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Abstract
The selection of individuals with similar characteristics from a given population have
always been a matter of interest in several scientific areas: data privacy, genetics,
art, among others. This work is focused on the maximum intersection of k-subsets
problem (kMIS). This problem tries to find a subset of k individuals with themaximum
number of features in common from a given population and a set of relevant features.
The research presents a Greedy Randomized Adaptive Search Procedure (GRASP)
where the local improvement is replaced by a complete Tabu Search metaheuristic
with the aim of further improving the quality of the obtained solutions. Additionally,
a novel representation of the solution is considered to reduce the computational effort.
The experimental comparison carefully analyzes the contribution of each part of the
algorithm to the final results as well as performs a thorough comparison with the state-
of-the-art method. Results, supported by non-parametric statistical tests, confirms the
superiority of the proposal.
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1 Introduction

A well-known issue in the selection of individuals from a certain population consists
of maximizing the features that the selected individuals have in common. This issue
has resulted in a wide variety of optimization problems, where the objective usually
consists of maximizing the relations between two different sets of elements, without
considering the relations among elements in the same subset.

One of the most studied problems of this family is the Maximum Edge Biclique
(MEB) problem (Peeters 2003), where the objective is to find a biclique in a given
graph with the maximum number of edges. This problem has been widely studied
from different perspectives using both, exact and heuristic approaches (Pandey et al.
2020;Wang et al. 2018). Furthermore, several variants for this problem have been also
presented, considering new constraints such as the balance between subsets (Li et al.
2020), or weights in the elements to be selected representing their relevance (Pandey
et al. 2020).

This research is focused on studying a problem of the family of the MEB, which
tries to include constraints from real-world applications, denoted as the maximum
intersection of k-subsets problem (kMIS). It is formally defined as follows: let E =
{e1, e2, . . . , en} be a set of elements, where each e has a set of features Fe ⊆ F , being
F the set of available features. It is worth mentioning that the number of features of
each elements ranges from 1 to |F |. Then, given an integer number k, the objective
of kMIS is to select a subset of k elements from E that shares the maximum number
of features in common from F . Then, an instance for this optimization problem is
defined by the 3-tuple I = (E, F, k).

A feasible solution for the kMIS is defined as a set of exactly k elements extracted
from E . Then, given a solution S ⊂ E , with |S| = k, the objective function value
kMIS(S) is evaluated as:

kMIS(S) =
∣
∣
∣
∣
∣

⋂

e∈S
Fe

∣
∣
∣
∣
∣

The goal of kMIS is then to find a solution S� with themaximumvalue of kMIS(S�).
More formally,

S� = argmaxS∈S kMIS(S)

being S the set of all feasible solutions of kMIS.
Figure 1a depicts an instance for the kMIS with 4 elements, E = {e1, e2, e3, e4},

and 5 available features, F = { f1, f2, f3, f4, f5}, to be related to. Features present in
each element are represented with a line between the element and the feature. For the
sake of clarity, each line is highlightedwith the same color as the element. For example,
features associated to e1 are Fe1 = { f1, f2, f3}, to e2 are Fe2 = { f1, f2, f3, f5}, and
so on.

Assuming that k = 3, any feasible solution consists of selecting three elements
from E . We depict in Fig. 1b and c two different solutions, denoted as S1 and S2. On
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(a) Example instance with 4 elements and 5 features.

(b) Solution S1.

(c) Solution S2

Fig. 1 Example instance with 4 elements and 5 features, (a), and two feasible solutions for it: S1, (b), and
(c). Selected elements and features in common are highlighted with solid background color

the one hand, S1 is conformed with the elements S1 = {e1, e3, e4}. On the other hand,
S2 contains the elements S2 = {e1, e2, e3}. Regarding S1, the value of the objective
function is computed as kMIS(S1) = |Fe1 ∩ Fe3 ∩ Fe4 | = 1. If we perform the same
evaluation over S2, we obtain kMIS(S2) = |Fe1 ∩ Fe2 ∩ Fe3 | = 3. Therefore, solution
S2 is better than S1 in the context of kMIS.

This problem presents several real-life applications in a wide variety of areas.
Authors in Vinterbo (2002) show that the kMIS is applicable for controlling the data
privacy. In particular, elements represent people for which the privacy must be pre-
served, while features represent specific attributes that each person can have. Then,
the objective is to publish the maximum amount of attributes of people for performing
data analytics without violating the privacy of the people involved. Thus, a company
can publish a set of attributes if and only if, at least, k people have the same attributes
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in common. Another relevant application emerges in the context of genetics, where
it is required to identify k genes with the maximum number of features in common
to conform DNAMicroarray (see (Nussbaum et al. 2010) for further details). Finally,
in Bogue et al. (2014) a novel application related with recommender systems is pre-
sented. Specifically, each element identifies a musical artist and features represents
people interested in music. An artist is related to a person if he/she is fan of that
musical artist. Then, the objective here is to find a set of k musical artists maximizing
the number of fans to conform a musical event, playlist, etc. Notice that kMIS can
be easily extended to different areas such as selecting the most popular courses to be
served in a restaurant, for instance.

The kMIS was originally defined in Vinterbo (2002), and it was proven to beNP-
hard in Xavier (2012), being also hard to approximate. However, for two special types
of instances the kMIS can be optimally solved in polynomial time. Specifically, a poly-
nomial delay algorithm is proposed in Ganter and Reuter (1991), which enumerates
all closed sets of feasible solutions by representing the instance as a bipartite graph
and enumerating all maximal cliques of this graph if the value of k is bounded by a
constant. Additionally, authors in Nussbaum et al. (2010) showed that, for some spe-
cial types of instances which are the convex bipartite graphs, the kMIS can be solved
in polynomial time.

In Bogue et al. (2014) an exact method based on an integer programming formu-
lation for the kMIS is presented, which leverages a fast preprocessing method to start
the search from. However, as an exact procedure, it requires long computing times for
optimally solving small and medium size instances. Additionally, they proposed three
linear integer programming models as well as a constructive heuristic for the kMIS,
where two of the presented formulations were adapted fromAcuña et al. (2014), while
the last one is a completely original proposal, being the most efficient exact method
for the kMIS.

In spite of the difficulty of finding optimal solutions for the kMIS, it has beenmainly
ignored from a heuristic point of view. As far as we know, there is only a previous work
that tackles the kMIS from a heuristic perspective (Dias et al. 2020), which proposes
the combination of several heuristic and metaheuristic algorithms for providing high
quality solutions in small computing times. Themain proposal is based on the Variable
NeighborhoodSearch (VNS) framework, proposedbyMladenović andHansen (1997),
with the aim of leveraging the systematic changes of neighborhood for improving the
solutions foundduring the search. In particular, they extends the constructive procedure
proposed in Bogue et al. (2014) for dealing with several solutions simultaneously
combining them with Path Relinking. Additionally, they propose a Reactive VNS
method which modifies the shaking phase of VNS by including a greedy randomized
selection of the solutions to be selected. Finally, the method is able to escape from
local optima by moving to a large neighborhood in case of stagnation.

The remaining of the paper is structured as follows: Section 2 introduces a novel
solution representation used in this research, Sect. 3 presents the algorithmic proposal
based on GRASP, Sect. 4 describes Tabu Search as an alternative for the GRASP
improvement phase, Sect. 5 describes the thorough computational experimentation
carried out to analyze the performance of the proposed algorithms and, finally, Sect. 6
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draws some conclusions derived from this research aswell as highlights possible future
research for this problem.

