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GRASP with path relinking for the orienteering
problem
Vicente Campos1, Rafael Martí 1*, Jesús Sánchez-Oro 2 and Abraham Duarte 2

1Universitat de València, València, Spain; and 2Universidad Rey Juan Carlos, Mostoles, Spain

In this paper, we address an optimization problem resulting from the combination of the well-known travelling
salesman and knapsack problems. In particular, we target the orienteering problem, originated in the context of
sport, which consists of maximizing the total score associated with the vertices visited in a path within the available
time. The problem, also known as the selective travelling salesman problem, is NP-hard and can be formulated as
an integer linear program. Since the 1980s, several solution methods for this problem have been developed and
applied to a variety of fields, particularly in routing and tourism. We propose a heuristic method—based on the
Greedy Randomized Adaptive Search Procedure (GRASP) and the Path Relinking methodologies—for finding
approximate solutions to this optimization problem. We explore different constructive methods and combine two
neighbourhoods in the local search of GRASP. Our experimentation with 196 previously reported instances shows
that the proposed procedure obtains high-quality solutions employing short computing times.
Journal of the Operational Research Society (2014) 65(12), 1800–1813. doi:10.1057/jors.2013.156
Published online 13 November 2013
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1. Introduction

The orienteering problem (OP), originated in the context of
sport, consists of determining a path from an origin to a
destination in a graph (directed or undirected), through a subset
of locations in order to maximize the sum of the scores of the
visited locations. Not all locations (vertices in the graph) can
be visited since the available time (or total distance) is limited.
The OP belongs to the well-known family of routing problems
with many different applications (see, eg, Pacheco et al, 2009)
and variants, including multi-objective approaches (Jozefowiez
et al, 2008; Schilde et al, 2009, Martí et al, 2011). Different
applications for this problem can be found, for example, in
tourism, where we want to plan a tourist route in a large city,
giving scores to the locations (in terms of their cultural interest
for instance), and the tour visiting the selected vertices cannot
exceed a maximum length or time (Tsiligirides, 1984).
Let G(V,A) be a complete directed graph where V (|V| = n)

and A (|A| =m) represent, respectively, the set of vertices and
arcs. Each vertex vi∈V has a non-negative score Si for i=1,…, n,
and each arc (i,j)∈A has an associated non-negative travel
time tij for i,j=1,…, n. The OP consists of determining a path
from v1 to vn, visiting some of the vertices in V in a way that
the total travel time does not exceed a pre-established limit
Tmax, maximizing the sum of the associated scores.

We can formulate the OP as a linear integer problem
(Vansteenwegen et al, 2011) by defining the binary variables
xij= 1 if vertex i is visited followed by vertex j, and xij= 0
otherwise, for i,j= 1,…, n. In this formulation, originally
proposed by Miller et al (1960) in the context of the TSP, we
also need the integer variables ui with the position of vertex i in
the path, i=1,…, n. In mathematical terms:

Max
Xn - 1

i¼2

Xn

j¼2

Sixij;

s.t.:

Xn

j¼2

x1j ¼
Xn - 1

i¼1

xin ¼ 1; (1)

Xn

j¼2

xkj ¼
Xn - 1

i¼1

xik ⩽ 1; k ¼ 2; ¼ ; n - 1; (2)

Xn - 1

i¼1

Xn

j¼2

tijxij ⩽ Tmax; (3)

2⩽ ui ⩽ n; i ¼ 2; ¼ ; n; (4)

ui - uj + 1⩽ n - 1ð Þ 1 - xij
� �

; i; j ¼ 2; ¼ ; n; (5)

xij 2 0; 1f g 1⩽ i; j⩽ n; ui 2 Z; i ¼ 2; ¼ ; n:

In the formulation above, constraint (1) forces the path to
start at vertex 1 and to end at vertex n, while constraint (2)
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guarantees that every vertex in the graph is visited at most once.
The time limit constraint (3) and the sub-tour elimination
constraints (4) and (5) complement the formulation.
We do not include a discussion of previous work on the OP

because fairly complete reviews have appeared in recent
publications, including Vansteenwegen et al (2011). They
clearly stated that the methods proposed in the most recent
solution approach for the OP (Schilde et al, 2009), Ant Colony
Optimization and VNS, improve upon all the previous approx-
imate methods, including the classic five-step heuristic of Chao
et al (1996). A path relinking (PR) approach was applied for the
Team Orienteering Problem in Souffriau et al (2010); in this
variant of the OP, a set of routes have to maximize the total
score of the visited vertices, and each route cannot exceed a
common limit time. On the other hand, we have also identified
an exact branch-and-cut algorithm to optimally solve this
problem (Fischetti et al, 1998). It must be noted that this
method includes the computation of a lower bound in the root
node of the branch-and-cut search tree. Our main contribution is
the development of a solution method for the OP based on the
Greedy Randomized Adaptive Search Procedure (GRASP)
and Path Relinking (PR) methodologies (Resende and Ribeiro,
2003), using several constructive methods. We compare our
different designs and test them over a collection of instances
with optimum known and also with a wider set of instances (in
which we consider the best-known solutions up to now). The
experimentation shows that our methods compete with the best
heuristics reported in the literature.

2. Constructive methods

In this section, we propose four constructive methods for the
OP based on GRASP (Resende and Ribeiro, 2003).
Given a graph G(V,A), constructive method C1 starts with

a path of length one in which we directly go from 1 to n through
the arc (1, n). The set P= {1, n} represents the partial solution
under construction and TP, its associated travel time (initially
Tp= t1n). The candidate list CL is formed with all the vertices
not present in the path that can be added to the current path
within the time limit Tmax. Specifically, in the first step

CL ¼ i 2 V nP : t1i + tin ⩽ Tmaxf g:

At each step, C1 selects a candidate element i∈CL to be
included in the partial solution. C1 implements a typical
GRASP construction in which first each candidate element is
evaluated with a greedy function to construct the restricted
candidate list RCL1 and then an element is selected at random
from the RCL1. In particular, we compute the maximum score
Smax of the elements in CL as

Smax ¼ maxi2CLSi;

then we construct the RCL1 with all the candidate elements
with a score value within a fraction α (the so-called greed-

iness parameter) of the maximum score. In mathematical
terms:

