
MIC/MAEB 2017 id–1

An Alternative ILP Model and Algorithmic Ideas for the
Maximum Edge-Disjoint Paths Problem

Christian Blum1, Maria J. Blesa2, Abraham Duarte3, Jesús Sánchez-Oro3

1 Artificial Intelligence Research Institute (IIIA-CSIC)

Campus of the UAB

Bellaterra, Spain

christian.blum@iiia.csic.es

2 Computer Science Department

Universitat Politècnica de Catalunya - BarcelonaTech

Barcelona, Spain

mjblesa@cs.upc.edu

3 Dept. Computer Science

Universidad Rey Juan Carlos

Móstoles, Madrid, Spain

{abraham.duarte, jesus.sanchezoro}@urjc.es

Abstract

This document describes an alternative integer linear programming (ILP) model for the so-called

edge-disjoint paths (EDP) problem in undirected graphs. EDP is an NP-hard problem where ex-

act methods are not able to produce high quality solutions. Therefore, we propose two different

algorithms for combining exact and heuristic methods. On the one hand, we consider a restricted

model that limits the number of paths between two given nodes in the graphs (which reduces the

search space exploration). On the other hand, the application of a mat-heuristic algorithm known as

Construct, Merge, Solve and Adapt (CMSA) is considered. In this document we show some prelim-

inary results concerning the restricted model. These results indicate the potential usefulness of the

presented ideas.

1 Introduction

Let G = (V,E) be an edge-weighted undirected graph representing a network in which the nodes may

represent hosts and switches, and the edges links between them. The weight w(e) ∈ R+ of an edge e ∈ E

corresponds to the distance between its endpoints. Let T = {(sj , tj)|j = 1, . . . , |T |; sj "= tj ∈ V } be

a list of commodities, i.e., pairs of nodes in G, representing endpoints demanding to be connected by a

simple path in G. T is said to be realizable in G if there exist mutually edge-disjoint paths from sj to tj
in G, for every j = 1, . . . , |T |. Deciding whether a given set of pairs is realizable in a given graph is one

of Karp’s original NP-complete problems [2]. The problem remains NP-complete for various graph

types such as, for example, two-dimensional meshes.

The combinatorial optimization version of this problem consists in satisfying as many of the requests

as possible, which is equivalent to finding a realizable subset of T of maximum cardinality. An EDP

solution S to the combinatorial optimization problem is a set of disjoint paths, in which each path satisfies

the connection request for a different commodity. The objective function value f(S) of a solution S is

defined as f(S) = |S|.

2 Alternative ILP model

Let Pj be the ordered set of all different paths connecting the two endpoints of commodity j (that is, sj
and tj) in G. The term ordered refers here to the fact that it is possible to refer to the i-th path in the

set. Let the i-th path in Pj be denoted by pi,j . For being able to phrase the alternative ILP model we

introduce a binary variable xi,j for each path pi,j ∈ Pj , for i = 1, ..., |Pj | and j = 1, . . . , |T |. Setting

xi,j to one means that path pi,j is selected to form part of the solution. Moreover, two variables xi,j and

Barcelona, July 4-7, 2017
938

id–2 MIC/MAEB 2017

xk,l (with j "= l) are said to be in conflict if the corresponding paths pi,j and pk,l share at least one edge.

With this definition we can phrase the following ILP for the EDP problem.

max

|T |∑

j=1

|Pj |∑

i=1

xi,j (1)

s.t.

|Pj|∑

i=1

xi,j ≤ 1 j = 1, . . . , |T | (2)

xi,j + xk,l ≤ 1 for each pair of variables xi,j "= xk,l in conflict (3)

xi,j ∈ {0, 1} j = 1, . . . , |T | and i = 1, . . . , |Pj | (4)

Hereby, constraints 2 ensure that at most one path per commodity is chosen. And constraints 3 ensure

that the chosen paths are mutually edge-disjoint. For normal-size instances, this model is not practical

if the aim is to solve it directly with a general-purpose ILP solver. This is because it has an exponential

number of variables and an exponential number of constraints. This is a classical model that could, in

principle, be tackled by column generation. However, a considerable amount of expert knowledge in

operations research is necessary for doing so. Therefore, we propose some alternative algorithmic ideas

for generating approximate solutions on the basis of the above-described ILP model in the next section.

3 Algorithmic proposal

This Section is devoted to present two different ideas for exploiting this model reducing the computa-

tional effort needed to obtain high quality solutions. On the one hand, we describe a restricted model with

a lower number of variables and constraints. On the other hand, we propose a mat-heuristic algorithm

known as Construct, Merge, Solve & Adapt (CMSA).