2 Solution representation

Given an instance I = (E, F, k), a direct implementation for the kMIS would con-
sider that a solution is represented by the set of selected elements from E . However,
it is important to take into account the performance of the most common operations
over this solution representation. If we consider this set solution representation, the
evaluation of a given solution is performed by intersecting the features in common
among all selected elements, which can be computationally demanding for medium
and large instances. With the aim of accelerating this process, we consider the use of
bitsets as it was originally proposed in Dias et al. (2020). To achieve further improve-
ments, we propose to cache solution information during the search. This mechanism
allows the algorithm to reduce the number of operations performed, resulting in shorter
computing times.

A bitset is defined as a binary array where each element can take the values 0 or 1. In
order to model the kMIS, each element e ∈ E has its own bitset B of size |F |, where a
value of 1 at position p indicates that the feature f p is present in Fe. Therefore, in order
to evaluate the features in common between two elements ei and e j , it is only required
to perform the AND logical operation between Bi and Bj , which can be computed in
constant time. This behavior allows us to considerably accelerate the search process.

Table 1 shows the bitset representation and evaluation of the objective function
when considering solutions S1 and S2 presented in Fig. 1. As it was depicted above,
element e1 has features f1, f2, and f3, which is illustrated with a 1 in the table.
Symmetrically, features f4 and f5 are not present in e1, therefore, the corresponding
positions are set to 0. The feature representation of the remaining elements can be
trivially deduced. The rows highlighted in bold indicate the elements selected in each
solution (i.e., S1 = {e1, e3, e4} and S2 = {e1, e3, e3}).

The last row of the table represents the result of applying the AND logical operator
over the bitsets of the selected elements. In particular, for S1 the only active bit in the
result is the one corresponding to f3, which is the only feature in common for the
selected elements (i.e., e1, e3, and e4). In the case of S2, the common features are f1,
f2, and f3, which are the ones with a 1 in the resulting bitset.
The objective function value is evaluated as the cardinality of the resulting bitset,

being 1 in the case of S1 and 3 for S2, as expected. It is worth mentioning that this
operation can be also performed in constant time.

In terms of computational complexity, all operations are performed in constant
time, resulting in a complexity of O(1), which is quite better than the complexity
of performing the intersection of the features of the selected elements, which have a
complexity of O(|F |). If the number of features is less than or equal to the CPU word
size, then the intersection is guaranteed to be performed in constant time. Otherwise,
the representation of the CPU word size must be split into parts to achieve high
performance (which can be done directly by the programming language). We refer
the reader to Komosko et al. (2016); San Segundo et al. (2006) for a more detailed
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Table 1 Bitset representation of
solutions S1 and S2, depicted in
Fig. 1

S1 S2

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

e1 1 1 1 0 0 1 1 1 0 0

e2 1 1 1 0 1 1 1 1 0 0

e3 1 1 1 1 0 1 1 1 0 0

e4 0 0 1 0 1 0 0 1 0 1

AND 0 0 1 0 0 1 1 1 0 0

description about this feature. Therefore, we will use this solution representation for
the remaining of the paper.

3 Algorithmic proposal

This work proposes an algorithm based on the Greedy Randomized Adaptive Search
Procedure (GRASP) methodology. GRASP is a multi-start metaheuristic presented in
Feo and Resende (1989), but it was not formally defined until (Feo et al. 1994). It
is conformed by two main phases: construction and local improvement. The former
is intended to generate a high quality and diverse solution from scratch (Glover and
Kochenberger 2006), while the latter is responsible for finding a local optimum with
respect to certain neighborhood. The main idea of GRASP relies on the inclusion of
randomization during the construction phase in order to increase the diversity of the
search. Contrary to a completely greedy construction phase, eachGRASP construction
results in a different solution, thus guiding the search to different directions to explore
a wider portion of the search space. In particular, we perform 1000 complete GRASP
iterations (construction and improvement phase), returning the best solution found
during the search. See (Duarte et al. 2015; Pérez-Peló et al. 2020; Casas-Martínez
et al. 2021) for recent successful applications of the GRASPmetaheuristic in a diverse
family of combinatorial optimization problems. Algorithm 1 shows the pseudocode
of the GRASP scheme.

Algorithm 1 GRASP(I = (E, F, k), α,�)
1: Sb ← ∅
2: for i ∈ 1 . . . � do
3: S ← Construct(I , α)

4: S′ ← Improve(S)

5: if kMIS(S′) > kMIS(Sb) then
6: Sb ← S′
7: end if
8: end for
9: return Sb
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The method requires three input parameters: I , the instance that is going to be
solved; α, which controls the greediness / randomness of the constructive procedure;
and �, the number of iterations of GRASP to be performed.

The algorithm iteratively construct and improve a fixed number of � solutions
(steps 2–8). For each iteration, a solution is constructed from scratch (step 3) following
one of the constructive procedures presented in Sect. 3.1. Then, either the local search
presented in Sect. 3.2 or the Tabu Search described in Sect. 4 is applied with the aim
of further improving the initial solution (step 4). Once the solution is improved, it is
checked if it is the best solution found or not (step 5). If so, the best solution is updated
(step 6). The method ends returning the best solution found during the search (step 9).

3.1 Construction phase

The constructive procedures designed for the kMIS leverages the solution represen-
tation described in Sect. 2 with the aim of generating good starting points for the
subsequent local improvement in short computing times. In particular, we propose
two different constructive procedures that alternates the greedy and random phases of
the GRASP methodology.

The first constructive procedure, named Constructive Greedy-Random (CGR),
follows the traditional GRASP scheme. Algorithm 2 shows the pseudocode of the
proposed constructive procedure.

Algorithm 2 CGR(I = (E, F, k), αGR)
1: e ← Random(E)

2: S ← {e}
3: CL ← E \ {e}
4: while |S| < k do
5: gmin ← minc∈CL g(c)
6: gmax ← maxc∈CL g(c)
7: μ ← gmax − αGR · (gmax − gmin)

8: RCL ← {c ∈ CL : g(c) ≥ μ}
9: e ← Random(RCL)

10: S ← S ∪ {e}
11: CL ← CL \ {e}
12: end while
13: return S

As it is customary in GRASP, the first element is selected at random to favor
diversity (step 1). Then, the selected element is included in the solution (step 2) and
the candidate list CL is conformed with all the elements in E but the first selected
element (step 3). The method then iteratively adds elements to the solution under
construction by following a greedy criterion (steps 4–12).

In each step, the minimum (gmin) andmaximum (gmax) value of the greedy function
considered to guide the construction among all the candidates are evaluated (steps 5–6).
It is recommendable to use a greedy function value which requires a small compu-
tational effort since, in each iteration, all the candidates must be evaluated. In the
context of kMIS, the efficient representation of a solution presented in Sect. 2 allows
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the constructive procedure to directly use the objective function as greedy function.
In particular, the greedy function value for an element c, denoted as g(c) is evaluated
as the number of features that the elements already included in the solution have in
common with c. In terms of the solution representation, the value of the greedy func-
tion is obtained by performing the logical operation AND between the features of the
elements in the partial solution and the features of c.

Then, a threshold μ is computed to determine which elements are able to enter
in the restricted candidate list RCL (steps 7–8). In particular, the threshold depends
on an input parameter αGR, which is in the range 0-1. Notice that, if αGR = 0, then
μ = gmax, and only those elements whose greedy function value is equal to gmax
are considered in the RCL, resulting in a totally greedy algorithm. On the contrary,
if αGR = 1, μ takes the value of gmin, and all the elements are included in the RCL,
becoming a completely random procedure. Therefore, the larger the value of αGR, the
more greedy the algorithm is. Section 5 discusses the most appropriate value for this
parameter.

The next element to be added to the solution under construction is selected at
random from the RCL (step 9). Finally, the CL is updated by removing the selected
element to avoid repeated elements in the solution. The method ends when k elements
have been selected from E , returning the constructed solution (step 13).