RCL1 ¼ i 2 CL : Si ⩾ αSmaxf g:
Finally, C1 randomly selects an element of the RCL1 and the

selected element is inserted in the best position in the path P
(ie, the one that produces the minimum path travel time). C1
performs iterations reconstructing the CL as long as new
vertices can be added to the partial path (ie, as long as the CL
is not empty). When no element out of the path can be inserted
in it within the time limit, C1 stops and returns the path as the
solution.
The randomization in C1 permits running it several times,

say Max_iter iterations. Performing multiple GRASP iterations
may be interpreted as a means of strategically sampling the
solution space. On the basis of empirical observations, it has
been found that the sampling distribution generally has a mean
value that is inferior to the one obtained by a deterministic
construction (that one with the same GRASP elements but
replacing the random selection with the best available one), but
the best overall trial dominates the deterministic solution with
a high probability. The intuitive justification of this phenom-
enon is based on the ordering statistics of sampling. It imple-
ments a way of independently sampling the solution space, and
each construction consists of an independent algorithm. In this
sense, GRASP is a memory-less method since no information
is recorded from one construction to the next.
We now consider C2, an alternative construction procedure

introduced in Resende and Werneck (2004) as random plus
greedy construction, which has been successfully applied in, for
example, Resende et al (2010), Pantrigo et al (2012), or Duarte
et al (2011). At each step in C2, we first construct CL, as in the
case of the constructive method C1. The restricted candidate
list RCL2 is constructed, determining first its cardinality from
a fraction 0<α< 1 of the elements in CL (|RCL2| =α|CL|) with
no repetitions, then a random sample of size |RCL2| is taken
from CL, and the element i∈RCL2 with the maximum score Si
is selected. Like C1, C2 inserts the selected element in the best
position (ie, the one that produces the least increase in the path
travel time) in the path P. It performs iterations as long as new
vertices can be added to the partial path (ie, while CL is not
empty). Note that the role of α is not the same in C1 and in C2.
In C1, the greater α is, the lesser random the method of
selection, while in C2 α computes the fraction of the candidates
independently of the element quality. In other words, any
element in RCL2 can be selected at any iteration, while in C1
the best elements of RCL1 have a greater probability of being
selected.
Constructive method C3 also implements a typical GRASP

construction, as C1, in which first each candidate element is
evaluated by a greedy function to construct RCL, from which
an element is randomly selected. The candidate set of elements
CL is computed in the same way as in C1 and C2, but the
greedy evaluation ei of element i consists now on the quotient
between the score Si and the smallest increment in the time,

Vicente Campos et al—GRASP with PR for the orienteering problem 1801



Δti, when the element is inserted in the path. In mathematical
terms:

ei ¼ Si
Δti

:

As is customary in GRASP, we construct RCL3 with the
elements in CL with an evaluation within a fraction α of the
maximum value. In mathematical terms:

RCL3 ¼ i 2 CL : ei ⩾ αemaxf g;

where

emax ¼ maxi2CLei:

Finally, C4 differs from C3 in the way the random and the
greedy choices are made (as C2 differs from C1). In particular,
C4 first constructs the restricted candidate list RCL4 with
a random sample of the elements in CL of size |RCL4|=
⌈α|CL|⌉ where no repetitions are allowed. Then, it evaluates
all the elements in RCL4, computing ei for all i∈RCL4, and
selects the best one. In other words, the element with maximum
quotient between the score Si and the time increment Δti. Like
the three previous methods, C4 inserts the selected element in
the best position (ie, the one that produces the least increase in
the path travel time) in the path under construction.

2.1. Comparison of methods

When we design a constructive method as a part of a larger
solving method, it has to be able to produce good starting points
for the master method. This is especially true in the case of
GRASP with PR in which we apply first the local search and
then the PR to the constructed solutions. In this context, we
want the constructive method to obtain good solutions in terms
of the objective function, but also diverse to reach different
regions of the solution space.
Considering the four constructive methods proposed above,

a way of comparing them is to generate a set of solutions
with each one and compare their quality and diversity. Since
the quality is directly measured by the objective function, we
now propose a measure of diversity. Given two solutions,
A= {1, a1, a2,…, ak, n} and B= {1, b1, b2,…, bt, n}, we com-
pute their diversity, div(A,B), as the number of elements
(vertices in the graph) in A not present in B, plus the number
of elements in B not present in A. To make this value
independent of the size of the problem and of the maximum
time limit Tmax, we divide it by the total number of elements,
excluding origin and destination, present in both solutions (ie,
k+ t).
To illustrate, suppose two solutions in a graph with n= 21,

A= {1, 7, 10, 4, 8, 3, 12, 20, 21} with seven elements (without
computing the origin 1 and destination 21) and B= {1, 12, 3, 9,
11, 7, 21} with five elements. The number of elements in A not
present in B is 4 and the number of elements in B not present in

A is 2. Then, the diversity value between A and B is:

div A;Bð Þ ¼ 4 + 2
7 + 5

¼ 0:5:

We then generate 100 solutions with each constructive
method and compute the average diversity value between all
pairs of solutions. On the other hand, we compute the objective
function value of each solution and its associated relative
deviation from the optimal solution value. The averages of
these deviation and diversity values provide an overall evalua-
tion of the method.
To test this point with our four constructive methods and the

different values of their associated parameter, we consider 33
instances with optimum known in Fischetti et al (1998). Table 1
shows for each method, C1, C2, C3, and C4, and each value of
the parameter α tested, 0.2, 0.4, 0.6, and 0.8, the average across
the 33 instances of the average deviation value (Dev) and the
average diversity value (Div).
Table 1 shows that the best method in terms of quality is C2

(with α= 0.2), since it is able to obtain a 7.2% deviation, which
compares favourably with the rest of the methods. We also
observe that the best method in terms of diversity is C1 with an
average value of 0.57. Given their different nature and range, it
is difficult to directly compare both measures (Div and Dev) in
order to establish the best constructive method overall. Figure 1
depicts a point for each of the 16 methods reported in Table 1
(the four methods with the four values of α). The x-axis
represents the diversity value (Div) and the y-axis the deviation
value in the range [0, 1] (ie, we represent the 1-Dev value). In
this way, for both values in the diagram, we have that the larger
the value the better the method.
If we analyse the points in Figure 1 from a bi-objective

perspective, in which an objective is to maximize the quality
(1-Dev) and the other to maximize diversity (Div), we conclude
that there are only five non-dominated points (methods):
C1(0.2), C1(0.4), C1(0.6), C2(0.2), and C3(0.2). We say that
a point is non-dominated if there is no other point with
a better value in one objective and a better or equal value in
the other.