3.1 Solving a restricted model

The main problem of the original ILP model [3] is the large number of available paths existing between

two nodes of a given commodity. Therefore, instead of considering the full sets Pj , j = 1, . . . , |T |, we

propose to restrict each set Pj to the X shortest paths for each commodity. Let PX
j ⊆ Pj be the set

of the X shortest paths for commodity j, j = 1, . . . , |T |. By replacing all Pj in the ILP model by sets

PX
j we obtain a restricted model that, depending on the value of X, may be solved to optimality. The

computational experiments will show an extensive study for different values of X in order to find out

for which values of X it would be feasible to solve the ILP model with a solver. Moreover, it would be

interesting to see how the results compare to the best previous heuristic algorithms concerning the state

of the art and with the proposed mat-heuristic algorithm presented in Section 3.2.

3.2 Construct, Merge, Solve & Adapt

Construct, Merge, Solve & Adapt (CMSA) is a recent generic mat-heuristic that performs something

very similar to column generation. However, instead of a lot of expert knowledge, it is only necessary to

have a way for probabilistically constructing solutions to the tackled problem, and to have an ILP model

for the tackled problem.

The CMSA algorithm was introduced in [1] with the same motivation that led already to the devel-

opment of large neighborhood search. More specifically, the CMSA algorithm is designed in order to

be able to take profit from an efficient complete solver even in the context of problem instances that are

too large to be solved directly by the complete solver. The general idea of CMSA is as follows. At each

iteration, solutions to the tackled problem instance are generated in a probabilistic way. The solution

components found in these solutions are then added to a sub-instance of the original problem instance.

Barcelona, July 4-7, 2017
939

MIC/MAEB 2017 id–3

Subsequently, an exact solver such as, for example, Gurobi, is used to solve the sub-instance to opti-

mality. Moreover, the algorithm is equipped with a mechanism for deleting seemingly useless solution

components from the sub-instance. This is done such that the sub-instance has a moderate size and can

be solved rather quickly to optimality.

4 Computational experiments

This Section presents some preliminary results obtained when applying the general-purpose ILP solver

Gurobi to the (restricted) alternative ILP formulation (AILP) and to the best ILP model from the liter-

ature. Table 1 shows the obtained results when considering 10, 25, and 50 shortest paths in the AILP,

that is, X ∈ {10, 25, 50}. Note that all numbers are averages over 60 different sets of commodities, and

the maximum allowed computing time is 100 seconds. We do not report the results obtained by CMSA

algorithm since it is a work in progress, and there are no preliminary results yet.

Regarding small instances, the best results (concerning the AILP model) are obtained when con-

sidering the highest number of shortest paths, since the solver is able to optimally solve the restricted

model. However, when considering larger instances, better results are obtained with the lowest number

of shortest paths, since the number of constraints is proportional to the number of paths.

Furthermore, regarding the set of most challenging instances (based on mesh25x25), the results con-

cerning the AILP drastically outperform the results obtained by the standard ILP formulation, which

shows the relevance of the proposal. Finally, it is worth mentioning the difference between the comput-

ing time required by the ILP (5000 seconds) and the AILP (193 seconds in the worst case).

Instances ILP AILP(10) AILP(25) AILP(50)

AS-BA.R-Wax.v100e217 13.47 12.47 12.78 12.98

bl-wr2-wht2.10-50.sdeg 44.20 37.18 34.53 33.42

graph3 30.08 27.62 29.50 28.55

graph4 42.95 33.70 36.40 37.85

mesh25x25 24.28 64.58 52.95 51.90

Average Time (s) 5000 17.30 43.57 193.09

Table 1: Preliminary results of the alternative ILP formulation when considering 10, 25, and 50 shortest

paths, respectively.

Acknowledgments

This research has been partially supported by the Spanish Ministry of Economy, Industry and Compet-

itiveness (grant ref. TIN2015-65460-C2-2-P) and by the Agency for Management of University and

Research Grants (AGAUR) of the Government of Catalonia (project ref. SGR 2014-1034).

References

[1] C. Blum, P. Pinacho, M. López-Ibáñez, and J. A. Lozano. Construct, Merge, Solve & Adapt: A new

general algorithm for combinatorial optimization. Computers & Operations Research, 68:75 – 88,

2016.

[2] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA,

1972.

[3] Sánchez A. Beltrán C. Martı́n, B. and A. Duarte. A Matheuristic Approach for Solving the Edge-

Disjoint Paths Problem. In V. Maniezzo and T. Stützle, editors, Matheuristics 2016 - Proceedings of

the Sixth International Workshop on Model-based Metaheuristics, pages 25–34, Brussels, Belgium,

2016. IRIDIA, Université Libre de Bruxelles.

Barcelona, July 4-7, 2017
940