Having defined the constructive procedure CGR, it is interesting to perform a com-
putational complexity analysis. In particular, the while loop presents a complexity of
O(k) since it performs exactly k iterations. The maximum complexity of the instruc-
tions inside the loop is O(n) since it is necessary to traverse all the elements once,
storing gmin and gmax during the traversal. To reduce the computational effort, the RCL
is not explicitly created, so the selection of the next element is performed in O(1).
Then, the complete constructive procedure presents a complexity of O(k · n).

The second constructive procedure, named Constructive Random-Greedy (CRG)
is based on the idea of swapping the greedy and random phases inside the traditional
GRASP framework. Algorithm 3 presents the pseudocode of CRG.

Algorithm 3 CRG(I = (E, F, k), αRG)
1: e ← Random(E)

2: S ← {e}
3: CL ← E \ {e}
4: while |S| < k do
5: RCL ← SelectRandom(CL, αRG · |CL|)
6: e ← argmaxc∈CL g(c)
7: S ← S ∪ {e}
8: CL ← CL \ {e}
9: end while
10: return S

Analogously to CGR, the first element is selected at random, constructing the
candidate list CL (steps 1–3). As in CGR, the method iteratively adds elements to the
solution under construction until obtaining a feasible solution, i.e., |S| = k (steps 4–9).
Then, CRG swaps the greedy and random phases. In particular, the restricted candidate
listRCL is constructed by randomly selecting αRG ·|CL| elements from theCL (step 6).
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Then, the selection of the next element is performed in a greedy manner by choosing
the best element among those included in the RCL.

Notice that, in this case, the parameter αRG, which is also in the range 0-1, produces
a totally greedy algorithm when it takes the value 1, since all elements are included in
the CL. Values close to 0 results in a small size RCL, which is equivalent to an almost
completely random selection of candidates. Again, the best value for this parameter
is discussed in Sect. 5.

Similarly to CGR, we perform a computational complexity analysis of CRG. In this
case, the while loop again performs exactly k iterations, resulting in a complexity of
O(k). Inside the loop, the method needs to traverse αRG · n elements, presenting a
complexity of O(αRG · n). Then, the complexity of CRG is O(k · αRG · n), which is
better than the complexity of CGR since the value of αRG is bounded in the range
[0,1]. Then, the smaller the value, the better the complexity, since it needs to evaluate
a smaller number of candidates in each iteration.

3.2 Local improvement

The second stage of the GRASP methodology consists of finding a local optimum
with respect to a certain neighborhood starting from the constructed solution. The
literature of GRASP have considered both, simple and more complex local search
heuristics for this stage. Indeed, some works have included a complete metaheuristic
such as Variable Neighborhood Search (Gao et al. 2019), or even Genetic Algorithms
(Saad et al. 2018), in the second phase of GRASP with the aim of further exploring
the search space.

In this work, a simple but effective local search is proposed with the aim of finding
a local optimum in short computing times. The first element that should be identified
to define a local search procedure is the move operator that is applied in the search. In
particular, since a feasible solution for the kMIS is conformedwith exactly k elements,
andwith the objective of alwaysmaintaining the feasibility of the solutions explored in
the neighborhood, a swap move is proposed. Given an element ei ∈ S and an element
e j ∈ (E \ S), this move swaps ei with e j . In mathematical terms,

Swap(S, ei , e j ) = (S \ ei ) ∪ e j

The definition of a movement allows us to precisely describe the neighborhood that
is explored in the proposed local search, named as N (S), as the set of solutions that
can be reached from S by performing a single swap move. More formally,

N (S) = {S′ ← Swap(S, ei , e j ), ∀ei ∈ S ∧ ∀e j ∈ (E \ S)}
Having defined the move operator and the neighborhood generated by this move

operator, the last element required to define a local search is the way in which this
neighborhood is traversed. Two traditional strategies are usually considered: best and
first improvement. On the one hand, best improvement explores the complete neigh-
borhood of a given solution, performing the swapmove that leads to the highest quality
solution. On the other hand, first improvement performs the first move that ends in a
better solution than the starting one.
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Since best improvement requires the exploration of the complete neighborhood in
each iteration, it is usually much more computationally demanding than first improve-
ment. In the context of kMIS, we select first improvement with the aim of maintaining
short computing timeswhen including the local search procedure. Notice that the order
in which the solutions in the neighborhood are explored is relevant when considering
a first improvement approach so, to avoid biasing the search, we perform a random
traversal in each iteration. Algorithm 4 shows the pseudocode of the proposed local
search.

Algorithm 4 LocalSearch(I = (E, F, k), S)
1: repeat
2: Improve ← False
3: for ei ∈ S do
4: B′ ← ⋂

j∈S\{ei } B j
5: for e j ∈ (E \ S) do
6: B′′ ← B′ ⋂ B j
7: if |B′′| > kMIS(Sb) then  Improve
8: S ← Swap(S, ei , e j )
9: Improve ← True
10: go to 14
11: end if
12: end for
13: end for
14: until not Improve
15: return S

This local search is executed until we cannot improve. The method starts setting
the Improve value to False (step 2). Then, it randomly traverses the elements in S
(step 3). For each element ei ∈ S, a bitset without considering ei is saved at B ′, with
the aim of having cached the bitset of the solution in case of ei is removed (step 4).
The inner for loop (step 5) randomly traverses each element that is not in S, and
stores in B ′′ the resulting bitset of performing the AND logical operation with element
j , which simulates that e j is included in the solution (step 6). If an improvement is
found (step 7), the exchange is finally performed (step 8) and the improve value is set
to True (step 9). Then, in step 10, the exploration of the neighborhood is stopped
(since an improvement has been found, and the method performs a new iteration. This
procedure ends when no improvement is found (step 14), returning the local optimum
with respect to the defined neighborhood (step 15).

Notice that this local search presents a high performance since it is able to perform
just the moves that lead to an improved solution by using the solution representation
based on bitsets. In particular, storing in B ′ the bitset obtained by removing the element
ei allows the search to perform this evaluation just once for each element, instead of
performing the swap move in each iteration of the search. Similarly, to decide if the
move is an improvement or not, the algorithm just need to perform a single AND logical
operation with the candidate element e j to be included in the solution. If the size of
the resulting bitset is larger than the objective function value of the best solution found
during the search, the move is performed since it lead to a better solution.
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4 Tabu Search

Alternatively to the standard local search proposed in Sect. 3.2, we present a Tabu
Search (TS) algorithm to further improve the solutions generated using the constructive
procedures described in Sect. 3.1. TS was originally presented in Glover et al. (1998)
as a method to help local search methods to escape from local optimality (see (Martí
et al. 2018) for a successful application of this metaheuristic). One of the key elements
within TS is the inclusion of an adaptive memory during the search.

As it was aforementioned in Sect. 3.2, each solution S has an associated neigh-
borhood N (S) which is conformed with all the solutions that can be reached with a
single swap move from S. Local search methods scan this neighborhood, only allow-
ing movements that lead to better solutions, stopping when no improvement is found
in N (S). On the contrary, TS allows the method to perform swap moves that lead
to worse solutions. In this case, the solutions that can be explored are selected from
a restricted neighborhood N �(S), which is a modification of the original N (S) but
excluding a subset of solutions according to the history of the states that have already
been visited during the search. In this paper we only consider the short-term memory
(STM) design, which basically consists of storing the last elements that have been
included in a solution. Specifically, given a solution S, an element ei ∈ S, and an
element e j ∈ (E \ S), the proposed TS method performs a move Swap(S, ei , e j ),
where the element e j is set to tabu-active, including it in memory, denoted with ST M .