Table 1 Average deviation from optimal values and diversity of
constructive methods

α 0.2 0.4 0.6 0.8

C1 Dev 19.3% 13.5% 12.1% 13.0%
Div 0.57 0.49 0.43 0.32

C2 Dev 7.2% 7.9% 8.4% 9.9%
Div 0.28 0.20 0.15 0.11

C3 Dev 11.8% 13.1% 13.8% 14.2%
Div 0.41 0.33 0.27 0.21

C4 Dev 7.4% 7.3% 7.9% 9.2%
Div 0.25 0.18 0.14 0.11
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It is difficult to determine whether the quality is more or less
important than the diversity in a constructive method. We are
not able to anticipate which one can influence more in
the application of the local search to the solutions obtained with
the construction. We then cannot conclude which of these five
methods is the best and will test them with the local search.

3. Improvement method based on local search

We have implemented a two-phase local search procedure.
The first phase is based on exchanges, while the second one is
based on insertions. Previously, we applied a 2-opt standard
improvement mechanism (Lawler et al, 1985) to the con-
structed solutions, before submitting them to our improve-
ment method. The 2-opt will be applied again to the improved
solutions.
The neighbourhood of the first phase is based on the

exchange between a vertex v in the path P and another vertex w
not in P (without exceeding the maximum time limit Tmax).
The difference between the scores of both vertices (Sw − Sv)
provides the associated move value. We examine the vertices
in the path and, for each vertex v in P, we consider to exchange
it with each vertex out of the path. We compute the value of
each combination and perform the exchange with the largest
improvement found. If for a vertex v in P no associated move
qualifies to be performed (all of them are non-improving moves),
we try to reduce the length of the path without decreasing the
total score. Specifically, we explore again the vertices w not in

P but now we focus on those with the same score value than
v and check whether the exchange reduces the length of the
path. In this case, we perform the move; otherwise, we resort to
the next vertex v in the path P.
When a one-to-one exchange is performed, we try an

insertion move in which a vertex not present in the current path
is considered to be added to it. Note that in this problem the
insertion of a new point into the path could not necessarily
increment its length (some points are in the same location). It
could even reduce the total length because the matrix distance
does not necessarily satisfy the triangular inequality in some
instances, and therefore after we add a vertex to the path we
have to check the addition of more vertices. This is why after an
exchange we consider insertions as long as we can add vertices
in the path without exceeding Tmax. The added vertices are
inserted in the best position without changing the relative order
of the other vertices in the path.
The local search procedure examines the vertices in their

order in the path and tries to perform exchanges and insertions
for all of them as described above. If a move has been
performed for any vertex in the path, we explore again all the
vertices in the current path until no further improvement is
possible.

3.1. Comparison of methods

In the previous section, we tested 16 constructive methods (four
algorithms with four values of parameter α) on 33 instances.

Figure 1 Quality and diversity of constructive methods.
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We identified five of them, C1(0.2), C1(0.4), C1(0.6), C2(0.2),
and C3(0.2) as the best ones in terms of quality and diversity.
Now, we are going to see their performance when the local
search is applied to the 100 solutions constructed with each one.
For each method and each instance, we compute the best
solution found over the 100 constructions plus the local search
described above. Table 2 shows the average deviation with
respect to the optimum value (Dev) and the number of best
solutions that each method is able to match (#best).
Table 2 shows that the best solutions are obtained with

the C1(0.2) +LS, which is able to achieve a 3.42% deviation
and 17 best solutions out of the 33 instances. Anyway, all the
methods perform very well considering that their running times
are extremely short (below 0.1 s on each instance on an Intel
Core i5 650 at 3.20 GHz). If we check the best solutions that
each method is able to identify, we find out that some of them
are obtaining different best solutions. This is especially true
when we compare two methods based on different constructive
algorithms. For example, if we compare the 16 best solu-
tions obtained with C2(0.2) +LS and the 17 obtained with
C1(0.2) +LS, we realize that only 10 of them are the same and

both together are able to match 23 best solutions. As a matter
of fact, these are the two methods sharing the least number of
best solutions and therefore they are suitable to be combined for
improved outcomes.
We have performed a further preliminary experiment to

compare the value of the constructive method with the value
of the construction coupled with the local search. In particular,
we have generated 100 solutions on instance gil262 with
C1(0.2) computed their value, improved them with LS and
computed the value of the improved solution. Figure 2 depicts a
scatter-plot with 100 points, where the coordinates of each
one is the pair of values of each solution (the score of the
constructed solution on the x-axis and the score of the improved
solution on the y-axis).
The points in Figure 2 range in the x-axis from 6691 to 8813,

while in the y-axis they go from 9998 to 10 940. We observe
two effects, the first one is that, as expected, the values in the
y-axis are larger than those in the x-axis. The second one is that
the range in the y-axis is narrower (942) than the range in the
x-axis (2122). Moreover, the best solution found with the LS
with value 10 940 does not come from the best construction
value 8813, which can be interpreted that diversity is as
important as quality when applying the local search. However,
the correlation coefficient between both variables is r=0.284,
which indicates that the correlation is weak, but significantly
positive as stated by a t-test. Therefore, we cannot conclude
with a high confidence that the good solutions of the local
search come from the good constructions, and the performance
of the entire method is also explained by its diversification
power. For the sake of simplicity, we only depict here an

Table 2 Average deviation and number of best solutions of
constructive methods plus local search

C1
(0.2) +LS

C1
(0.4) +LS

C1
(0.6) +LS

C2
(0.2) +LS

C3
(0.2) +LS

Dev 3.42% 3.97% 5.65% 3.96% 7.76%
#best 17 13 7 16 7

The best algorithm is shown in bold.

Figure 2 Objective function on gil262 instance with C1(0.2).

1804 Journal of the Operational Research Society Vol. 65, No. 12



example, although we have empirically found that this beha-
viour is representative over the instances tested.

