

frb30-15-3 0.25 435.00 67.55 438

frb30-15-4 0.20 435.00 72.84 437

frb30-15-5 0.18 435.00 77.69 436

frb30-17-1 0.55 578.00 230.92 582

frb30-17-2 0.43 578.00 259.31 583

frb30-17-3 0.46 578.00 218.72 582

frb30-17-4 0.47 578.00 236.29 582

frb30-17-5 0.58 578.00 273.25 582

frb40-19-1 0.76 741.00 413.36 747

frb40-19-2 0.99 741.00 414.94 747

frb40-19-3 0.90 741.00 484.33 747

frb40-19-4 1.24 741.00 473.27 745

frb40-19-5 0.93 741.00 429.84 747

internet-as 19.94 5701.00 179.18 7595

nren 26.89 422.00 2.02 452

p2p-Gnutella04 0.02 4352.50 24.69 5017

p2p-Gnutella05 5.58 3431.00 21.46 3958

p2p-Gnutella06 3.36 3407.00 22.88 3916

p2p-Gnutella08 3.44 2057.00 14.10 2344

p2p-Gnutella09 1.02 2574.00 17.19 2984

p2p-Gnutella24 1.52 7210.00 67.03 9382

p2p-Gnutella25 11.76 6017.00 36.37 7794

p2p-Gnutella30 7.15 9272.50 123.85 12 419

p2p-Gnutella31 24.52 15 694.00 320.01 23 886

tech-routers-rf 0.14 796.00 7.05 849

tech-WHOIS 3.82 2285.00 57.10 2468
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TABLE A2 Individual results found by algorithm BVNS for each considered instance, considering best, worst, and average objective function value, as well

as the average computing time.

Instance Min. O.F. Max. O.F. Avg. O.F. Avg. time (s)

delaunay_n10 715 720 717.60 0.20

delaunay_n11 1419 1425 1422.30 0.42

delaunay_n12 2853 2868 2861.60 2.16

delaunay_n13 5698 5708 5701.70 9.64

delaunay_n14 11 408 11 426 11 416.40 37.75

delaunay_n15 22 809 22 833 22 821.30 174.58

delaunay_n16 45 662 45 714 45 688.90 484.26

delaunay_n17 91 915 92 023 91 938.80 262.57

delaunay_n18 189 261 189 261 189 261.00 1478.33

frb30-15-1 435 435 435.00 0.23

frb30-15-2 435 435 435.00 0.22

frb30-15-3 435 435 435.00 0.25

frb30-15-4 435 435 435.00 0.20

frb30-15-5 435 435 435.00 0.18

frb35-17-1 578 578 578.00 0.56

frb35-17-2 578 578 578.00 0.43

frb35-17-3 578 578 578.00 0.46

frb35-17-4 578 578 578.00 0.48

frb35-17-5 578 578 578.00 0.59

frb40-19-1 741 741 741.00 0.76

frb40-19-2 741 741 741.00 1.00

frb40-19-3 741 741 741.00 0.91

frb40-19-4 741 741 741.00 1.24

frb40-19-5 741 741 741.00 0.94

internet-as 5701 5704 5701.70 19.95

nren 422 424 422.60 26.89

p2p-Gnutella04 4351 4355 4352.80 0.02

p2p-Gnutella05 3430 3432 3430.90 5.58

p2p-Gnutella06 3406 3410 3407.20 3.36

p2p-Gnutella08 2055 2058 2056.80 3.45

p2p-Gnutella09 2574 2574 2574.00 1.02

p2p-Gnutella24 7209 7212 7210.20 1.52

p2p-Gnutella25 6017 6017 6017.00 11.76

p2p-Gnutella30 9271 9274 9272.30 7.16

p2p-Gnutella31 15 694 15 695 15 694.30 24.52

tech-routers-rf 795 796 795.80 0.14

tech-WHOIS 2285 2286 2285.30 3.83
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