Therefore, the TS explores a reduced neighborhood N �(S) defined as follows:

N �(S) = {S′ ← Swap(S, ei , e j ), ∀ei ∈ (S \ ST M) ∧ ∀e j ∈ (E \ S)}

This neighborhood contains all the solutions from N (S) except those that are
reached by removing an element that is already in the STM. An element is in the
STM during a number of predefined iterations, which is defined by a search parameter
named τ , known as tenure in the context of Tabu Search. After performing τ iterations,
the tabu status of the element is released, allowing the algorithm to consider it in the
search again.

The second key element of TS is that the best swap move in the neighborhood is
performed, even if it leads to a solution of lower quality, thus diversifying the search,
and escaping from local optimum. In otherwords, in case that no improvement is found
during the current iteration, the TS performs the move with the least deterioration in
quality with respect to the objective function value. Since the best move is always
performed, a new termination criterion must be defined. Specifically, a maximum
number of iterations without improvement γ is considered in this proposal (see Sect. 5
for a detailed analysis on the selection of this value).

Algorithm 5 shows the pseudocode of the proposed Tabu Search algorithm. TS
requires from four input arguments: I , which is the instance to be solved; S, which is
the initial solution; τ , the tenure; and γ , the maximum number of iterations without
improvement allowed.

The method starts by creating the empty Short Term Memory STM (step 2). As
it was aforementioned, TS iterates until reaching the stopping criterion, which is a
maximum number of iterations without improvement (steps 4–29). In each iteration,
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Algorithm 5 TabuSearch(I = (E, F, k), S, τ, γ )
1: Sb ← S
2: STM ← ∅
3: � ← 0
4: repeat
5: Improve ← False
6: < ebi , ebj , f b >←< 0, 0, 0 >

7: for ei ∈ S \ STM do
8: B′ ← ⋂

j∈S\{ei } B j
9: for e j ∈ (E \ S) do
10: B′′ ← B′ ⋂ B j
11: if |B′′| > kMIS(Sb) then  Improve
12: S ← Swap(S, ei , e j )
13: Improve ← True
14: � ← 0
15: Sb ← S
16: MarkTabu(STM, ei , τ )

17: go to 29
18: end if
19: if not Improve ∧|B′′| > f b then  Less deteriorating move
20: < ebi , ebj , f b >←< ei , e j , |B′′| >

21: end if
22: end for
23: end for
24: if not Improve then  Perform less deteriorating move
25: S ← Swap(S, ebi , ebj )
26: � ← � + 1
27: MarkTabu(STM, ebi , τ )

28: end if
29: until � = γ

30: return Sb

it is required to store the least deteriorating move in case there is no improvement
(step 6). Then, as in the local search, the method randomly traverses the set of selected
elements in the incumbent solution S, excluding those marked as tabu active in the
STM (steps 7–23). Each element ei is considered for its removal, so a bitset B ′ is
created with the intersection of all the bitsets of the elements in S but ei , and it
is cached to avoid repeating this evaluation. The next phase consists of selecting
the element which will replace ei in the solution (step 9-22). In order to do so, a
bitset B ′′ is created as the result of performing the AND operator between the cached
bitset B ′ and the bitset of the candidate element e j (step 10). If the number of active
bits in B ′′ is larger than the objective function value of the incumbent solution, an
improvement is found (step 11), so the move is actually performed (step 12) and the
number of iterations without improvement is reset to 0 (step 14), also updating the
best solution found (step 15). Notice that if a move is performed, it is necessary to
mark the inserted element as tabu active, including it in the STM (step 16). Since the
STM has a limited size defined by τ , if the number of elements already in STM is
equal to τ , then the oldest element in STM is removed, losing its tabu active category.
In this case, the search starts again from the new best solution (step 17). If there is no
improvement, but the number of active bits outperforms the best possible move tested
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in the current iteration (step 24), then the least deteriorating move is updated (step 20).
Finally, if no improvement is found during the complete iteration (step 24), the least
deteriorating move is performed (step 25), increasing the number of iterations without
improvement (step 26). The element included in the solution is also marked as tabu
active (step 27). The method ends when no improvement is found after γ consecutive
iterations, returning the best solution found during the search.

To sum up, the TS method proposed in this work is based on the efficient local
search presented in Sect. 3.2, including a short-term memory to avoid removing from
the incumbent solution those elements which have been recently added. TS allows the
exploration of amore diverse solution space than the original local search by exploring
solutions which are not strictly better than the incumbent one. The effect of increasing
the diversification solutions using TS is deeply analyzed in Sect. 5.

5 Experiments and results

This section has two main objectives. On the one hand, the search parameters of the
proposed algorithms, as well as the different variants, must be analyzed. On the other
hand, it is necessary to evaluate the performance of the algorithm presented with the
aim of comparing it with the best method found in the state of the art.

The experiments are divided into two phases with the aim of satisfying the two
aforementioned objectives of this section: preliminary and final experiments. The
former are devoted to select the best components for the proposed algorithm, while
the latter consists of a competitive testing against the bestmethod found in the literature
for the kMIS.

The proposed algorithm has been implemented in Java 11, and all the experiments
have been performed in an AMD EPYC 7282 (2.8 GHz) and 8 GB RAM. The set of
instances considered in the comparison is the one used in (Dias et al. 2020), which is
the best method found in the literature. It consists of 238 instances where the number
of elements and features ranges from 32 to 300. We refer the reader to (Dias et al.
2020) for a detailed description on the considered testbed.

5.1 Preliminary experiments

The preliminary experiments are designed for selecting the best search parameters and
the best components to be included in the final version of the algorithm. With the aim
of avoiding overfitting, these experiments only considers a subset of 27 out of 238
representative instances (approximately 10% of the total set of instances), selected at
random from the complete set.

All the experiments in this section report the following metrics: Avg., the average
objective function value; Time (s), the computing time measured in seconds; Dev (%),
the average deviation with respect to the best result of the experiment; and # Best, the
number of best solutions found in the experiment. All this metrics are computed across
the instances considered in the corresponding experiment. In all the experiments the
best results are highlighted in bold font.
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Table 2 Comparison of the
effect of the different values for
αGR when coupling CGR with
the local search procedure

Algorithm Avg. Time (s) Dev. (%) #Best

GRASP_GR(0.25) 24.26 14.66 5.31 18

GRASP_GR(0.50) 22.37 17.26 25.97 11

GRASP_GR(0.75) 21.63 17.80 28.94 10

GRASP_GR(RND) 25.07 15.99 0.66 25

Table 3 Comparison of the
effect of the different values for
αRG when coupling CRG with
the local search procedure

Algorithm Avg. Time (s) Dev. (%) #Best

GRASP_RG(0.25) 25.04 14.23 2.57 20

GRASP_RG(0.50) 25.22 16.68 0.27 24

GRASP_RG(0.75) 25.19 19.55 1.77 22

GRASP_RG(RND) 25.19 8.13 0.99 22

The search parameters that must be configured in the final algorithm are: αGR and
αRG, for the constructive phase of GRASP; τ , the tenure of the Tabu Search; and γ ,
which is the stopping criterion of Tabu Search (maximum number of iterations without
improvement). Additionally, the best constructive procedure must be selected between
CGR and CRG, and the effect of each improvement method must be analyzed.

The first experiment is devoted to select the best value for the αGR and αRG param-
eters, considering the values {0.25, 0.50, 0.75,RND} for both of them, where RND
indicates that it is selected at random in each iteration. We analyze the global perfor-
mance of the constructive procedure coupled with the local search (i.e., a complete
GRASP variant). Table 2 shows the results forαGR, where each row reports the average
results for each GRASP variant.

Analyzing these results, αGR = RND emerges as the best value for this parameter.
The computing time is equivalent for all the variants, but the random selection in each
iteration is able to reach a larger number of best solutions. Table 3 shows the same
experiment when selecting CRG as constructive procedure to tune the best value of
αRG.