4. Path relinking

PR was suggested as an approach to integrate intensification
and diversification strategies in the context of tabu search
(Glover and Laguna, 1997). This approach generates new
solutions by exploring trajectories that connect high-quality
solutions—by starting from one of these solutions, called the
initiating solution, and generating a path in the neighbourhood
space that leads towards the other solutions, called guiding
solutions. This is accomplished by selecting moves that
introduce attributes contained in the guiding solutions, and
incorporating them in an intermediate solution initially origi-
nated in the initiating solution.
Laguna and Martí (1999) adapted PR in the context of

GRASP as a form of intensification. The relinking in this context
consists in finding a path between a solution found with GRASP
and a chosen elite solution. Therefore, the relinking concept has
a different interpretation within GRASP, since the solutions
found in different GRASP iterations are not linked by a
sequence of moves (as in the case of tabu search). Resende and
Ribeiro (2003) present numerous examples of GRASP with PR.
Let P= {1, u1, u2,…, uk, n} and Q= {1,w1,w2,…,ws, n} be

two solutions (paths from 1 to n) of the OP. The PR procedure
PR(P,Q) starts with the first solution P, and gradually trans-
forms it into the second one Q, by swapping out elements in
P with elements in Q. The elements in both solutions P and Q
remain in the intermediate solutions generated in the path
between them. Let VQ−P be the set of vertices in Q and not
present in P and symmetrically let VP−Q be the set of vertices in
P and not present in Q.
To apply PR(P,Q), we order the vertices in VQ−P according

to their score, where the vertex with the largest score comes
first. In the first step of the path, we insert the first vertex from
VQ−P in P in the best position according to the total time of the
path. If the obtained path is feasible (its total time does not
exceed Tmax), we have obtained a better solution than P, which
is considered the first intermediate solution; otherwise, we
remove from this path vertices of VP−Q consecutively until the
solution becomes feasible (vertices in VP−Q are selected by
increasing score). In further steps of the method, we insert into
the intermediate solution the next vertex in VQ−P and remove, if
necessary, vertices in VP−Q to generate a sequence of feasible
solutions until we finally reach Q.
Our implementation of PR has two phases. In the first one,

a set of different solutions is generated with the GRASPmethod
(ie, we remove from the set those solutions that are identical).
Instead of retaining only the best solution overall when running
GRASP, this phase stores all the different solutions obtained
with the method. In the second phase, we first apply a 2-opt
improvement method (Lawler et al, 1985) to the GRASP
solutions in this set, and then we apply the relinking process to

each pair of them. Given the pair (P,Q), we consider two paths:
from P toQ (where P is the initiating solution andQ the guiding
one), and from Q to P (where they interchange their roles). In
short, we apply PR(P,Q) and PR(Q,P).
We have experimentally found that in most cases this

relinking process by itself does not produce better solutions
than the initiating and guiding solutions. It is convenient to
add a local search exploration from some of the visited
solutions in order to produce improved outcomes. These
results are in line with those reported in Laguna and Martí
(1999) for the arc crossing problem. Specifically, we have
applied the local search method introduced in the previous
section to the best solution generated in the path if it improves
either the initiating or the guiding solution, or both.

4.1. Comparing GRASP and GRASP with path relinking

In this section, we compare GRASP and GRASP with PR on
the 33 instances used in Sections 2 and 3 to evaluate the con-
tribution of the PR post-processing. Table 3 shows the objective
function (Value), the average deviation with respect to the
optimum value (Dev), the number of optimal solutions (#opt)
and best solutions (#best) that each of both methods is able
to match (comparing only the results of both methods), and
the CPU time in seconds (Time). We run GRASP for 500
constructions and then apply, in GRASP with PR, the PR to all
pairs of different solutions.
The results in Table 3 clearly indicate that the PR post-

processing significantly improves the GRASP method. This is
especially true with the number of best solutions, since GRASP
only obtains 14 best values by itself and when it is coupled with
PR the combined method is able to match 33 best values. How-
ever, PR consumes much longer running times than GRASP.
To complement the results above, we study now the search

profile of our two methods. Figure 3 shows the progression of
the best solutions found by GRASP and GRASP with PR, for a
representative problem instance (cmt200vrpC), during 325.71 s
of search time. This figure shows how most improvements on
the best solution are achieved early in the search (ie, within 10%
of the total search time, corresponding to 30 s approximately).
After that point, GRASP stagnates, while GRASP with PR
exhibits an improving trajectory throughout the entire search
horizon. In this experiment, the best solution found has a score
of 2852, while the optimal value reported in Fischetti et al
(1998) is 2881 with a CPU time of 17 389.9 s on an HP Apollo
9000/720 at 80 MHz, with 58 MIPS, and 18 MFlops. We have

Table 3 Comparison over 33 instances

GRASP GRASP with PR

Value 2078.30 2099.82
Dev. 1.75% 0.84%
#best 14 33
#opt 14 18
Time 1.72 26.87

Vicente Campos et al—GRASP with PR for the orienteering problem 1805



performed the same experiment with different instances and the
profile follows the same pattern depicted in this figure: GRASP
with PR outperforms GRASP over the long search horizon.

5. Comparison with previous methods

In this section, we report our computational experiments to
compare the methods proposed in the sections above with the
best previous heuristics. Specifically, we compare our GRASP
and GRASP with PR with the following four methods:

● CGW by Chao et al (1996)
● GLS by Vansteenwegen, et al (2009)
● ACO by Schilde et al (2009)
● VNS by Schilde et al (2009)

The first benchmark for this problem was proposed by
Tsiligirides (1984), which consists of 49 instances with vertices
ranging from 21 to 33. These small instances have optimum
known, and as described in Schilde et al (2009) most of the
current methods are able to match these optima. More recently,
Chao et al (1996) proposed a benchmark with 40 larger
instances in two sets: the first set, called p64, has 14 of them
with 64 vertices, and the second set, called p66, the other
26 with 66 vertices each one. All the instances in a set are based
on the same graph and they only differ in the time limit value
(Tmax). We employ these 40 instances to compare our method
with the four previous ones.

Table 4 shows the best values obtained with the four methods
referenced above (CGW, GLS, ACO, and VNS) on the p64 set
of instances. These values are taken from Table 1 in Schilde
et al (2009), and correspond to an Intel Pentium 4D at 3.2 Ghz.
Note that the running times are missing for CGW and GLS
methods. On the other hand, ACO and VNS are replicated
10 times on each instance and they reported the best and worst

Figure 3 Search profile on instance cmt200vrpC.

Table 4 Comparison of previous best methods on p64 instances

Tmax CGW GLS ACO VNS

value time value time

15 96 96 96 0.007 96 0.000
20 294 294 294 0.017 294 0.002
25 390 390 390 0.025 390 0.022
30 474 474 474 0.034 474/468 1.217
35 570 552 576/570 0.508 576 0.148
40 714 702 714 0.409 714 2.453
45 816 780 816/804 7.013 816 0.587
50 900 888 900/894 4.492 900/894 3.872
55 984 972 984/978 8.323 984/966 3.011
60 1044 1062 1062/1056 0.991 1062/1050 1.606
65 1116 1110 1116 0.711 1116 8.268
70 1176 1188 1188 2.281 1188/1182 0.975
75 1224 1236 1236 0.721 1236/1230 1.158
80 1272 1260 1284/1278 2.109 1284/1278 12.593

Average 790.7 786.0 795.0/792.0 1.970 795.0/790.7 2.570
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values of the 10 runs (and only one value if both are the same).
The running times correspond to the elapsed seconds to reach
the solution found in the best run out of the 10. These results

indicate that the ACO method is the best one and therefore
we compare in Table 5 our GRASP and GRASP with PR with
ACO on the p64 set of instances. To perform a fair comparison,
we replicate our methods 10 times and report the elapsed time as
Schilde et al (2009) did with ACO. However, running times of our
twomethods are computed on an Intel Core i5 650 at 3.20 GHz, so
a direct comparison of running times with ACO is not possible.
Table 5 clearly shows that our methods are competitive with

the best published heuristic for this problem. In particular,
GRASP obtains a best average value of 794.6 and a worst
average value across the 10 replications of 791.1, and it exhibits
an average CPU time of 0.089 to reach the best values. GRASP
with PR marginally improves these results and has an average
best and worst values across the 10 runs of 795.0 and 792.9,
respectively, which are slightly better than the 795.0 and 792.0
obtained with ACO. Moreover, the average running time of
GRASP+PR on an Intel Core i5 650 at 3.20 GHz is 0.208,
while the CPU time required by ACO is 1.97 on an Intel
Pentium 4D at 3.2 Ghz. It is difficult to perform indirect
comparisons of running times taken from different computers,
but the ratio between the average CPU times of ACO and
GRASP with PR is 1.97/0.21= 9.47, which seems to indicate
that GRASP+PR is faster than ACO.
Table 6 shows the best values obtained with the two best

previous heuristics, ACO and VNS, and our two methds,

Table 5 Comparison with the previous best method on p64
instances

Tmax ACO GRASP GRASP+PR

value time value time value time

15 96 0.007 96 0.015 96 0.015

20 294 0.017 294 0.046 294 0.062
25 390 0.025 390 0.062 390 0.140
30 474 0.034 468 0.062 468 0.171

35 576/570 0.508 576 0.078 576 0.280
40 714 0.409 714/708 0.093 714 0.280
45 816/804 7.013 816/804 0.093 816 0.296
50 900/894 4.492 900 0.109 900 0.421

55 984/978 8.323 984/978 0.171 984/978 0.296
60 1062/1056 0.991 1062/1044 0.124 1062/1044 0.249
65 1116 0.711 1116 0.109 1116 0.202

70 1188 2.281 1188 0.093 1188 0.187
75 1236 0.721 1236 0.093 1236 0.171
80 1284/1278 2.109 1284/1278 0.093 1284/1278 0.140

Average 795.0/792.0 1.970 794.6/791.1 0.089 795.0/792.9 0.208

Table 6 Comparison of best methods on p66 instances

Tmax ACO VNS GRASP GRASP with PR

value time value time

5 10 0.01 10 0.00 10 0.00 10 0.00
10 40 0.01 40 0.00 40 0.00 40 0.00
15 120 0.01 120 0.00 120 0.02 120 0.02
20 205 0.06 205 0.01 205 0.02 205 0.02
25 290 0.02 290 0.01 290 0.03 290 0.03
30 400 0.02 400 0.01 400 0.05 400 0.05
35 465 0.03 465 0.13 465 0.06 465 0.06
40 575 0.04 575 1.94 575/555 0.06 575 0.28
45 650 0.05 650 0.03 650 0.08 650 0.08
50 730 0.05 730 0.13 730 0.09 730 0.09
55 825 0.06 825 3.04 825 0.09 825 0.09
60 915 0.13 915 0.04 915 0.11 915 0.11
65 980 0.08 980 1.63 980 0.11 980 0.11
70 1070 0.08 1070 0.40 1070 0.11 1070 0.11
75 1140 0.09 1140/1135 0.06 1140 0.11 1140 0.11
80 1215 1.27 1215/1195 2.61 1215 0.12 1215 0.12
85 1270 0.22 1270/1265 0.97 1270 0.12 1270 0.12
90 1340 0.48 1340/1330 0.61 1340 0.12 1340 0.12
95 1395 0.39 1395/1390 0.85 1395 0.11 1395 0.11
100 1465 1.41 1465/1445 11.1 1465/1455 0.11 1465 0.41
105 1520 0.15 1520/1495 0.33 1520/1510 0.11 1520 0.51
110 1560 0.32 1560/1550 1.33 1560 0.09 1560 0.09
115 1595 0.16 1595/1585 8.46 1595 0.09 1595 0.09
120 1635 1.22 1635/1625 1.18 1635/1625 0.08 1635 0.22
125 1670 0.19 1670/1665 1.07 1670/1655 0.08 1670 0.19
130 1680 0.19 1680 0.02 1680/1640 0.00 1680 0.02