In this case, the best value for αRG is αRG = 0.50, presenting the best results in
all the metrics except the computing time, emerging as the best value for CRG. This
behavior is partially explained by the increase of the diversification when considering
smaller values of αRG, which allows the local search to explore a more diverse set of
solutions, thus leading to obtain better results. Therefore, αRG = 0.50 is selected for
the remaining experiments.

Having selected the best αGR and αRG parameters, the next experiment is devoted to
compare the results obtained by theGRASPvariant that considers CGRas constructive
procedure and the one that uses CRG. Table 4 shows the results obtained in this
experiment.

As can be seen in the results, although GRASPGR is slightly faster than GRASPRG,
the differences between them in terms of computing time are negligible. However, if
we now analyze the quality of the solutions provided, GRASPRG emerges as the best
variant, obtaining a smaller average deviation (0.57 vs. 1.91) and a larger number of
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Table 4 Comparison of both
GRASP strategies with the
corresponding best value for
each search parameter

Algorithm Avg. Time (s) Dev. (%) #Best

GRASP_GR(RND) 25.07 15.99 1.91 20

GRASP_RG(0.50) 25.22 16.68 0.57 23

Table 5 Heatmap of the
computing times (left) and
average deviation (right) when
considering different values of τ

and γ

τ 0.1 0.2 0.3 0.4 0.5
γ

5 3.29 3.25 3.24 3.42 2.27

10 5.86 5.81 5.80 6.07 3.53

15 8.32 8.23 8.22 8.68 4.89

20 10.65 10.46 10.39 10.45 6.16

25 12.76 12.51 12.75 7.30 6.86

τ 0.1 0.2 0.3 0.4 0.5
γ

5 1.17 0.61 0.77 1.38 0.68

10 1.95 1.30 1.54 2.16 1.37

15 0.85 0.79 0.95 1.57 0.86

20 1.54 1.75 1.72 1.75 1.83

25 0.15 0.21 0.48 1.15 0.45

best solutions found (23 vs. 20). Therefore, we select GRASPRG as the best variant
for the kMIS.

The next experiment is oriented to evaluate the influence of the efficient local search
proposed in Sect. 3.2. In this case, we have replaced the direct implementation of local
search in GRASPRG with the efficient one. Naturally, the quality obtained with both
algorithms is the same. For the sake of brevity, we omit the inclusion of the detailed
results. We only highlight that the efficient algorithm is, on average, over 30 times
faster than the straightforward implementation, achieving a speedup larger than 50x in
the most complex instances. This implies that with the new efficient local search, the
algorithm requires, on average, less than one second to finish. Therefore, we include
the efficient local search as the local improvement phase of GRASPRG.

The next preliminary experiment is intended to evaluate the influence of considering
TabuSearch instead of the local searchmethod in the improvement stage of theGRASP
algorithm. It is worth mentioning that the local search method in which Tabu Search
is based is the efficient one.

Tabu Search requires from two input parameters as described in Sect. 4: τ , the
tenure; andγ , the number of iterationswithout improvement used as stopping criterion.
Since these two parameters are quite related between them,we have decided to perform
a full-factorial experiment considering the values τ = {0.1, 0.2, 0.3, 0.4, 0.5} and
γ = {5, 10, 15, 20, 25}. Notice that we do not include values larger than 0.5 for the
tenure since it would include in the tabu list almost all the elements already in the
solution. Table 5 shows the results obtained in terms of computing time (on the left)
and average deviation (on the right).
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Table 6 Analysis of the effect of
considering Tabu Search and
Local Search in the
improvement stage of GRASP

Algorithm Avg. Time (s) Dev. (%) #Best

GRASP_RG+TS 25.48 2.27 0.31 26

GRASP_RG+LS 25.30 0.60 1.03 22

The results have been depicted in a heatmap, in such a way that the best values
of each table are highlighted in green, while the worst ones are highlighted in red,
following a gradient through yellow color for the intermediate values. If we first
analyze the computing time, as expected, the larger the value of γ , the larger the
computing times, while it decreases with the increment in τ value, being γ = 5 and
τ = 0.5 the fastest variant. Naturally, allowing more iterations without improvement
requires more computing time and, similarly, increasing the size of the tabu list limits
the local search exploration, reducing the computational effort. If we now analyze the
average deviation obtained by each variant, the best value is achievedwhen considering
τ = 0.1 and γ = 25.However, it is themost computationally demanding configuration
so, in order to find a balance between quality and computing time, we select τ = 0.5
and γ = 5 as the best search parameters. The rationale behind this is that it is able to
reach a deviation really close to the best one (0.68% vs. 0.15%), but being almost six
times faster than the best result (2.27 seconds vs. 12.76 seconds).

Thefinal preliminary experiment is intended to evaluate the influence of considering
TabuSearch instead of the local searchmethod in the improvement stage of theGRASP
algorithm. It is worth mentioning that the local search method in which Tabu Search
is based is the efficient one. Table 6 shows the results obtained by both approaches,
denoted as GRASPRG+TS and GRASPRG+LS.

As it can be derived from the results, GRASPRG+TS is able to outperform
GRASPRG+LS configured with a classical local search in terms of deviation (0.31
vs. 1.03) and number of best solutions found (26 vs. 22) by requiring slightly larger
computing times (2.27 seconds vs. 0.60 seconds). Despite the additional computation
required by GRASPRG+TS, the increment in the computing time remains negligible
mainly due to the efficient representation of the solution described in Sect. 2.

Therefore, we identify as our best variant the algorithmGRASPRG with CRG(0.50)
and Tabu Search as improvement strategy (based on the efficient implementation of
the local search method) configured with τ = 0.5 and γ = 5.

5.2 Competitive testing

The competitive testing is devoted to evaluate the performance of our best approach
when comparing it with the best previous method found in the related literature,
named Reactive VNS. In particular, Reactive VNS is a Variable Neighborhood Search
algorithm where the shaking stage has been improved with a greedy randomized
selection of the next solution to be selected. In order to have a fair comparison, we
have executed both algorithms1 in the same computer.

1 We thank the authors of Dias et al. (2020) for kindly providing us the source code.
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Table 7 Comparison of the proposed algorithm (GRASPRG+TS) and the state-of-the-art (Reactive VNS)
for each classe of instance. Each algorithm has performed 10 independent executions

GRASPRG+TS Reactive VNS

Best Worst Avg. Time (s) Best Worst Avg. Time (s)

Classe 1 4.23 3.97 4.09 1.42 4.20 3.97 4.06 7.38

Classe 2 1.10 1.10 1.10 2.19 1.10 1.07 1.07 27.37

Classe 4 25.27 24.83 25.06 1.52 25.27 24.60 24.94 10.78

Classe 5 7.40 7.07 7.22 2.92 7.23 7.03 7.12 28.49

Classe 6 2.43 2.29 2.33 2.55 2.29 2.29 2.29 11.40

Classe 7 97.97 97.57 97.78 1.70 98.07 97.60 97.82 13.60

Classe 8 75.53 75.13 75.33 3.31 75.43 75.37 75.41 42.40

Classe 9 50.13 49.97 50.08 3.33 50.10 50.07 50.07 40.25

For this experiment, the complete set of 238 instances has been used. They are
divided into three different sets following the same scheme as in Dias et al. (2020).
In particular, the first set contains 78 instances where the number of elements is equal
to the number of available features, i.e., |E | = |F |. The second set refers to those
instances where there are more elements than features available (|E | > |F |), and
the third set contains the instances where the set of available features is larger than
the number of elements (|E | < |F |). The second and third set is conformed with 80
instances each one.

Table 7 shows the results obtained when performing 10 independent executions of
each algorithm for each instance in order to avoid the bias produced by the random
parts of each proposal. For each class of instances (denoted as classe), we report the
best, worst, and average value of the objective function obtained in the 10 executions.
For the sake of brevity, this Section reports a summary table. We refer the reader to
Table 8 in the Appendix for the individual results over each instance.