952.3 0.26 952.3/947.5 1.38 952.3/948.3 0.07 952.3 0.12
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GRASP and GRASP with PR, on the p66 set of instances. As in
the previous experiment, the four methods are run 10 times on
each instance and we report the best and worst value across the
10 replications. Note that we only report both values when they
differ. The average best/worst values across the 10 runs of VNS
and GRASP are, respectively, 952.3/947.5 and 952.3/948.3. On
the other hand, ACO and GRASP with PR are able to match in
the 10 runs the best-known value for each of the 26 instances in
the p66 set. This may indicate that these instances, p66, are
easier to solve than those reported in Table 5 (p64 instances).
GRASP only requires an average running time of 0.07seconds,
while GRASP with PR needs 0.12 seconds on average. ACO
and VNS require 0.26 and 1.38 s, respectively. However, they
were run on an older computer than that used for GRASP and
GRASP with PR, so we can conclude that GRASP has a
performance similar to that of VNS, and GRASP with PR a
performance similar to that of ACO on this set of instances.
Fischetti et al (1998) proposed an exact procedure (a branch-

and-cut algorithm) and compute the optimal value for some
instances (their method requires about 5 h of CPU time to
obtain the optimum in some of their largest instances). It must
be noted that this method includes the computation of a lower
bound in the root node of the branch-and-cut search tree. As
shown in the previous sections, we have used these instances to
calibrate our algorithm (find the best values for key search
parameters) and compare different search strategies. We also
use them in this section to compare the results of our two
methods with the optimal solution and the lower bound.
Note that in the VRP instances reported in Fischetti et al

(1998), called Class I instances, the customer demand is
interpreted as the vertex score. Table 7 reports the average
optimal value (opt) and the corresponding CPU time to obtain it
with the branch and cut in Fischetti et al (1998) for the 33
instances in this set. This table also shows the average lower
bound computed by this method in the root node of the search
tree, its average percent deviation with respect to the optimum,
and its associated running time. Finally, it also shows the
average value of GRASP and GRASP with PR with their
average deviations and running times in seconds. The indivi-
dual results for each instance are shown in Table A1. Note that
the branch and cut and its lower bound were run on a HPApollo
9000/720 at 80 MHz with 18 MFlops and Cplex 3, while the
GRASP and GRASP with PR on an Intel Core i5 650 at 3.20
GHz. Therefore, as mentioned above, we have to keep in mind
that it is difficult to perform indirect comparisons of running
times taken from different computers. It seems, however, that

the branch and cut requires a running time longer than that of
the heuristic methods: 1847.5 s on average versus 1.8 for
GRASP and 32.6 for GRASP with PR, although it obtains the
optimum in 32 out of the 33 instances, while the heuristics
approximate it, as can be shown in the average percent
deviations. On the other hand, the lower bound computed
by the branch and cut is very accurate (it exhibits a 0.6%
deviation), and is obtained in a relatively short running time
(167.8 s on average). GRASP with PR performs remarkably
well considering that it has an average deviation of 0.9% from
the optimal solution value, achieved on 32.6 s.
Fischetti et al (1998) also considered a second set of 123

instances (Class II) derived from the TSPLIB 2.1 involving up to
400 nodes. For these instances, the scores were generated
according to three different ways, called generations. Generation
1 contains 41 instances with the goal of covering as many nodes
as possible (all the nodes have a score equal to 1). Generation 2
contains 41 instances with pseudo-random scores in the range
[1, 100]. Finally, generation 3 contains the most difficult instances
in which large prices are assigned to the nodes far away from the
depot. Tables 8–10 summarize the results of each method
(GRASP, GRASP with PR, Branch and Cut, and Lower Bound
of the Branch and Cut) on each type of instance (generation),
respectively. The results of each method on each instance are
shown in Tables A2–A4, respectively, for each generation class.
Tables 8–10 clearly show that our both heuristics obtain

high-quality solutions in short computing times. In particular,

Table 7 Comparison with optimal values in Class I instances

Branch
and cut

LB GRASP GRASP
with PR

Value 2132.2 2094.2 2075.8 2095.3
CPU time 1847.5 167.8 1.8 32.6
Optimal deviation 0.0% 0.6% 1.7% 0.9%

Table 8 Comparison with optimal values in Class II (Generation 1)
instances

Branch
and cut

LB GRASP GRASP
with PR

Value 85.2 85.0 83.7 84.3
CPU time 1768.0 480.4 12.9 231.1
Optimal deviation 0.0% 0.1% 1.1% 0.5%

Table 9 Comparison with optimal values in Class II (Generation 2)
instances

Branch
and cut

LB GRASP GRASP
with PR

Value 4649.1 4645.4 4507.3 4563.2
CPU time 2729.6 975.2 4.8 91.5
Optimal deviation 0.0% 0.1% 2.1% 0.9%

Table 10 Comparison with optimal values in Class II
(Generation 3) instances

Branch
and cut

LB GRASP GRASP
with PR

Value 4509.7 4427.8 4371.8 4447.6
CPU time 8588.6 1943.3 5.5 179.8
Optimal deviation 0.0% 1.8% 2.1% 0.7%
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GRASP with PR is able to obtain solutions below 1% of
average deviation from optimality in less than 4 min on average.
Moreover, the lower bound of the branch-and-cut method
performs remarkably well, since it is able to obtain very
accurate values (below 1.8% overall, with many instances
matching the optimal solution). The tables in the appendix
show the individual results of these methods on each instance.
Note that according to Fischetti et al (1998), generation 3
contains the most difficult instances, and our GRASP with PR
obtains in these instances its best values, with an average
percentage deviation from the optimal solution of 0.7%.

6. Conclusions

The OP is a difficult combinatorial optimization problem and a
perfect platform to study the effectiveness of search mechan-
isms. Of particular interest in our work has been testing the
effect of combining two different neighbourhoods within the
local search of GRASP, as well as studying the effect of a post-
processing based on PR. Through extensive experimentation,
we have been able to determine the benefits of adding enhanced
search strategies to basic procedures. We have compared our
methods with the best identified in previous studies. The
comparison clearly shows that our proposals are competitive
with the state-of-the-art methods.
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Appendix