If we first analyze the best solution found by each algorithm, we can clearly see
the superiority of GRASP with respect to Reactive VNS, being able to reach the best
values in 7 out of 8 classes of instances, while Reactive VNS reaches the best value
(or equal to GRASP) in a total of 4 classes. With respect to the worst solution found,
both methods perform similarly, being GRASP better or equal than Reactive VNS in
5 classes, while Reactive VNS is better or equal than GRASP in 6 classes. Analyzing
the behavior of the algorithms on average, GRASP reaches the best values in 6 classes,
while ReactiveVNS is only able to reach the best value in 2 classes. Therefore, GRASP
emerges as a competitive method for the kMIS in terms of objective function value.

Since Reactive VNS is able to achieve a slightly better result in the instances on
classe 7, we have decided to deeply analyze this subset. Having a close look on the
individual results shown in the Appendix, it is worth mentioning that, in most of the
instances, all the features can be selected, which is not a common scenario in real-life
applications.

One of the key aspects of the proposed algorithm is its efficiency, obtaining a
remarkable improvement with respect to the previous method in terms of computing
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time. In particular, GRASPRG+TS is, on average, 9 times faster than Reactive VNS,
being 13 times faster in the most complex class. If we perform a deeper analysis on the
computing time, GRASPRG+TS requires 5.35 seconds for the most complex instance,
while Reactive VNS requires 160.96 seconds, achieving a maximum speedup of 32x.
These results highlights the relevance of leveraging the solution structure to cache
information, thus avoiding the repetition of unnecessary evaluations. Furthermore,
performing only those moves that leads to an improvement also has a positive impact
in the computational effort.

Finally, in order to confirm these results, the well-known non-parametric pairwise
Wilcoxon test is applied. The obtained p-value smaller than 0.00001 indicates that
there exists statistically significant differences between both algorithms, confirming
the superiority of GRASPRG+TS. Therefore, GRASPRG+TS emerges as the most com-
petitive algorithm for dealing with the kMIS problem.

6 Conclusions

In this work, a Greedy Randomized Adaptive Search Procedure (GRASP) is presented
for providing high quality solutions for themaximum intersection of k-subsets problem
(kMIS). An efficient representation of the solution allows us to design a fast algorithm
which is able to generate solutions in approximately one second on average, where the
best method in the literature requires about 20 seconds. Two constructive procedures
are proposed, where the first one follows the traditional GRASP scheme while the
second one swaps the random and greedy stages resulting in better results. The design
of the local search reduce the computing time required to find a local optimum by
avoiding those moves that would lead to a worse quality solution. Additionally, a
Tabu Search method based in this efficient local search is presented, allowing the final
algorithm to escape from local optimawhere the traditional local search get stuck. This
behavior is shown in a thorough experimental comparisonwhere the effect of each part
of the algorithm is analyzed. The results are supported by non-parametric statistical
tests which confirms that there are statistically significant differences between the
proposed method and the best algorithm found in the literature.

The future lines of research with respect to kMIS are focused in further improving
the obtained results by increasing the diversity of the search without deteriorating
the quality of the solutions. In order to do so, reactive strategies will be included in
both GRASP and Tabu Search, which may help the algorithm to dynamically adapt to
different sets of instances. Finally, strategies such as Iterated Greedy which partially
destructs and reconstruct the solution might lead to better results, but requiring more
computing time.
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Appendix

Table 8 Individual results for each instance sorted by classe when executing each algorithm 10 times. The
best, worst, and average value of the objective function is provided, as well as the average computing time

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_1_100_100 7 7 7.00 0.30 7 7 7.00 0.98

classe_1_100_80 4 3 3.30 0.47 3 3 3.00 1.73

classe_1_112_140 5 5 5.00 0.54 5 5 5.00 1.67

classe_1_140_112 6 5 5.20 0.60 6 5 5.50 2.14

classe_1_140_140 4 4 4.00 0.91 4 4 4.00 3.22

classe_1_144_180 7 6 6.20 0.67 7 6 6.30 1.80

classe_1_160_200 4 3 3.80 1.31 4 3 3.10 5.11

classe_1_180_144 5 4 4.50 1.17 5 4 4.60 4.41

classe_1_180_180 3 3 3.00 1.72 3 3 3.00 7.94

classe_1_192_240 5 4 4.40 1.50 5 4 4.10 5.57

classe_1_200_160 2 2 2.00 2.70 2 2 2.00 16.83

classe_1_200_200 4 4 4.00 1.75 4 4 4.00 7.08

classe_1_224_280 3 3 3.00 3.04 3 3 3.00 14.98

classe_1_240_192 5 4 4.80 1.84 5 5 5.00 7.67

classe_1_240_240 2 2 2.00 4.08 2 2 2.00 29.52

classe_1_240_300 5 5 5.00 1.98 5 5 5.00 6.49

classe_1_280_224 4 4 4.00 2.94 4 4 4.00 14.09

classe_1_280_280 5 5 5.00 2.58 5 4 4.90 10.68

classe_1_300_240 3 3 3.00 5.75 3 3 3.00 43.22

classe_1_300_300 3 3 3.00 4.89 3 3 3.00 29.11

classe_1_32_40 3 3 3.00 0.07 3 3 3.00 0.28

classe_1_40_32 3 3 3.00 0.09 3 3 3.00 0.34

classe_1_40_40 4 4 4.00 0.08 4 4 4.00 0.36

classe_1_48_60 6 6 6.00 0.12 6 6 6.00 0.44

classe_1_60_48 5 5 5.00 0.13 5 5 5.00 0.56

classe_1_60_60 5 5 5.00 0.14 5 5 5.00 0.56

classe_1_64_80 4 4 4.00 0.20 4 4 4.00 0.68
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_1_80_100 4 3 3.60 0.38 4 3 3.40 1.32

classe_1_80_64 3 3 3.00 0.40 3 3 3.00 1.60

classe_1_80_80 4 4 4.00 0.32 4 4 4.00 1.09

classe_2_100_100 1 1 1.00 0.64 1 1 1.00 3.98

classe_2_100_80 1 1 1.00 0.75 1 1 1.00 5.18

classe_2_112_140 1 1 1.00 1.05 1 1 1.00 7.18

classe_2_140_112 1 1 1.00 1.54 1 1 1.00 11.60

classe_2_140_140 1 1 1.00 1.55 1 1 1.00 10.88

classe_2_144_180 1 1 1.00 1.77 1 1 1.00 13.72

classe_2_160_200 1 1 1.00 1.66 1 1 1.00 15.41

classe_2_180_144 1 1 1.00 2.62 1 1 1.00 24.16

classe_2_180_180 1 1 1.00 2.18 1 1 1.00 23.27

classe_2_192_240 1 1 1.00 2.27 1 1 1.00 24.71

classe_2_200_160 1 1 1.00 2.36 1 1 1.00 28.44

classe_2_200_200 1 1 1.00 3.25 1 1 1.00 38.99

classe_2_224_280 1 1 1.00 3.53 1 1 1.00 45.71

classe_2_240_192 1 1 1.00 4.71 1 1 1.00 52.74

classe_2_240_240 1 1 1.00 4.66 1 1 1.00 64.22

classe_2_240_300 1 1 1.00 3.90 1 1 1.00 54.68

classe_2_280_224 1 1 1.00 6.64 1 1 1.00 88.72

classe_2_280_280 1 1 1.00 5.79 1 1 1.00 94.88

classe_2_300_240 1 1 1.00 6.60 1 1 1.00 113.71

classe_2_300_300 1 1 1.00 5.51 1 1 1.00 86.45

classe_2_32_40 2 2 2.00 0.09 2 2 2.00 0.29

classe_2_40_32 1 1 1.00 0.12 1 1 1.00 0.42

classe_2_40_40 1 1 1.00 0.12 1 1 1.00 0.41

classe_2_48_60 1 1 1.00 0.19 1 1 1.00 0.71

classe_2_60_48 1 1 1.00 0.28 1 1 1.00 1.24

classe_2_60_60 2 2 2.00 0.27 2 1 1.20 1.09

classe_2_64_80 2 2 2.00 0.32 2 2 2.00 1.35

classe_2_80_100 1 1 1.00 0.47 1 1 1.00 2.62

classe_2_80_64 1 1 1.00 0.41 1 1 1.00 2.11

classe_2_80_80 1 1 1.00 0.42 1 1 1.00 2.12

classe_4_100_100 41 41 41.00 0.25 41 40 40.90 1.21

classe_4_100_80 22 22 22.00 0.52 22 22 22.00 2.75

classe_4_112_140 38 38 38.00 0.58 38 38 38.00 2.49

classe_4_140_112 33 33 33.00 0.62 33 31 32.10 3.15

classe_4_140_140 29 28 28.90 0.95 29 29 29.00 5.25

classe_4_144_180 46 46 46.00 0.65 46 45 45.30 2.45
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_4_160_200 25 25 25.00 1.47 25 24 24.40 8.50

classe_4_180_144 31 31 31.00 1.28 31 31 31.00 7.09

classe_4_180_180 22 21 21.70 1.79 22 21 21.40 12.75

classe_4_192_240 34 33 33.90 1.59 34 33 33.80 8.81

classe_4_200_160 13 12 12.70 2.60 13 12 12.20 20.46

classe_4_200_200 29 27 27.80 1.95 29 26 27.40 11.86

classe_4_224_280 21 20 20.10 3.13 21 20 20.50 23.48

classe_4_240_192 33 32 32.80 1.96 33 33 33.00 12.47

classe_4_240_240 12 11 11.90 3.85 12 12 12.00 33.96

classe_4_240_300 43 41 41.40 2.11 42 40 41.60 10.26

classe_4_280_224 29 28 28.50 3.16 30 27 28.50 22.98

classe_4_280_280 7 7 7.00 2.54 8 7 7.10 10.98

classe_4_300_240 15 14 14.10 5.52 14 14 14.00 49.62

classe_4_300_300 3 3 3.00 7.11 3 3 3.00 62.41

classe_4_32_40 19 19 19.00 0.07 19 19 19.00 0.36

classe_4_40_32 17 17 17.00 0.10 17 17 17.00 0.45

classe_4_40_40 21 21 21.00 0.08 21 21 21.00 0.46

classe_4_48_60 26 26 26.00 0.11 26 26 26.00 0.56

classe_4_60_48 25 25 25.00 0.13 25 25 25.00 0.70

classe_4_60_60 29 29 29.00 0.14 29 29 29.00 0.71

classe_4_64_80 31 31 31.00 0.20 31 31 31.00 0.88

classe_4_80_100 24 24 24.00 0.40 24 24 24.00 2.14

classe_4_80_64 15 15 15.00 0.44 15 14 14.20 2.45

classe_4_80_80 25 25 25.00 0.34 25 24 24.90 1.65

classe_5_100_100 8 8 8.00 0.94 8 8 8.00 4.90

classe_5_100_80 8 8 8.00 0.93 8 7 7.20 6.14

classe_5_112_140 9 8 8.70 1.19 9 8 8.40 8.52

classe_5_140_112 9 8 8.30 1.62 9 9 9.00 12.85

classe_5_140_140 10 9 9.20 1.64 10 9 9.90 12.62

classe_5_144_180 8 8 8.00 1.90 8 8 8.00 14.87

classe_5_160_200 5 5 5.00 2.67 5 5 5.00 16.29

classe_5_180_144 8 7 7.60 2.88 7 7 7.00 25.36

classe_5_180_180 5 5 5.00 3.16 5 5 5.00 23.97

classe_5_192_240 5 5 5.00 3.93 5 5 5.00 26.53

classe_5_200_160 5 4 4.60 4.05 4 4 4.00 29.11

classe_5_200_200 6 6 6.00 3.81 6 6 6.00 39.88

classe_5_224_280 5 5 5.00 5.51 5 5 5.00 46.13
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_5_240_192 8 7 7.90 4.99 7 7 7.00 55.24

classe_5_240_240 7 6 6.10 5.66 6 6 6.00 66.13

classe_5_240_300 5 5 5.00 6.43 5 5 5.00 56.08

classe_5_280_224 8 7 7.10 7.34 7 7 7.00 91.67

classe_5_280_280 1 1 1.00 7.61 1 1 1.00 93.43

classe_5_300_240 5 5 5.00 9.48 5 5 5.00 114.90

classe_5_300_300 1 1 1.00 8.38 1 1 1.00 92.54

classe_5_32_40 14 14 14.00 0.09 14 14 14.00 0.41

classe_5_40_32 7 7 7.00 0.17 7 7 7.00 0.64

classe_5_40_40 10 10 10.00 0.16 10 10 10.00 0.63

classe_5_48_60 13 13 13.00 0.24 13 13 13.00 1.23

classe_5_60_48 11 11 11.00 0.34 11 10 10.50 1.86

classe_5_60_60 13 13 13.00 0.32 13 13 13.00 1.67

classe_5_64_80 9 9 9.00 0.42 9 9 9.00 2.28

classe_5_80_100 7 7 7.00 0.62 8 7 7.10 3.48

classe_5_80_64 6 5 5.80 0.60 6 5 5.40 2.62

classe_5_80_80 6 5 5.20 0.62 5 5 5.00 2.61

classe_6_100_100 2 2 2.00 0.87 2 2 2.00 2.70

classe_6_100_80 2 2 2.00 0.95 2 2 2.00 2.87

classe_6_112_140 3 2 2.60 1.27 2 2 2.00 3.73

classe_6_140_112 3 3 3.00 1.93 3 3 3.00 7.28

classe_6_140_140 4 3 3.10 1.96 3 3 3.00 7.69

classe_6_144_180 2 2 2.00 2.14 2 2 2.00 7.15

classe_6_160_200 1 1 1.00 2.21 1 1 1.00 8.20

classe_6_180_144 3 2 2.30 3.35 2 2 2.00 13.30

classe_6_180_180 1 1 1.00 2.51 1 1 1.00 11.13

classe_6_192_240 3 2 2.20 3.95 2 2 2.00 15.39

classe_6_200_160 1 1 1.00 3.22 1 1 1.00 14.46

classe_6_200_200 2 2 2.00 3.94 2 2 2.00 16.24

classe_6_224_280 1 1 1.00 4.92 1 1 1.00 20.26

classe_6_240_192 3 3 3.00 6.07 3 3 3.00 32.81

classe_6_240_240 2 2 2.00 5.81 2 2 2.00 26.00

classe_6_240_300 1 1 1.00 5.45 1 1 1.00 24.03

classe_6_280_224 3 3 3.00 8.63 3 3 3.00 49.48

classe_6_300_240 1 1 1.00 8.95 1 1 1.00 45.58

classe_6_32_40 7 7 7.00 0.12 7 7 7.00 0.44

classe_6_40_32 2 2 2.00 0.15 2 2 2.00 0.55

classe_6_40_40 3 3 3.00 0.16 3 3 3.00 0.53
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_6_48_60 2 2 2.00 0.22 2 2 2.00 0.83