Table A1 Comparison with optimal values in Class I instances

Instance Branch and cut LB GRASP GRASP with PR

Optimal time value time value time value time

att48vrpA 17 2.6 17 2.6 17 0.1 17 0.1
att48vrpB 30 0.8 30 0.8 30 0.1 30 1.4
att48vrpC 39 1.1 39 1.1 39 0.2 39 2.7
cmt101vrpA 530 57.8 530 57.8 530 0.1 530 3.8
cmt101vrpB 1030 55.2 1019 36.9 1010 0.4 1020 14.1
cmt101vrpC 1480 130.7 1480 130.7 1460 0.6 1480 14.9
cmt121vrpA 412 612.5 405 347.9 412 0.7 412 20.6
cmt121vrpB 715 1525.6 715 411.1 699 0.8 707 16.3
cmt121vrpC 1134 50.9 1134 50.9 1120 1.4 1125 46.0
cmt151vrpA 824 128.4 824 128.4 815 1.2 824 21.6
cmt151vrpB 1537 167.3 1535 131.8 1482 2.2 1528 30.5
cmt151vrpC 2003 380.3 1998 114.6 1965 2.3 1996 47.9
cmt200vrpA 1205 299.1 1203 130.7 1145 2.9 1181 34.1
cmt200vrpB 2198 596.3 2198 147.4 2073 5.6 2105 51.1
cmt200vrpC 2881 17389.9 2644 127.9 2791 5.8 2824 133.8
eil101vrpA 572 189.7 572 177.3 566 0.3 572 10.0
eil101vrpB 1049 5.6 1049 5.6 1024 0.7 1032 14.6
eil101vrpC 1336 4.7 1336 4.7 1295 0.6 1302 14.3
eil30vrpA 2650 2.8 2650 2.8 2650 0.0 2650 0.0
eil30vrpB 7600 5.2 7600 5.2 7600 0.0 7600 0.0
eil30vrpC 11550 0.9 11550 0.9 11550 0.0 11550 0.0
eil51vrpA 264 2.2 264 2.2 264 0.2 264 0.4
eil51vrpB 508 2.4 508 2.4 508 0.3 508 2.0
eil51vrpC 690 77.6 690 60.0 690 0.3 690 2.0
eil76vrpA 490 48.7 490 48.7 490 5.5 490 3.6
eil76vrpB 907 3.1 907 3.1 896 13.4 904 8.8
eil76vrpC 1186 457.6 1181 56.6 1172 13.2 1184 7.4
gil262vrpA 4466 18000.0 4403 2541.6 3916 0.1 4050 138.4
gil262vrpB 8456 3252.7 8439 365.8 7946 0.1 8074 103.7
gil262vrpC 11195 17512.0 10288 436.5 10938 0.1 11046 328.4
op33A 250 0.8 250 0.8 250 0.1 250 0.1
op33B 500 1.8 500 1.8 500 0.1 500 0.6
op33C 660 1.1 660 1.1 660 0.1 660 1.1

Average 2132.2 1847.5 2094.2 167.8 2075.8 1.3 2095.3 32.5
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Table A2 Comparison with optimal values in Class II (Generation 1) instances

Instance Branch and cut LB GRASP GRASP with PR

optimal time value time value time value time

att48 31 0.7 31 0.7 31 0.1 31 1.51
gr48 31 1.1 31 1.1 31 0.2 31 1.92
hk48 30 1.7 30 1.7 30 0.2 30 3.24
eil51 30 1.2 30 1.2 30 0.2 30 0.31
brazil58 46 3.2 46 3.2 46 0.3 46 12.37
st70 44 5.3 44 5.3 44 0.5 44 2.26
eil76 47 5.7 47 5.7 47 0.7 47 1.34
pr76 49 50.9 49 50.9 48 0.6 49 44.09
gr96 64 121.1 64 113.8 64 1.4 64 93.38
rat99 53 53.5 53 53.5 52 1.3 53 5.62
kroA100 57 27.1 57 27.1 56 1.4 57 54.57
kroB100 58 326.9 57 156.7 58 1.4 58 54.40
kroC100 56 50.7 56 50.7 56 1.3 56 40.47
kroD100 59 32.0 59 32.0 59 1.4 59 65.96
kroE100 57 776.0 57 82.9 57 1.4 57 54.35
rd100 61 30.2 61 30.2 61 1.7 61 44.26
eil101 66 7.1 66 7.1 65 1.7 66 3.59
lin105 66 83.4 66 78.8 66 1.6 66 141.44
pr107 54 86.3 54 86.3 54 0.6 54 25.13
gr120 75 17.5 75 17.5 74 3.3 75 74.05
pr124 75 41.2 75 41.2 75 2.5 75 145.22
bier127 103 73.7 103 73.7 102 3.5 103 213.50
pr136 71 214.2 71 214.2 70 2.9 70 50.22
gr137 81 178.6 81 178.6 81 4.5 81 380.63
pr144 77 240.3 77 240.3 77 3.1 77 311.31
kroA150 86 4669.0 86 582.2 85 5.1 86 94.49
kroB150 87 145.6 87 145.6 86 5.7 87 107.42
pr152 77 204.6 77 204.6 77 3.1 77 365.31
u159 93 497.6 93 497.6 91 6.2 93 242.47
rat195 104 331.9 104 331.9 101 11.7 102 36.04
d198 124 716.3 124 716.3 122 15.1 123 424.13
kroA200 118 395.0 118 395.0 116 16.0 117 245.68
kroB200 119 683.6 119 683.6 116 14.0 118 321.59
ts225 126 18000.0 126 9.7 124 17.9 124 146.91
pr226 126 18000.0 126 1955.3 124 14.2 126 902.20
gil262 164 120.6 164 120.6 158 34.5 160 183.21
pr264 132 2860.2 132 2860.2 132 11.8 132 1267.89
pr299 162 14224.0 160 5726.3 156 63.2 158 933.33
lin318 206 3169.9 206 2558.0 196 82.8 201 1703.69
rd400 243 4272.5 238 874.0 228 176.2 228 444.24

Average 85.2 1768.0 85.0 480.4 83.7 12.9 84.3 231.1
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Table A3 Comparison with optimal values in Class II (Generation 2) instances