classe_6_60_48 5 5 5.00 0.36 5 5 5.00 1.20

classe_6_60_60 4 4 4.00 0.35 4 4 4.00 1.21

classe_6_64_80 3 3 3.00 0.41 3 3 3.00 1.14

classe_6_80_100 2 2 2.00 0.60 2 2 2.00 1.65

classe_6_80_64 1 1 1.00 0.51 1 1 1.00 1.63

classe_6_80_80 1 1 1.00 0.50 1 1 1.00 1.62

classe_7_100_100 100 100 100.00 0.59 100 100 100.00 0.00

classe_7_100_80 80 80 80.00 0.46 80 80 80.00 0.00

classe_7_112_140 140 140 140.00 0.52 140 140 140.00 0.00

classe_7_140_112 112 112 112.00 0.57 112 112 112.00 0.00

classe_7_140_140 140 140 140.00 0.52 140 140 140.00 0.00

classe_7_144_180 180 180 180.00 0.60 180 180 180.00 0.00

classe_7_160_200 197 197 197.00 1.36 197 197 197.00 8.13

classe_7_180_144 144 144 144.00 1.14 144 144 144.00 0.00

classe_7_180_180 173 173 173.00 2.40 173 173 173.00 19.92

classe_7_192_240 233 233 233.00 1.53 233 233 233.00 8.44

classe_7_200_160 151 150 150.20 3.65 151 151 151.00 31.86

classe_7_200_200 192 192 192.00 2.39 192 192 192.00 17.70

classe_7_224_280 42 40 41.40 3.62 43 41 41.90 27.57

classe_7_240_192 192 192 192.00 1.77 192 192 192.00 0.01

classe_7_240_240 38 37 37.70 3.82 39 37 38.00 33.48

classe_7_240_300 82 81 81.80 2.15 82 79 80.90 10.18

classe_7_280_224 56 54 55.00 3.35 56 53 54.20 23.73

classe_7_280_280 31 30 30.40 5.69 31 31 31.00 61.85

classe_7_300_240 29 27 28.20 6.02 30 27 27.80 74.24

classe_7_300_300 23 21 21.70 6.97 23 22 22.80 90.80

classe_7_32_40 40 40 40.00 0.06 40 40 40.00 0.00

classe_7_40_32 32 32 32.00 0.09 32 32 32.00 0.00

classe_7_40_40 40 40 40.00 0.08 40 40 40.00 0.00

classe_7_48_60 60 60 60.00 0.11 60 60 60.00 0.00

classe_7_60_48 48 48 48.00 0.13 48 48 48.00 0.00

classe_7_60_60 60 60 60.00 0.08 60 60 60.00 0.00

classe_7_64_80 80 80 80.00 0.19 80 80 80.00 0.00

classe_7_80_100 100 100 100.00 0.36 100 100 100.00 0.00

classe_7_80_64 64 64 64.00 0.40 64 64 64.00 0.00

classe_7_80_80 80 80 80.00 0.41 80 80 80.00 0.00

classe_8_100_100 86 86 86.00 1.30 86 86 86.00 10.98

classe_8_100_80 77 77 77.00 1.04 77 77 77.00 10.44
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_8_112_140 115 115 115.00 1.34 115 115 115.00 14.21

classe_8_140_112 103 102 102.90 2.10 103 103 103.00 23.01

classe_8_140_140 129 128 128.70 2.34 129 129 129.00 21.90

classe_8_144_180 149 149 149.00 2.19 149 149 149.00 28.24

classe_8_160_200 144 144 144.00 3.06 144 144 144.00 46.01

classe_8_180_144 120 120 120.00 3.86 121 120 120.90 52.10

classe_8_180_180 126 126 126.00 3.12 126 126 126.00 65.14

classe_8_192_240 148 148 148.00 4.26 148 148 148.00 82.67

classe_8_200_160 110 109 109.30 6.39 111 110 110.30 92.33

classe_8_200_200 142 141 141.90 4.95 142 142 142.00 88.06

classe_8_224_280 11 9 9.90 5.39 9 9 9.00 51.65

classe_8_240_192 155 154 154.70 7.68 156 156 156.00 116.24

classe_8_240_240 12 11 11.20 5.58 11 11 11.00 71.66

classe_8_240_300 10 9 9.10 6.33 9 9 9.00 60.98

classe_8_280_224 14 13 13.40 7.22 14 14 14.00 98.74

classe_8_280_280 10 9 9.50 8.17 10 10 10.00 99.76

classe_8_300_240 10 9 9.30 9.27 9 9 9.00 119.45

classe_8_300_300 8 8 8.00 9.94 7 7 7.00 98.70

classe_8_32_40 40 40 40.00 0.09 40 40 40.00 0.00

classe_8_40_32 32 32 32.00 0.15 32 32 32.00 0.00

classe_8_40_40 39 39 39.00 0.14 39 39 39.00 0.68

classe_8_48_60 60 60 60.00 0.21 60 60 60.00 0.00

classe_8_60_48 48 48 48.00 0.30 48 48 48.00 0.00

classe_8_60_60 60 60 60.00 0.28 60 60 60.00 0.00

classe_8_64_80 78 78 78.00 0.40 78 78 78.00 2.70

classe_8_80_100 94 94 94.00 0.73 94 94 94.00 5.34

classe_8_80_64 62 62 62.00 0.66 62 62 62.00 5.48

classe_8_80_80 74 74 74.00 0.74 74 74 74.00 5.62

classe_9_100_100 57 57 57.00 0.93 57 57 57.00 14.14

classe_9_100_80 57 57 57.00 1.26 57 57 57.00 13.76

classe_9_112_140 80 80 80.00 1.33 80 80 80.00 18.83

classe_9_140_112 68 68 68.00 2.47 68 68 68.00 35.60

classe_9_140_140 92 92 92.00 2.33 92 92 92.00 34.35

classe_9_144_180 102 102 102.00 2.49 102 102 102.00 38.97

classe_9_160_200 90 90 90.00 3.12 90 90 90.00 59.10
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Table 8 continued

GRASPRG+TS Reactive VNS
Instance Best Worst Avg Time Best Worst Avg Time

classe_9_180_144 74 74 74.00 4.10 74 74 74.00 78.56

classe_9_180_180 58 58 58.00 3.47 58 58 58.00 89.52

classe_9_192_240 108 108 108.00 4.85 108 108 108.00 97.14

classe_9_200_160 59 59 59.00 4.98 59 59 59.00 122.35

classe_9_200_200 81 81 81.00 4.23 81 81 81.00 117.83

classe_9_224_280 3 2 2.90 5.37 3 3 3.00 21.39

classe_9_240_192 96 95 95.80 7.60 97 96 96.20 197.41

classe_9_240_240 4 3 3.60 5.98 3 3 3.00 26.65

classe_9_240_300 3 2 2.10 6.16 2 2 2.00 24.94

classe_9_280_224 5 5 5.00 8.66 5 5 5.00 51.51

classe_9_280_280 3 3 3.00 8.35 3 3 3.00 39.63

classe_9_300_240 3 2 2.90 9.55 3 3 3.00 47.20

classe_9_300_300 2 2 2.00 8.91 2 2 2.00 44.32

classe_9_32_40 39 39 39.00 0.11 39 39 39.00 0.44

classe_9_40_32 25 25 25.00 0.15 25 25 25.00 1.04

classe_9_40_40 32 32 32.00 0.17 32 32 32.00 0.99

classe_9_48_60 48 48 48.00 0.22 48 48 48.00 1.66

classe_9_60_48 40 40 40.00 0.38 40 40 40.00 2.79

classe_9_60_60 53 53 53.00 0.42 53 53 53.00 2.60

classe_9_64_80 60 60 60.00 0.41 60 60 60.00 3.51

classe_9_80_100 72 72 72.00 0.63 72 72 72.00 6.79

classe_9_80_64 40 40 40.00 0.57 40 40 40.00 7.15

classe_9_80_80 50 50 50.00 0.61 50 50 50.00 7.20
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