Instance Branch and cut LB GRASP GRASP with PR

optimal Time value time value time value time

att48 1634 3.9 1634 3.9 1634 0.1 1634 2.6
gr48 1469 18.0 1469 18.0 1469 0.1 1469 3.6
hk48 1535 7.1 1535 7.1 1524 0.1 1535 3.2
eil51 1778 30.7 1778 30.7 1778 0.1 1778 3.8
brazil58 2326 7.8 2326 7.8 2326 0.2 2326 13.1
st70 2302 181.0 2302 147.2 2294 0.3 2302 13.9
eil76 2591 7.2 2591 7.2 2525 0.4 2591 12.0
pr76 2666 62.0 2666 58.6 2626 0.3 2666 14.6
gr96 3506 453.1 3506 399.3 3447 0.7 3501 35.8
rat99 3042 125.4 3042 125.4 2976 0.7 3031 21.7
kroA100 3181 67.8 3181 67.8 3135 0.8 3181 29.1
kroB100 3195 481.4 3195 259.0 3183 0.7 3191 31.4
kroC100 3044 316.2 3040 207.6 3044 0.7 3044 21.7
kroD100 3226 334.2 3226 237.2 3152 0.7 3212 33.1
kroE100 3310 1433.9 3263 285.5 3260 0.7 3310 36.5
rd100 3470 27.8 3470 27.8 3449 0.7 3453 33.7
eil101 3668 296.5 3668 51.5 3596 0.8 3645 28.3
lin105 3577 163.6 3577 151.9 3577 0.9 3577 83.1
pr107 2681 99.4 2681 99.4 2681 0.5 2681 20.5
gr120 4223 650.0 4223 3471.0 4138 1.3 4201 43.9
pr124 3840 79.4 3840 79.4 3840 1.3 3840 83.3
bier127 5376 245.0 5376 73.2 5154 1.6 5264 100.6
pr136 4223 194.3 4223 194.3 4170 1.7 4213 36.8
gr137 4291 3193.0 4291 797.9 4255 1.9 4284 126.9
pr144 3994 1409.0 3994 668.0 3902 1.8 3994 114.9
kroA150 4919 3950.6 4889 460.1 4768 2.4 4915 52.8
kroB150 5017 1018.1 5017 735.7 4967 2.2 5001 66.5
pr152 4196 188.6 4196 188.6 4094 1.8 4175 166.7
u159 5044 1772.4 5023 518.0 4809 2.8 4987 100.1
rat195 5936 2498.6 5936 1750.1 5693 5.3 5693 63.8
d198 6539 2517.1 6532 1337.8 6347 5.8 6476 241.6
kroA200 6616 805.1 6616 515.2 6447 6.1 6551 111.5
kroB200 6597 3522.8 6590 1240.7 6357 5.6 6409 103.9
ts225 6812 1195.5 6812 763.3 6701 8.9 6784 93.6
pr226 6691 18000.0 6684 3973.9 6375 6.9 6614 265.5
gil262 9159 5574.6 9149 2783.0 8847 14.6 8941 132.8
pr264 6666 4253.3 6666 4253.3 6666 9.6 6666 343.7
pr299 9107 18000.0 9107 10803.8 8645 19.7 8689 400.9
lin318 10962 18000.0 10962 1370.0 10074 27.3 10339 339.7
rd400 13555 18000.0 13541 837.6 12365 54.0 12365 229.2

Average 4649.1 2729.6 4645.4 975.2 4507.3 4.8 4563.2 91.5
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Table A4 Comparison with optimal values in Class II (Generation 3) instances

Instance Branch and cut LB GRASP GRASP with PR

optimal time value time value time value time

att48 1050 251.8 1050 180.2 1050 0.1 1050 4.0
gr48 1481 27.5 1481 27.5 1481 0.1 1481 4.5
hk48 1765 3.5 1765 3.5 1765 0.1 1765 2.7
eil51 1465 19.5 1465 19.5 1465 0.1 1465 5.3
brazil58 1703 2.8 1703 2.8 1703 0.2 1703 12.8
st70 2182 70.6 2182 70.6 2182 0.3 2182 14.6
eil76 2526 49.6 2526 49.6 2469 0.4 2523 17.5
pr76 2431 34.0 2431 34.0 2421 0.4 2431 25.4
gr96 3183 416.6 3179 189.1 3165 0.9 3183 52.5
rat99 2950 487.4 2950 481.1 2929 0.9 2949 38.3
kroA100 3227 248.8 3227 144.8 3181 0.7 3227 51.1
kroB100 2807 138.9 2807 134.1 2762 0.7 2807 61.0
kroC100 3158 228.1 3158 228.1 3114 0.8 3152 40.7
kroD100 3173 230.3 3173 167.8 3168 0.8 3173 60.0
kroE100 3053 184.4 3053 184.4 3015 0.8 3053 69.6
rd100 2957 1032.3 2957 644.9 2940 0.9 2943 40.0
eil101 3427 186.7 3427 120.0 3341 0.9 3389 29.5
lin105 2995 1121.1 2953 325.9 2942 1.2 2995 101.7
pr107 1878 17609.0 1876 632.4 1876 0.6 1878 47.7
gr120 3780 145.5 3780 145.5 3687 1.7 3753 56.1
pr124 3558 11487.2 3337 1377.8 3547 1.3 3558 98.5
bier127 2366 2001.2 2351 139.3 2242 1.6 2336 116.5
pr136 4391 958.5 4391 861.6 4363 2.1 4381 124.4
gr137 3980 4958.7 2169 2401.9 3844 2.2 3946 100.4
pr144 3747 180000.0 3747 1573.8 3688 1.9 3747 176.6
kroA150 5050 3828.9 5044 269.7 5006 2.5 5043 157.1
kroB150 5337 1363.9 5337 1112.5 5203 2.4 5318 113.0
pr152 3910 13736.7 3882 1099.0 3871 2.3 3910 238.2
u159 5273 1447.2 5273 1308.4 5198 3.2 5273 232.0
rat195 6296 3975.4 6289 3672.2 5970 7.2 6164 124.7
d198 6369 8635.7 6369 1810.0 6136 8.8 6222 384.7
kroA200 6140 6548.9 6140 3116.5 5989 5.9 6089 205.1
kroB200 6274 783.7 6274 642.6 6024 5.2 6213 254.0
ts225 7618 5821.8 7618 3437.6 7477 11.8 7576 263.2
pr226 6994 7923.2 5874 3379.5 6802 7.0 6971 816.1
gil262 9547 9574.0 9527 6177.4 8911 15.9 9277 244.5
pr264 8138 4011.3 8138 4011.3 7752 12.8 8013 901.2
pr299 10356 18000.0 10356 14699.4 9848 26.0 10145 959.9
lin318 10430 18000.0 10430 8597.5 9664 29.1 9876 434.9
rd400 13422 18000.0 13422 14257.1 12681 56.4 12743 512.6

Average 4509.7 8588.6 4427.8 1943.3 4371.8 5.5 4447.6 179.8
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